高宇余慶雄綜述李青峰審校
脂肪干細(xì)胞體外誘導(dǎo)分化的研究進(jìn)展
高宇余慶雄綜述李青峰審校
脂肪干細(xì)胞(Adipose Derived Stem Cells,ADSCs)是從脂肪組織中分離得到的一種具有多向分化潛能的干細(xì)胞,能分化成為脂肪細(xì)胞、成骨細(xì)胞、軟骨細(xì)胞、肌細(xì)胞、神經(jīng)細(xì)胞等多種組織細(xì)胞,很多因素參與這一過程的發(fā)生發(fā)展,現(xiàn)就脂肪干細(xì)胞的生物學(xué)特性及體外誘導(dǎo)分化的條件及影響因素進(jìn)行綜述。
脂肪干細(xì)胞分化再生醫(yī)學(xué)
干細(xì)胞是具有自我更新及多向分化潛能的細(xì)胞,作為種子細(xì)胞在創(chuàng)傷修復(fù)、再生醫(yī)學(xué)中的地位日益凸顯,具有廣闊的臨床應(yīng)用前景。應(yīng)用于再生治療的理想干細(xì)胞應(yīng)滿足以下幾點:①體內(nèi)儲量豐富;②獲取方便,對機體損傷??;③具有穩(wěn)定的多向分化潛能;④可以安全有效地移植。骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchymal stem cells,BMSC)作為一類經(jīng)典的干細(xì)胞群,已有大量的實驗研究和臨床應(yīng)用報道。然而,BMSC儲量有限、獲取困難,推廣應(yīng)用有所限制。相對于BMSC,ADSC在體內(nèi)儲量豐富、獲取方便,且具有與BMSC類似的分化潛能,已成為干細(xì)胞領(lǐng)域研究的新熱點。本文就ADSC的多向分化潛能及誘導(dǎo)分化的條件進(jìn)行綜述。
2001年,Zuk等[1]首次發(fā)現(xiàn)在人類脂肪組織中存在一個多能分化細(xì)胞族,并將這一脂肪組織來源的多能干細(xì)胞命名為經(jīng)處理的脂肪分離細(xì)胞(Processed Lipoaspirate Cells,PLA)。十多年來,有多個名字用來描述該類細(xì)胞,如脂肪前體細(xì)胞(Pre-Adipocytes)、脂肪基質(zhì)細(xì)胞(Adipose Stromal Cells,ASC)、脂肪干細(xì)胞(Adipose Derived Stem Cells,ADSC)等。
ADSC與BMSC擁有相類似的細(xì)胞表型,均為CD73+、 CD90+、CD105+、CD45–、CD34–[2],然而兩者并不完全相同,ADSC表面表達(dá)CD49,而BMSC表面并不表達(dá)該分子;同樣,BMSC所表達(dá)的CD106并不在ADSC中表達(dá)。因此,可將CD49、CD106作為區(qū)分兩者的主要細(xì)胞標(biāo)志。ADSC表面并不表達(dá)人淋巴細(xì)胞表面抗原-DR(HLA-DR),提示ADSC可能具有免疫豁免權(quán)。
ADSC具有多向分化潛能,在特定的誘導(dǎo)培養(yǎng)條件下可向脂肪細(xì)胞、軟骨細(xì)胞、成骨細(xì)胞、肌肉細(xì)胞及神經(jīng)細(xì)胞等組織細(xì)胞定向分化,甚至可將其定向誘導(dǎo)為心肌細(xì)胞、淋巴管內(nèi)皮樣細(xì)胞、內(nèi)耳毛細(xì)胞、角膜細(xì)胞和肌腱細(xì)胞[3-7]等。文獻(xiàn)報道,ADSC具有促血管化、抗氧化和免疫耐受調(diào)節(jié)的作用,主要通過分泌多種細(xì)胞因子參與該調(diào)節(jié)作用,包括血管內(nèi)皮生長因子(VEGF)[8]、轉(zhuǎn)化生長因子-β(TGF-β)[9]、堿性成纖維細(xì)胞生長因子(bFGF)[10]、血小板源性生長因子(PDGF)、神經(jīng)生長因子(NGF)[11]、角膜生長因子(KGF)[12]等,這些細(xì)胞因子通過內(nèi)分泌與旁分泌作用參與機體其他組織的生長與重建。
ADSC是多能干細(xì)胞,在特殊的生長因子和環(huán)境條件下,可以向不同的譜系分化。
2.1 誘導(dǎo)ADSC向脂肪細(xì)胞分化的條件
脂肪細(xì)胞再生為乳腺癌術(shù)后的乳房重建和創(chuàng)傷、手術(shù)、燒傷導(dǎo)致的非對稱性乳腺、軟組織損傷后的重建提供了新的途徑[13-14]。而ADSC能在多種因素的誘導(dǎo)下分化為脂肪細(xì)胞,為創(chuàng)傷后重建提供組織來源。
Konno等[15]證實,ADSC在含異丁基甲基黃嘌呤(IBMX)、胰島素、地塞米松、間充質(zhì)介質(zhì)細(xì)胞生長添加物(MCGS)和L-谷氨酰胺的培養(yǎng)基中培養(yǎng)2周,可分化為脂肪細(xì)胞。同時,Kakudo等[16]認(rèn)為,成纖維細(xì)胞生長因子(FGF)也能促進(jìn)ADSC的成脂分化,且該調(diào)節(jié)作用是通過MAPK和ERK(mitogen activated protein kinase/extracellular signal regulated kinase)信號通路完成的,同時伴隨著PPAR-1(peroxisome proliferators activated receptors)基因表達(dá)的增加。同F(xiàn)GF一樣,表皮生長因子(EGF)也能誘導(dǎo)ADSCs的成脂分化[17],通過在mRNA水平增加成脂轉(zhuǎn)錄因子(C/EBPα,PPARγ,PGC1)的編碼,以及其下游目標(biāo)蛋白(AP2,LPL)的表達(dá),達(dá)到誘導(dǎo)ADSC向脂肪細(xì)胞分化的目的,并且與FGF有協(xié)同作用。另外,骨形態(tài)蛋白-4(BMP-4)也能通過上調(diào)PPAR-C基因表達(dá)來誘導(dǎo)ADSC的成脂分化[18]。關(guān)于VEGF在誘導(dǎo)ADSC向脂肪細(xì)胞分化過程中的作用尚存爭議,F(xiàn)ukumura等[19]報道了VEGF能夠誘導(dǎo)ADSC向脂肪細(xì)胞分化,然而,Chen等[20]研究稱VEGF對人ADSC向脂肪細(xì)胞、軟骨細(xì)胞和成骨細(xì)胞方向分化沒有影響。2.2影響ADSCs向軟骨細(xì)胞分化的條件
軟骨組織作為無血管組織,自我修復(fù)能力十分有限。ADSC具有向軟骨細(xì)胞分化的能力[21]。體外實驗中,Diekman等[22]成功利用BMP-6、FGF、EGF和轉(zhuǎn)化生長因子-β(TGF-β)聯(lián)合誘導(dǎo)ADSC分化為軟骨細(xì)胞。另外,在培養(yǎng)基中加入生長分化因子-5(GDF-5)[23]和BMP-14[24]等,亦能促進(jìn)ADSC的增殖和軟骨化。BMP-2和胰島素樣生長因子-1(IGF-1)在誘導(dǎo)ADSC向軟骨細(xì)胞分化中也發(fā)揮重要作用,BMP-2能促進(jìn)軟骨細(xì)胞分化,上調(diào)軟骨基因的表達(dá),促進(jìn)軟骨損傷的修復(fù),而IGF-1則是通過調(diào)節(jié)胰島素樣生長因子-1受體(IGF-1R)起到誘導(dǎo)ADSCs軟骨化的作用[25]。
2.3 影響ADSCs向成骨細(xì)胞分化的條件
體外實驗中,常用地塞米松、β-甘油磷酸鈉、抗壞血酸鹽聯(lián)合誘導(dǎo)ADSC分化為成骨細(xì)胞,亦可用維生素D替代地塞米松進(jìn)行成骨誘導(dǎo)。向培養(yǎng)基中加入雌激素E2,可以有效增加ADSC分化時成骨礦化量、脂質(zhì)蓄積量和分化出的脂肪細(xì)胞的數(shù)量,增強人ADSC的成脂、成骨能力,且這種增強作用與雌激素呈劑量依賴性,并且與不同的α和β雌激素受體有關(guān)[26]。同時,還有多種BMP也能促進(jìn)ADSCs向骨細(xì)胞分化。研究表明,BMP-2可以通過上調(diào)ADSCs中的遠(yuǎn)端缺失基因5(Distal-less homeobox 5,Dlx-5)的表達(dá),使骨特異的堿性磷酸酶或者是成骨誘導(dǎo)性的轉(zhuǎn)錄因子Runx2表達(dá)增加來誘導(dǎo)成骨[27];BMP-6通過增強ADSCs的COL1A1、Osterix、Dlx-5基因的表達(dá),從而產(chǎn)生誘導(dǎo)ADSC成骨分化的作用[28]。關(guān)于FGF在誘導(dǎo)ADSC成骨分化過程中的作用存有爭議,Rider等[29]認(rèn)為FGF能夠促進(jìn)人ADSC的增殖及成脂成骨分化,并且是通過增強細(xì)胞的增殖能力來達(dá)到誘導(dǎo)目的;而Kakudo等[30]認(rèn)為FGF-2不影響人ADSCs的成骨分化;Quarto等[31]也認(rèn)為FGF-2不影響人ADSCs的成骨分化,但是抑制小鼠ADSC的成骨分化,可能是抑制了BMPR-IB基因的上調(diào)。由于研究對象的不同,F(xiàn)GF-2對ADSC成骨分化的影響還有待進(jìn)一步的研究證實。另外,數(shù)據(jù)表明,GDF-5也能通過增加VEGF的表達(dá)水平來刺激ADSC成骨分化[32]。
2.4 影響ADSC向肌細(xì)胞分化的條件
對于像Duchenne型肌營養(yǎng)不良之類的肌肉疾病,仍然缺乏有效的治療方法。Rodriguez等[33]首先報道將ADSC移植到Duchenne型肌營養(yǎng)不良的小鼠模型后,ADSC能表現(xiàn)出分化成肌肉組織的潛能。隨后,有報道稱5-氮胞苷可以促進(jìn)ADSC分化成MyoD+多核肌管細(xì)胞[34]。另外,TGF-β1也能夠誘導(dǎo)ADSC分化成平滑肌細(xì)胞,且心肌素/血清響應(yīng)因子依賴機制在此過程中起關(guān)鍵作用。
2.5 影響ADSC向心肌細(xì)胞分化的條件
心血管系統(tǒng)的發(fā)育主要發(fā)生在胎兒期,成人心臟組織的再生能力極其有限,不足以修復(fù)心肌梗死等病理條件下引起的心肌損傷[35]。但是,干細(xì)胞移植給該類疾病的治療帶來了新的曙光。Planat-Benard等[36]研究表明,ADSC可以自發(fā)分化成有生物學(xué)功能的心肌細(xì)胞,這些細(xì)胞表達(dá)心肌細(xì)胞標(biāo)記基因,包括GATA4、Nkx2.5、MLC-2V和MLC-2a。
ADSC在含有5-氮雜胞苷的培養(yǎng)基中培養(yǎng)后,能夠表達(dá)心肌特異性的肌動蛋白和肌鈣蛋白[37],說明5-氮雜胞苷對于ADSC的心肌化起到一定的誘導(dǎo)作用。朱艷霞等[38]用RTPCR檢測出在含IGF-1的支架內(nèi),ADSC能表達(dá)心肌特異性轉(zhuǎn)錄因子α-skA、β-MHC、ThI、Cx43、ANP、GATA-4和Nkx2.5 mRNA,認(rèn)為IGF-1可促進(jìn)ADSC表達(dá)心肌特異性轉(zhuǎn)錄因子,從而促進(jìn)心肌分化,且動態(tài)微環(huán)境可加強IGF-1的促分化作用。Gwak等[39]體外培養(yǎng)ADSC時,在培養(yǎng)基中加入TGF-β1,發(fā)現(xiàn)細(xì)胞表達(dá)心肌肌球蛋白重鏈和α-肌動蛋白細(xì)胞比例較對照組增加,認(rèn)為TGF-β1有誘導(dǎo)ADSC心肌化的能力。另外,VEGF、干擾素3、干擾素6、干細(xì)胞因子(SCF)也能誘導(dǎo)ADSC向心肌細(xì)胞分化[40]。
2.6 影響ADSC向血管內(nèi)皮細(xì)胞分化的條件
ADSC在向血管內(nèi)皮細(xì)胞分化的過程中,VEGF能夠起到促進(jìn)作用[41]。研究證實,ADSC在VEGF作用下,可以向成熟內(nèi)皮細(xì)胞分化,分化的細(xì)胞表達(dá)內(nèi)皮細(xì)胞特異性標(biāo)記CD31及Ⅷ因子,并可吞噬乙?;牡兔芏戎鞍譡42]。然而,Ning等[43]分別在含有和沒有bFGF、EGF、VEGF、IGF-1的血管內(nèi)皮分化培養(yǎng)基中進(jìn)行ADSC的培養(yǎng),發(fā)現(xiàn)缺少EGF、VEGF和IGF-1,對ADSC分化過程影響不大;但缺少bFGF時,ADSC上調(diào)低密度脂蛋白和內(nèi)皮細(xì)胞標(biāo)記基因表達(dá)的能力削弱,表明bFGF信號對于誘導(dǎo)ADSC分化成血管內(nèi)皮細(xì)胞是非常重要的[15]。
2.7 影響ADSCs向神經(jīng)細(xì)胞分化的條件
Safford等[44]在丙戊酸、毛喉素、氫化可的松和胰島素的聯(lián)合誘導(dǎo)下,成功使鼠ADSC表達(dá)神經(jīng)組織標(biāo)記物巢蛋白,神經(jīng)元細(xì)胞核和膠質(zhì)纖維酸性蛋白質(zhì)。此后,Ashjian等[45]報道,在含有胎牛血清(FBS)、胰島素吲哚美辛(INDO)和異丁基甲基黃嘌呤(IBMX)的培養(yǎng)基中,人ADSC可以向類似早期神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞的細(xì)胞誘導(dǎo)分化。隨后,Ning等[46]證實,IBMX起到誘導(dǎo)ADSC形態(tài)變化的作用,而IBMX與INDO的組合或IBMX與胰島素的組合,作用效果類似于IBMX單獨處理ADSC后對神經(jīng)元標(biāo)記因子NF70表達(dá)的影響。也就是說,在IBMX、INDO和FBS中,真正能誘導(dǎo)ADSC向神經(jīng)細(xì)胞分化的可能只是IBMX,且IBMX的誘導(dǎo)作用主要是通過磷酸化IGF-1R傳遞IGF-1信號來實現(xiàn)的。
Zhang等[47]把同一大鼠的ADSC和BMSC進(jìn)行比較性實驗,包括增殖能力,向神經(jīng)細(xì)胞分化的能力和分泌神經(jīng)營養(yǎng)因子的能力。將ADSC與BMSC分別在含有EGF、bFGF和維生素B27的培養(yǎng)基中培養(yǎng)形成神經(jīng)球后,輔以全反式維甲酸、胎牛血清、馬血清,ADSC表達(dá)巢蛋白的數(shù)量顯著多于BMSC,說明以上物質(zhì)的聯(lián)合作用,能促進(jìn)ADSC向神經(jīng)細(xì)胞分化。此外,分化為神經(jīng)細(xì)胞后,ADSC的神經(jīng)元和神經(jīng)膠質(zhì)標(biāo)志物的表達(dá)顯著高于BMSC。Safford等[44]把經(jīng)過bFGF/EGF預(yù)處理7 d的ADSC誘導(dǎo)分化成為有功能的雙極細(xì)胞,也表明bFGF、EGF能誘導(dǎo)ADSC向神經(jīng)細(xì)胞分化。另外,IGF在誘導(dǎo)ADSC向神經(jīng)細(xì)胞分化的過程中也起著至關(guān)重要的作用[48]。
2.8 影響ADSC向胰島細(xì)胞分化的條件
Ⅰ型糖尿病是胰島B細(xì)胞被破壞,胰島素分泌絕對不足的結(jié)果。胰島B細(xì)胞無法再生和異種移植。因此,胰島素依賴型糖尿病是不可能使用標(biāo)準(zhǔn)的組織衰竭的治療方法治愈的。Okura等[49]證實了ADSC能夠被誘導(dǎo)分化成胰島素分泌細(xì)胞的猜想,為Ⅰ型糖尿病的治療提供了新思路。Kabelitz等[50]報道,多種內(nèi)源性和外源性因子參與體外誘導(dǎo)ADSC向胰島內(nèi)分泌細(xì)胞分化的過程,其中包括生長激素、催乳素、IGF-1、IGF-2、NGF和肝細(xì)胞生長因子(HGF)。
2.9 影響ADSCs向肝細(xì)胞分化的條件
很多肝臟疾病會導(dǎo)致肝功能障礙和潛在的器官功能衰竭。而肝移植僅適用于嚴(yán)重肝損傷的治療,且面臨供體肝臟來源稀少和移植后的排斥等諸多問題。近來,用干細(xì)胞替代病變肝細(xì)胞成為了肝臟定向細(xì)胞療法的主要目標(biāo)。Seo等[51]認(rèn)為HGF,bFGF,F(xiàn)GF-4和制瘤素M(OSM)能誘導(dǎo)ADSCs向干細(xì)胞分化,原因是他成功在含有上述成分的分化系統(tǒng)中誘導(dǎo)ADSCs分化為肝細(xì)胞。OSM及HGF能在體外誘導(dǎo)ADSCs向肝細(xì)胞方向分化,加入二甲基亞砜(DMSO)可增強ADSCs向肝細(xì)胞分化的能力。類似地,Taléns-Visconti[52]亦報道稱,在ADSCs的分化培養(yǎng)液中加入bFGF和HGF時,ADSCs可以分化為CD13-、CD34-、CD45-、CD90-和CD105+的肝細(xì)胞樣細(xì)胞。其他一些細(xì)胞因子,如干細(xì)胞因子(SCF)[53]和EGF、TGF-α[54]對ADCSs分化成肝細(xì)胞也起誘導(dǎo)作用。
2.10 影響ADSCs向表皮細(xì)胞分化的條件
雷永紅等[55]將ADSC置于含有EGF的培養(yǎng)液中培養(yǎng)3天后,發(fā)現(xiàn)細(xì)胞CKl4、CKl9的陽性率明顯升高,認(rèn)為ADSC可以被誘導(dǎo)向表皮細(xì)胞表型轉(zhuǎn)分化。另有研究表明,包含EGF、KGF、HGF等在內(nèi)的上皮細(xì)胞特異的微環(huán)境,對ADSC向表皮細(xì)胞分化起著至關(guān)重要的作用[56]。
雖然對影響脂肪源性干細(xì)胞生長、分化和成熟的各種細(xì)胞因子、體外培養(yǎng)及分化條件、影響因素的研究日漸深入,但是這些實驗幾乎都局限在體外條件下,缺少體內(nèi)研究數(shù)據(jù)。另外,對于鼠與人的ADSC性質(zhì)是否一致、體內(nèi)生長環(huán)境是否相同,ADSC移植的計量標(biāo)準(zhǔn)、異體移植后發(fā)生免疫排斥反應(yīng)的概率、大量移植到患者體內(nèi)后引起免疫系統(tǒng)紊亂的可能性,以及是否有癌變的傾向等問題,仍需進(jìn)一步探討。而且對ADSC誘導(dǎo)分化現(xiàn)象的觀察占據(jù)實驗結(jié)果的多數(shù),許多內(nèi)在分子機制有待更進(jìn)一步的研究。對于調(diào)控ADSC可塑性的基因和蛋白,目前亦知之甚少,很多基本問題還需要更為深入的研究和探討。
盡管對ADSC的研究還不全面,但其在體內(nèi)儲量豐富、獲取方便,且并不涉及倫理道德問題,有望成為組織工程以及細(xì)胞治療的良好的種子細(xì)胞。通過組織工程技術(shù),為遺傳性疾病、退行性疾病及組織或器官缺損性疾病帶來新的曙光。且由于其獨特的優(yōu)越性,ADSC可能在整形美容外科領(lǐng)域蘊育著極大的應(yīng)用前景。
[1]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-228.
[2]Gir P,Oni G,Brown SA,et al.Human adipose stem cells:current clinical applications[J].Plast Reconstr Surg,2012,129(6):1277-1290. [3]Li Q,Qi LJ,Guo ZK,et al.CD73+adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro[J].J Mol Histol,2013,44(4):411-422.
[4]Du Y,Roh DS,Funderburgh ML,et al.Adipose-derived stem cells differentiate to keratocytes in vitro[J].Mol Vis,2010,16:2680-2689.
[5]Park A,Hogan MV,Kesturu GS,et al.Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers[J].Tissue Eng Part A,2010,16(9):2941-2951.
[6]陳小虎,李付貴,楊羿,等.脂肪干細(xì)胞誘導(dǎo)分化成淋巴管內(nèi)皮樣細(xì)胞的初步研究[J].中華顯微外科雜志,2013,36(1):40-45.
[7]袁先道,閆曦,楊華,等.人脂肪源性間充質(zhì)干細(xì)胞向內(nèi)耳毛細(xì)胞定向誘導(dǎo)分化的實驗研究[J].中華耳鼻咽喉頭頸外科雜志,2009, 44(4):323-328.
[8]Nakagami H,Maeda K,Morishita R,et al.Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells[J].Arterioscler Thromb Vasc Biol,2005,25(12):2542-2547.
[9]Kim WS,Park SH,Ahn SJ,et al.Whitening effect of adiposederived stem cells:a critical role of TGF-beta 1[J].Biol Pharm Bull,2008,31(4):606-610.
[10]Rehman J,Traktuev D,Li J,et al.Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J].Circulation, 2004,109(10):1292-1298.
[11]Kim KS,Lee HJ,An J,et al.Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model[J].Cell Transplant,2013,[Epub ahead of print].
[12]Park BS,Jang KA,Sung JH,et al.Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging [J].Dermatol Surg,2008,34(10):1323-1326.
[13]Rodriguez AM,Elabd C,Amri EZ,et al.The human adipose tissue is a source of multipotent stem cells[J].Biochimie,2005,87(1): 125-128.
[14]Choi YS,Cha SM,Lee YY,et al.Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse[J]. Biochem Biophys Res Commun,2006,345(2):631-637.
[15]Konno M,Hamazaki TS,Fukuda S,et al.Efficiently differentiatingvascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture[J].Biochem Biophys Res Commun, 2010,400(4):461-465.
[16]Kakudo N,Shimotsuma A,Kusumoto K.Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells[J].Biochem Biophys Res Commun,2007,359(2):239-244. [17]Hebert TL,Wu X,Yu G,et al.Culture effects of epidermal growth factor(EGF)and basic fibroblast growth factor(bFGF)on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis[J].J Tissue Eng Regen Med,2009,3(7):553-561.
[18]Wei X,Li G,Yang X,et al.Effects of bone morphogenetic protein-4 (BMP-4)on adipocyte differentiation from mouse adipose-derived stem cells[J].Cell Prolif,2013,46(4):416-424.
[19]Fukumura D,Ushiyama A,Duda DG,et al.Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis[J].Circ Res,2003,93(9):e88-e97.
[20]Chen G,Shi X,Sun C,et al.VEGF-mediated proliferation of human adipose tissue-derived stem cells[J].PLoS One,2013,8 (10):e73673.
[21]Kern S,Eichler H,Stoeve J,et al.Comparative analysis of mesenchymal stem cells from bone marrow,umbilical cord blood, or adipose tissue[J].Stem Cells,2006,24(5):1294-1301.
[22]Diekman BO,Estes BT,Guilak F.The effects of BMP6 overexpression on adipose stem cell chondrogenesis:Interactions with dexamethasone and exogenous growth factors[J].J Biomed Mater Res A,2010,93(3):994-1003.
[23]Feng G,Wan Y,Balian G,et al.Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells[J].Growth Factors,2008,26(3):132-142.
[24]Yuan H,Zhang J,Zhang R.Experimental study on adiposederived stem cells transfected by bone morphogenetic protein 14 co-culture with chondrocytes[J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2013,27(3):353-357.
[25]An C,Cheng Y,Yuan Q,et al.IGF-1 and BMP-2 induces differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells[J].Ann Biomed Eng,2010,38(4):1647-1654. [26]Hong L,Colpan A,Peptan IA,et al.17-Beta estradiol enhances osteogenic and adipogenic differentiation of human adiposederived stromal cells[J].Tissue Eng,2007,13(6):1197-1203.
[27]Mehlhorn AT,Niemeyer P,Kaschte K,et al.Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells[J].Cell Prolif,2007,40(6):809-823.
[28]Zhang Y,Madhu V,Dighe AS,et al.Osteogenic response of human adipose-derived stem cells to BMP-6,VEGF,and combined VEGF plus BMP-6 in vitro[J].Growth Factors,2012,30(5):333-343. [29]Rider DA,Dombrowski C,Sawyer AA,et al.Autocrine fibroblast growth factor 2 increases the multipotentiality of human adiposederived mesenchymal stem cells[J].Stem Cells,2008,26(6):1598-1608.
[30]Kakudo N,Shimotsuma A,Kusumoto K.Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells[J].Biochem Biophys Res Commun,2007,359(2):239-244. [31]Quarto N,Wan DC,Longaker MT.Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adiposederived stem cells(mASCs)[J].Bone,2008,42(6):1040-1052.
[32]Zeng Q,Li X,Beck G,et al.Growth and differentiation factor-5 (GDF-5)stimulates osteogenic differentiation and increases vascular endothelial growth factor(VEGF)levels in fat-derived stromal cells in vitro[J].Bone,2007,40(2):374-381.
[33]Rodriguez AM,Pisani D,Dechesne CA,et al.Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse[J].J Exp Med,2005,201(9):1397-1405.
[34]Vieira NM,Bueno CR Jr,Brandalise V,et al.SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression[J].Stem Cells,2008,26(9):2391-2398.
[35]Pfeffer MA,Braunwald E.Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications [J].Circulation,1990,81(4):1161-1172.
[36]Planat-Benard V,Menard C,Andre M,et al.Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells[J].Circ Res, 2004,94(2):223-229.
[37]Ravichandran R,Venugopal JR,Mueller M,et al.Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adiposederived stem cells[J].Nanomedicine(Lond),2013,8(12):1985-1997. [38]朱艷霞,劉天慶,宋克東,等.IGF-1和動態(tài)微環(huán)境對脂肪干細(xì)胞向心肌細(xì)胞分化作用的研究[J].生物化學(xué)與生物物理進(jìn)展, 2009,36(12):1553-1561.
[39]Gwak SJ,Bhang SH,Yang HS,et al.In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-beta1[J].Cell Biochem Funct,2009,27(3):148-154. [40]徐瀟,陶凱.脂肪來源干細(xì)胞的研究與應(yīng)用進(jìn)展[J].中國美容整形外科雜志,2010,21(8):480-482.
[41]Qayyum AA,Haack-Sorensen M,Mathiasen AB,et al.Adiposederived mesenchymal stromal cells for chronic myocardial ischemia (My Stromal Cell Trial):study design[J].Regen Med,2012,7(3): 421-428.
[42]Fischer LJ,McIlhenny S,Tulenko T,et al.Endothelial differentiation of adipose-derived stem cells:effects of endothelial cell growth supplement and shear force[J].J Surg Res,2009,152(1):157-166. [43]Ning H,Liu G,Lin G,et al.Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells [J].J Sex Med,2009,6(4):967-979.
[44]Safford KM,Hicok KC,Safford SD,et al.Neurogenic differentiation of murine and human adipose-derived stromal cells[J].Biochem Biophys Res Commun,2002,294(2):371-379.
[45]Ashjian PH,Elbarbary AS,Edmonds B,et al.In vitro differentiation of human processed lipoaspirate cells into early neural progenitors [J].Plast Reconstr Surg,2003,111(6):1922-1931.
[46]Ning H,Lin G,Lue TF,et al.Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells[J]. Differentiation,2006,74(9-10):510-518.
[47]Zhang HT,Liu ZL,Yao XQ,et al.Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study[J].Cytotherapy,2012,14(10):1203-1214.
[48]Ning H,Lin G,Fandel T,et al.Insulin growth factor signaling mediates neuron-like differentiation of adipose-tissue-derived stem cells[J].Differentiation,2008,76(5):488-494.
[49]Okura H,Komoda H,Fumimoto Y,et al.Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters[J].J Artif Organs,2009,12(2):123-130.
[50]Kabelitz D,Geissler EK,Soria B,et al.Toward cell-based therapy of type I diabetes[J].Trends Immunol,2008,29(2):68-74.
[51]Seo MJ,Suh SY,Bae YC,et al.Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo[J].Biochem Biophys Res Commun,2005,328(1):258-264.
[52]Talens-Visconti R,Bonora A,Jover R,et al.Human mesenchymal stem cells from adipose tissue:Differentiation into hepatic lineage[J].Toxicol In Vitro,2007,21(2):324-329.
[53]Lee HJ,Jung J,Cho KJ,et al.Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes[J].Differentiation,2012,84(3):223-231.
[54]Sgodda M,Aurich H,Kleist S,et al.Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo[J].Exp Cell Res,2007,313(13):2875-2886.
[55]雷永紅,付小兵,盛志勇,等.誘導(dǎo)脂肪干細(xì)胞向表皮細(xì)胞表型的轉(zhuǎn)分化研究[J].中華實驗外科雜志,2006,23(12):1536-1538.
[56]Li H,Xu Y,Fu Q,et al.Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture [J].Tissue Eng Part A,2012,18(17-18):1760-1770.
The Conditions of Induced Differentiation of Adipose Derived Stem Cells in Vitro
GAO Yu,YU Qingxiong,LI
Qingfeng.Department of Plastic and Reconstructive Surgery,Shanghai Ninth People’s Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200011,China.
【Summary】Adipose derived stem cells(ADSCs),a type of pluripotent stem cells,are isolated from adipose tissue and can be induced into adipose cells,osteoblasts,cartilage cells,muscle cells,nerve cells and so on.Many factors are involved in this process.In this paper,the biological characteristics,the conditions and factors that related to the differentiation of ADSCs were reviewed.
Adipose derived stem cells;Differentiation;Regenerative medicine
Q813.1+1
B
1673-0364(2014)02-0106-04
10.3969/j.issn.1673-0364.2014.02.012
2013年10月27日;
2014年1月8日)
200011上海市上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院整復(fù)外科。
李青峰(E-mail:dr.liqingfeng@yahoo.com)。