陳靜,趙錫海,王海平,李欣,曹亦賓
卒中已躍居為我國城市居民的第一位致死性疾病[1]。研究顯示,顱內(nèi)、外動脈粥樣硬化易損斑塊破裂是導(dǎo)致缺血性卒中的主要原因[2-3]。目前,血管狹窄程度是判定動脈粥樣硬化病變嚴(yán)重程度的主要評價指標(biāo),并以此作為決策臨床治療的主要依據(jù)。然而,有研究顯示,動脈血管表現(xiàn)為輕-中度狹窄的患者仍然存在發(fā)生缺血性事件(心肌梗死和腦梗死)的風(fēng)險[4]。組織病理學(xué)研究證實,在動脈粥樣硬化發(fā)生及發(fā)展過程中,血管常表現(xiàn)為正性重構(gòu)效應(yīng),以確保靶器官足夠的血流灌注[5]。此外有學(xué)者發(fā)現(xiàn),發(fā)生正性重構(gòu)的血管其粥樣硬化斑塊穩(wěn)定性較差,更易引起腦血管事件[6]。因此,單純評價病變血管的狹窄程度不能客觀評價動脈粥樣硬化病變的嚴(yán)重性,有必要對動脈管壁進行直接成像來評價斑塊的生物學(xué)穩(wěn)定性。近年來大量磁共振斑塊成像研究證實,頸動脈斑塊內(nèi)出血和纖維帽破裂等易損斑塊特征與缺血性腦血管事件密切相關(guān)[7]。本文將對腦血管粥樣硬化斑塊磁共振特征與缺血性卒中的相關(guān)性研究進展進行綜述。
組織病理學(xué)研究發(fā)現(xiàn),動脈粥樣硬化易損斑塊主要表現(xiàn)以下特征:①斑塊內(nèi)出血(intraplaque hemorrhage,IPH);②富含脂質(zhì)的壞死核(lipid rich necrotic core,LRNC),薄纖維帽;③纖維帽破裂(fibrous cap rupture,F(xiàn)CR);④斑塊表面鈣化結(jié)節(jié)(juxtalumenal calcium nodule);⑤炎癥細胞浸潤(inflammation);⑥豐富的新生血管(neovasculature)等[8]。大量研究證實,上述易損斑塊特征與缺血性腦血管事件密切相關(guān)[9-10]。
與組織病理學(xué)對照研究顯示,高分辨率磁共振成像(high-resolution magnetic resonance imaging,HRMRI)多對比度斑塊成像技術(shù),包括時間飛躍法磁共振血管成像(time-of-flight magnetic resonance angiography,TOF MRA)、T1加權(quán)像、T2加權(quán)像以及質(zhì)子密度加權(quán)像(proton density weighted imaging,PDW)等,能夠準(zhǔn)確識別IPH、LRNC、FCR及鈣化等斑塊成分,其敏感性和特異性分別為82%~96%和74%~100%,69%~100%和95%~100%,81%~100%和80%~96%,76%~84%和86%~91%[11-15]。有研究表明,動態(tài)增強MRI能夠反映斑塊內(nèi)新生血管的程度,其敏感性和特異性分別為76%和79%[16]。此外,有學(xué)者發(fā)現(xiàn)動態(tài)增強MRI還可以反映斑塊內(nèi)炎癥細胞浸潤的情況,且與組織病理學(xué)有較高的一致性(r=0.75,P<0.001)[17]。
橫斷面研究證實,磁共振斑塊成像不僅可以對斑塊成分進行定性分析,同時還可以進行定量測量。Cai等[18]在2005年對21例癥狀性頸動脈狹窄患者進行磁共振成像研究,結(jié)果發(fā)現(xiàn),應(yīng)用磁共振管壁成像測量斑塊LRNC(r=0.73,P<0.001)和纖維帽的大?。╮=0.80,P<0.001)與組織病理學(xué)具有高度的一致性。Saam等[19]應(yīng)用HRMRI對31例癥狀性頸動脈狹窄患者的頸動脈管腔面積、LRNC以及鈣化進行定量研究,結(jié)果證實磁共振對于上述斑塊特征的定量分析與組織病理學(xué)一致性較高(r=0.74~0.81,P<0.001)。動態(tài)增強MRI在分析斑塊內(nèi)新生血管方面亦有一定的潛力,其分析結(jié)果與組織病理學(xué)的相關(guān)系數(shù)高達0.80(P<0.001)[20]。
2.1 纖維帽破裂 纖維帽(fibrous cap,F(xiàn)C)是覆蓋于脂質(zhì)核表面的一層結(jié)締組織[8],其厚度是決定斑塊穩(wěn)定性的一個重要因素。纖維帽一旦破裂,會導(dǎo)致局部血栓形成,從而引發(fā)缺血性腦血管事件。
早在2000年,Hatsukami等[13]對頸動脈狹窄的患者進行了磁共振斑塊成像研究,依據(jù)纖維帽的厚度及完整性將其分為薄且完整、厚且完整及纖維帽破裂三類,結(jié)果發(fā)現(xiàn)纖維帽破裂或者薄纖維帽多見于癥狀性頸動脈狹窄組,而厚的纖維帽多見于非癥狀組。隨后,Yuan等[21]對53例頸動脈狹窄的患者進行了MRI研究(28例癥狀性,包括短暫性腦缺血發(fā)作和腦梗死),結(jié)果發(fā)現(xiàn),癥狀組患者FCR發(fā)生率明顯高于非癥狀組(70% vs 9%,P=0.001);與厚的纖維帽相比,纖維帽過薄或破裂的患者近期發(fā)生卒中的風(fēng)險是厚纖維帽患者的23倍。Lindsay等[7]在對81例頸動脈狹窄程度>30%的患者(癥狀組41人)進行磁共振斑塊成像的研究中證實,癥狀組FCR的發(fā)生率明顯高于非癥狀組(24% vs 5%,P=0.03),伴有FCR的患者其彌散加權(quán)像(diffusion-weighted imaging,DWI)及液體衰減反轉(zhuǎn)恢復(fù)序列(fluid-attenuated inversion-recovery,F(xiàn)LAIR)上腦梗死病變的嚴(yán)重程度明顯高于非FCR患者。在前瞻性研究中,F(xiàn)CR與缺血性卒中的相關(guān)性也得到了證實。Takaya等[22]應(yīng)用磁共振斑塊成像對頸動脈中度狹窄的患者進行長達38.2個月的隨訪研究,發(fā)現(xiàn)頸動脈斑塊纖維帽過薄或破裂對腦血管事件的發(fā)生具有預(yù)測價值[危險比(hazard ratio,HR)17.0,P<0.05]。
2.2 斑塊內(nèi)出血 IPH是影響動脈粥樣硬化斑塊穩(wěn)定性和加速粥樣硬化斑塊進展的一個關(guān)鍵因素[23]。Kwee等和Millon等研究發(fā)現(xiàn),癥狀性頸動脈狹窄患者IPH發(fā)生率明顯高于非癥狀性患者(48.7% vs 19.7%,P=0.002[24];39%vs 16%,P=0.002[25])。Xu等[26]在對107例大腦中動脈高度狹窄的患者進行HRMRI成像,結(jié)果發(fā)現(xiàn)癥狀組與非癥狀組IPH的發(fā)生率有顯著性差異(19.6% vs 3.2%,P=0.01)。
多項前瞻性研究證實IPH對于缺血性腦血管事件具有一定的預(yù)測價值[3,7]。Altaf等[27]對66例頸動脈嚴(yán)重狹窄患者進行磁共振成像研究,在隨后1個月的隨訪過程中,IPH組與非IPH組的腦血管事件的發(fā)生率分別為34%和9%,提示IPH明顯增加了腦血管事件的風(fēng)險[HR=4.8;95%可信區(qū)間(confidence interval,CI)1.1~20.9;P<0.05]。隨后,Altaf等[28]又對64例頸動脈輕-中度狹窄(30%~69%)的患者進行了長達28個月的隨訪研究,結(jié)果發(fā)現(xiàn),在14例發(fā)生了同側(cè)頸動脈供血區(qū)缺血性事件的患者中,13例存在頸動脈斑塊IPH,這意味著IPH對同側(cè)頸動脈供血區(qū)的腦血管事件具有一定的預(yù)測價值(HR 9.9;95%CI 1.3~75.1;P=0.03)。另一項前瞻性研究證實,IPH是腦梗死發(fā)病(HR 35.0;95%CI 4.7~261.6;P=0.001)及復(fù)發(fā)(HR 12.2;95%CI 54.8~30.1;P<0.001)的獨立危險因素[29]。
有證據(jù)表明,IPH會刺激并加速斑塊進展甚至引發(fā)斑塊破裂[30]。前瞻性研究發(fā)現(xiàn),IPH組管壁厚度顯著高于無IPH組(14.8% vs 3.7%,P=0.013),兩組血管管腔體積減小的程度具有顯著性差異(-16.4% vs -2.5%,P=0.013)[23]。Wang等[31]在2010年對41例頸動脈粥樣硬化狹窄的患者進行磁共振管壁成像研究,通過對2個不同時間點(基線水平和隨訪18個月)的頸動脈管腔狹窄程度進行比較,發(fā)現(xiàn)癥狀組管腔狹窄程度明顯高于非癥狀組(10.53%±12.29% vs 1.65%±7.74%,P=0.017)。由此可見,IPH可以促使斑塊體積增大,加速動脈粥樣硬化病變的進程。Yamada等近來研究證實,對于存在IPH的頸動脈斑塊進行頸動脈支架術(shù)和內(nèi)膜剝脫術(shù)其術(shù)后同側(cè)靜默腦梗死的發(fā)生率有顯著差異(61% vs 13%,P=0.006),這一結(jié)果提示磁共振管壁成像評價斑塊特征對于制訂臨床治療策略具有一定的指導(dǎo)意義[32]。
2.3 富含脂質(zhì)的壞死核 有研究顯示,頸動脈斑塊LRNC與缺血性腦血管事件密切相關(guān)[22]。有學(xué)者證實,LRNC的面積是同側(cè)大腦中動脈供血區(qū)腦梗死的獨立危險因素[優(yōu)勢比(odds ratio,OR)1.69,P=0.048][33]。橫斷面研究發(fā)現(xiàn),癥狀性頸動脈狹窄的患者LRNC發(fā)生率明顯高于無癥狀組(63.8% vs 28%,P=0.002)[34],但再發(fā)卒中與初發(fā)卒中患者相比,LRNC的發(fā)生率并無顯著性差異(57.9% vs 49%,P=0.407)[35]。Zhao等[3]對181例頸動脈狹窄程度>50%的患者行HRMRI檢查發(fā)現(xiàn),LRNC的體積與同側(cè)頸動脈供血區(qū)腦梗死體積呈明顯正相關(guān)(P<0.05),這一點提示頸動脈斑塊LRNC的大小可能是卒中嚴(yán)重程度的重要預(yù)測指標(biāo)。Mono等研究了62例無癥狀性頸動脈狹窄患者的頸動脈斑塊磁共振表現(xiàn)特征,發(fā)現(xiàn)16例患者的頸動脈斑塊表現(xiàn)為大LRNC,在隨后18.9個月的隨訪過程中,有5例患者發(fā)生腦血管事件,提示LRNC對腦血管事件具有一定的預(yù)測價值(HR 7.21;95%CI 1.12~46.28;P=0.037)[36]。
2.4 斑塊表面鈣化 目前,對于斑塊穩(wěn)定性研究的焦點多集中在IPH、纖維帽厚度和LRNC的大小等,而斑塊鈣化對斑塊穩(wěn)定性的影響一直存在爭議。有學(xué)者認(rèn)為,在評價鈣化對于斑塊穩(wěn)定性影響的過程中,觀察鈣化在斑塊內(nèi)的分布部位可能比單純測量鈣化體積更為重要[37]。近年來,對于斑塊表面鈣化與斑塊穩(wěn)定性的相關(guān)性研究備受關(guān)注。斑塊表面鈣化與斑塊完全鈣化并非同一概念,斑塊表面鈣化可引起斑塊表面應(yīng)力變化,從而導(dǎo)致斑塊破裂[38]。早在1993,Bostrm等[39]將破裂斑塊組患者與非破裂斑塊組進行對比研究,發(fā)現(xiàn)兩組斑塊表面鈣化發(fā)生率并無統(tǒng)計學(xué)差異。而Gary等[40]在冠狀動脈的研究中發(fā)現(xiàn),在1117例患者中斑塊表面鈣化發(fā)生率高達48%,而僅有28%的患者存在斑塊深部鈣化,兩者同時發(fā)生的概率為24%。Xu等[41]研究發(fā)現(xiàn),斑塊表面鈣化常同時伴有IPH的發(fā)生。徐賢等[42]在對伴有頸動脈粥樣硬化斑塊表面鈣化患者的研究過程中發(fā)現(xiàn),不規(guī)則鈣化組與大片狀鈣化組IPH發(fā)生率存在顯著性差異(72.8% vs 28%,P<0.01);邊緣鈣化組較中央鈣化組更容易發(fā)生IPH(71.1%vs 51.2%,P<0.05)。從以上研究中我們能夠發(fā)現(xiàn),斑塊表面鈣化可能是造成斑塊不穩(wěn)定的重要因素之一。有研究顯示,斑塊表面鈣化的形成可能與糖尿病有關(guān)。Niccoli等[43]證實,糖尿病患者斑塊表面鈣化發(fā)生率明顯高于非糖尿病患者(79% vs 54%,P=0.04)。
2.5 斑塊炎癥反應(yīng)和新生血管 斑塊炎癥反應(yīng)和新生血管也是影響斑塊穩(wěn)定性的重要因素。新生血管不僅能夠加速動脈粥樣硬化病變的進程,甚至可以誘發(fā)IPH和FCR,從而導(dǎo)致腦血管事件的發(fā)生。有證據(jù)表明,炎癥活動參與動脈粥樣硬化斑塊的形成、進展以及破裂等斑塊演變的全過程[44]。與組織病理學(xué)對照研究發(fā)現(xiàn),動態(tài)增強MRI獲得的Ktrans參數(shù)能夠客觀反映斑塊內(nèi)炎癥細胞的數(shù)量以及新生血管的密度[17,20]。另一種新型靶向?qū)Ρ葎┘闯〕槾判匝趸F造影劑(ultrasmall superparamagmetic iron oxide,USPIO)能夠在活體狀態(tài)下檢測頸動脈斑塊內(nèi)的炎癥細胞活動度。Trivedi等[45]對30例頸動脈狹窄的患者注射USPIO前、后均進行磁共振成像,結(jié)果發(fā)現(xiàn)有24例患者頸動脈斑塊出現(xiàn)局部增強,提示存在炎癥活動。Tang等[46]對20例卒中患者在注射USPIO之前及36 h后各行一次多對比度MRI檢查,發(fā)現(xiàn)所有癥狀側(cè)頸動脈均存在不同程度的炎癥反應(yīng)。Howarth等[47]應(yīng)用USPIO MRI成像方法比較癥狀性和非癥狀性頸動脈狹窄的患者頸動脈炎癥反應(yīng)程度,發(fā)現(xiàn)癥狀性患者頸動脈的炎癥程度明顯高于無癥狀性患者,提示動脈管壁的炎癥反應(yīng)與缺血性卒中的發(fā)病有一定相關(guān)性。上述研究結(jié)果提示我們,炎癥可能是穩(wěn)定斑塊治療的新靶點。
綜上所述,腦血管易損斑塊是導(dǎo)致缺血性卒中的主要危險因素。HRMRI作為一種無創(chuàng)性影像學(xué)檢查方法,可以準(zhǔn)確提供斑塊形態(tài)學(xué)及內(nèi)部成分等信息,為卒中的病因診斷提供了客觀的依據(jù)。通過HRMRI對易損斑塊進行早期識別和破裂風(fēng)險評估,將有助于優(yōu)化臨床治療方案,從而有效降低腦血管事件的發(fā)生率??傊?,HRMRI技術(shù)為缺血性卒中的病因?qū)W診斷和預(yù)防帶來了新的契機。
1 陳竺. 全國第三次死因回顧性抽樣調(diào)查報告[M]. 北京:中國協(xié)和醫(yī)科大學(xué)出版社, 2008:10-17.
2 Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease:a large worldwide burden but a relatively neglected frontier[J]. Stroke, 2008,39:2396-2399.
3 Zhao H, Zhao X, Liu X, et al. Association of carotid atherosclerotic plaque features with acute ischemic stroke:a magnetic resonance imaging study[J]. Eur J Radiol, 2013, 82:e465-e470.
4 Falk E, Shah PK, Fuster V. Coronary plaque disruption[J]. Circulation, 1995, 92:657-671.
5 Glagov S, Weisenberg E, Zarins CK, et al.Compensatory enlargement of human atherosclerotic coronary arteries[J]. N Engl J Med, 1987, 316:1371-1375.
6 Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease:an intravascular ultrasound study[J]. J Am Coll Cardiol, 2001, 37:63-69.
7 Lindsay AC, Biasiolli L, Lee JM, et al. Plaque features associated with increased cerebral infarction after minor stroke and TIA:a prospective, case-control, 3-T carotid artery MR imaging study[J]. JACC Cardiovasc Imaging, 2012, 5:388-396.
8 Redgrave JN, Lovett JK, Gallagher PJ, et al.Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms:the Oxford plaque study[J]. Circulation,2006, 113:2320-2328.
9 Hong NR, Seo HS, Lee YH, et al. The correlation between carotid siphon calcification and lacunar infarction[J]. Neuroradiology, 2011, 53:643-649.
10 Turc G, Oppenheim C, Naggara O, et al. Relationships between recent intraplaque hemorrhage and stroke risk factors in patients with carotid stenosis:the HIRISC study[J]. Arterioscler Thromb Vasc Biol, 2012, 32:492-499.
11 Chu B, Kampschulte A, Ferguson MS, et al.Hemorrhage in the atherosclerotic carotid plaque:a high-resolution MRI study[J]. Stroke, 2004, 35:1079-1084.
12 Yuan C, Zhang SX, Polissar NL, et al. Identif i cation of fi brous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J]. Circulation, 2002, 105:181-185.
13 Hatsukami TS, Ross R, Polissar NL, et al. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with highresolution magnetic resonance imaging[J]. Circulation,2000, 102:959-964.
14 Bassiouny HS, Sakaguchi Y, Mikucki SA, et al. Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis[J]. J Vasc Surg, 1997, 26:585-594.
15 den Hartog AG, Bovens SM, Koning W, et al. Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis[J]. Eur J Vasc Endovasc Surg, 2013, 45:7-21.
16 Yuan C, Kerwin WS, Ferguson MS, et al. Contrastenhanced high resolution MRI for atherosclerotic carotid artery tissue characterization[J]. J Magn Reson Imaging, 2002, 15:62-67.
17 Kerwin WS, O'Brien KD, Ferguson MS, et al.Inflammation in carotid atherosclerotic plaque:a dynamic contrast-enhanced MR imaging study[J].Radiology, 2006, 241:459-468.
18 Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque:comparison of high-resolution, contrastenhanced magnetic resonance imaging and histology[J].Circulation, 2005, 112:3437-3444.
19 Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI[J]. Arterioscler Thromb Vasc Biol, 2005, 25:234-239.
20 Kerwin W, Hooker A, Spilker M, et al. Quantita-tive magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque[J]. Circulation,2003, 107:851-856.
21 Yuan C, Zhang SX, Polissar NL, et al. Identif i cation of fi brous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J]. Circulation, 2002, 105:181-185.
22 Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events:a prospective assessment with MRI--initial results[J]. Stroke, 2006, 37:818-823.
23 Takaya N, Yuan C, Chu B, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques:A high-resolution magnetic resonance imaging study[J]. Circulation, 2005,111:2768-2775.
24 Kwee RM, van Oostenbrugge RJ, Prins MH, et al.Symptomatic patients with mild and moderate carotid stenosis:Plaque features at MRI and association with cardiovascular risk factors and statin use[J]. Stroke,2010, 41:1389-1393.
25 Millon A, Mathevet JL, Boussel L, et al. Highresolution magnetic resonance imaging of carotid atherosclerosis identif i es vulnerable carotid plaques[J].J Vasc Surg, 2013, 57:1046-1051. e2.
26 Xu WH, Li ML, Gao S, et al. Middle cerebral artery intraplaque hemorrhage:prevalence and clinical relevance[J]. Ann Neurol, 2012, 71:195-208.
27 Altaf N, MacSweeney ST, Gladman J, et al. Carotid intraplaque hemorrhage predicts recurrent symptoms in patients with high-grade carotid stenosis[J]. Stroke,2007, 38:1633-1635.
28 Altaf N, Daniels L, Morgan PS, et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events[J]. J Vasc Surg, 2008, 47:337-342.
29. Hosseini AA, Kandiyil N, Macsweeney ST, et al.Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke[J]. Ann Neurol, 2013, 73:774-784.
30 Yamada K, Song Y, Hippe DS, et al. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core[J]. J Cardiovasc Magn Reson, 2012, 14:81.
31 Wang Q, Wang Y, Cai J, et al. Differences of signal evolution of intraplaque hemorrhage and associated stenosis between symptomatic and asymptomatic atherosclerotic carotid arteries:an in vivo highresolution magnetic resonance imaging follow-up study[J]. Int J Cardiovasc Imaging, 2010, 26(Suppl atherosclerotic lesions[J]. J Clin Invest, 1993, 91:1800-1809.2):323-332.
32 Yamada K, Yoshimura S, Kawasaki M, et al. Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging[J]. Atherosclerosis, 2011, 215:399-404.
33 Chen XY, Wong KS, Lam WW, et al. Middle cerebral artery atherosclerosis:histological comparison between plaques associated with and not associated with infarct in a postmortem study[J]. Cerebrovasc Dis, 2008,25:74-80.
34 U-King-Im JM, Tang TY, Patterson A, et al.Characterisation of carotid atheroma in symptomatic and asymptomatic patients using high resolution MRI[J]. J Neurol Neurosurg Psychiatry, 2008, 79:905-912.
35 Liu XS, Zhao HL, Cao Y, et al. Comparison of carotid atherosclerotic plaque characteristics by high-resolution black-blood MR imaging between patients with firsttime and recurrent acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2012, 33:1257-1261.
36 Mono ML, Karameshev A, Slotboom J, et al. Plaque characteristics of asymptomatic carotid stenosis and risk of stroke[J]. Cerebrovasc Dis, 2012, 34:343-350.
37 Li ZY, Howarth S, Tang T, et al. Does calcium deposition play a role in the stability of atheroma?Location may be the key[J]. Cerebrovasc Dis, 2007,24:452-459.
38 Teng Z, He J, Sadat U, Mercer J, et al. How does juxtaluminal calcium affect critical mechanical conditions in carotid atherosclerotic plaque? An exploratory study[J]. IEEE Trans Biomed Eng, 2013,61:35-40.
39 Bostr?m K, Watson KE, Horn S, et al. Bone morphogenetic protein expression in human
40 Mintz GS, Popma JJ, Pichard AD, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions[J]. Circulation, 1995,91:1959-1965.
41 Xu X, Ju H, Cai J, et al. High-resolution MR study of the relationship between superficial calcification and the stability of carotid atherosclerotic plaque[J]. Int J Cardiovasc Imaging, 2010, 26(Suppl 1):143-150.
42 徐賢, 具海月, 王新江, 等. 3T高分辨MR對頸動脈粥樣硬化斑塊表面鈣化與斑塊穩(wěn)定性的量化分析[J]. 第二軍醫(yī)大學(xué)學(xué)報, 2008, 29:1483-1486.
43 Niccoli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event:a diabetes paradox[J]. Eur Heart J, 2013,34:729-741.
44 Ross R. Atherosclerosis--an inf l ammatory disease[J]. N Engl J Med, 1999, 340:115-126.
45 Trivedi RA, Mallawarachi C, U-King-Im JM, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages[J]. Arterioscler Thromb Vasc Biol, 2006,26:1601-1606.
46 Tang TY, Howarth SP, Walsh SR, et al. Contralateral carotid intraplaque hemorrhage may reduce the predictive value of fat-suppressed T1-weighted MRI in symptomatic carotid disease[J]. Stroke, 2007,38:e156-e157.
47 Howarth SP, Tang TY, Trivedi R, et al. Utility of USPIO-enhanced MR imaging to identify inf l ammation and the fibrous cap:a comparison of symptomatic and asymptomatic individuals[J]. Eur J Radiol, 2009,70:555-560.