国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

機(jī)載雷達(dá)空時自適應(yīng)檢測方法研究進(jìn)展

2014-01-11 05:17:11王永良劉維建謝文沖段克清王澤濤
雷達(dá)學(xué)報 2014年2期
關(guān)鍵詞:失配訓(xùn)練樣本雜波

王永良 劉維建 謝文沖 段克清 高 飛 王澤濤

①(空軍預(yù)警學(xué)院 武漢 430019)

②(國防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院 長沙 410073)

1 引言

針對機(jī)載雷達(dá)空時2維濾波問題,Brennan等人[1]于 1973年首次提出了空時自適應(yīng)處理(Space-Time Adaptive Processing, STAP)理論。在此基礎(chǔ)上,各種背景下的STAP技術(shù)被不斷提出。經(jīng)過40年的不斷發(fā)展,STAP技術(shù)不斷完善,并形成理論體系[2-4]。更重要的是,該技術(shù)已經(jīng)面向工程實用。根據(jù)有關(guān)報道,STAP技術(shù)已在美國生產(chǎn)的E-2D預(yù)警機(jī)上得到應(yīng)用。

需要指出的是,STAP技術(shù)是機(jī)載雷達(dá)雜波抑制的有效途徑,但是雜波抑制僅是目標(biāo)檢測的一個步驟,而不是機(jī)載雷達(dá)的最終目標(biāo)。雷達(dá)最重要的作用是目標(biāo)檢測與參數(shù)估計,任何信號處理方法都應(yīng)以此為目的[5]?,F(xiàn)有的機(jī)載雷達(dá)目標(biāo)檢測方法通常是先利用脈沖多普勒技術(shù)或STAP技術(shù)進(jìn)行雜波抑制,然后再利用諸如單元平均等恒虛警率(Constant False Alarm Rate, CFAR)處理進(jìn)行目標(biāo)檢測。文獻(xiàn)[6,7]把以空時聯(lián)合為框架、以機(jī)載雷達(dá)目標(biāo)檢測為目的的自適應(yīng)處理技術(shù)稱為空時自適應(yīng)檢測(Space-Time Adaptive Detection, STAD)。STAD方法根據(jù)待檢測單元的數(shù)據(jù)及訓(xùn)練樣本形成檢測統(tǒng)計量,直接判定有無目標(biāo)??梢钥闯觯琒TAP屬于濾波的范疇,而STAD屬于檢測的范疇。

STAD實現(xiàn)了雜波抑制與檢測的一體化,結(jié)構(gòu)簡單,僅需要設(shè)計合理的檢測器即可,而不必設(shè)計濾波器。從本質(zhì)上講,雜波抑制是數(shù)據(jù)白化的過程,對于STAD技術(shù),這一過程隱含在檢測器中,而不需要額外的雜波抑制步驟。與先雜波抑制后檢測的方法相比,STAD具有3個主要的優(yōu)點:

(1) STAD往往具CFAR特性,不需要額外的CFAR技術(shù)。這大大地簡化了檢測的流程和成本。例如,從濾波角度,根據(jù)最優(yōu)輸出信雜噪比(SCNR)準(zhǔn)則得到的采用協(xié)方差矩陣求逆(Sample Matrix Inversion, SMI)[8]算法可看做檢測器,但是 SMI不具有 CFAR特性。而根據(jù)兩步廣義似然比(Two-Step Generalized Likelihood Ratio Test, 2S-GLRT)準(zhǔn)則得到的自適應(yīng)匹配濾波器(Adaptive Matched Filter, AMF)[9,10],從濾波角度看,其濾波性能與SMI相同,但卻具有CFAR特性。

(2) STAD技術(shù)往往比先雜波抑制后檢測方法具有更高的檢測概率。例如,在信噪比(Signal-to-Noise Ratio, SNR)不是特別高時,基于GLRT準(zhǔn)則得到的KGLRT (Kelly’s GLRT)[11]檢測器比從濾波角度得到SMI或AMF檢測器的檢測概率要高。

(3) STAD設(shè)計靈活,可根據(jù)不同的準(zhǔn)則,基于不同的度量進(jìn)行設(shè)計。常用的檢測器設(shè)計準(zhǔn)則有 3種[12-14]:GLRT準(zhǔn)則,Rao準(zhǔn)則和Wald準(zhǔn)則。對檢測器的度量指標(biāo)包括:檢測概率的高低、對失配信號的穩(wěn)健性和對失配信號的抑制能力,等等。

針對色噪聲下多通道信號的自適應(yīng)檢測問題,國內(nèi)外的學(xué)者展開了多方面的研究,并取得了大量成果,這些方法均可應(yīng)用到STAD中。但很少有文獻(xiàn)針對STAD進(jìn)行單獨研究,沒有深入地分析機(jī)載雷達(dá)STAD與常規(guī)色噪聲下多通道自適應(yīng)檢測方法的區(qū)別。此外,值得指出的是,Klemm在其著作[15]中曾指出,STAP下一步的一個研究熱點為自適應(yīng)檢測。

本文旨在對STAD這一技術(shù)進(jìn)行簡要介紹,闡述STAD技術(shù)與現(xiàn)有STAP雜波抑制后檢測方法相比具有的優(yōu)勢,并綜述可用到STAD中的現(xiàn)有自適應(yīng)檢測方法,探討下一步的研究方向,起到拋磚引玉的作用。

2 STAD方法研究現(xiàn)狀

上文指出,STAD屬于檢測范疇。進(jìn)一步講,STAD屬于色噪聲背景下的多通道信號自適應(yīng)檢測。因此,現(xiàn)有的色噪聲背景下多通道信號檢測方法都可以應(yīng)用到STAD中。自適應(yīng)的含義指的是雜波加噪聲的協(xié)方差矩陣未知,這就需要利用訓(xùn)練樣本來自適應(yīng)地估計該協(xié)方差矩陣。訓(xùn)練樣本必須與待檢測單元中雜波加噪聲的統(tǒng)計特性具有一定的相關(guān)性,否則訓(xùn)練樣本不提供任何有價值的信息。

美國林肯實驗室的Kelly于1986年基于GLRT準(zhǔn)則,提出了著名的KGLRT,這成為色噪聲中的多通道信號自適應(yīng)檢測的奠基之作。上文指出,常用的檢測器設(shè)計準(zhǔn)則有3種,即GLRT準(zhǔn)則,Rao準(zhǔn)則和 Wald準(zhǔn)則1)需要注意的是,GLRT, Rao和 Wald并不是某一種特定的檢測器,而是通用的檢測器設(shè)計準(zhǔn)則。在不同的環(huán)境下GLRT往往是不同的,Rao和Wald也是一樣。此外,當(dāng)我們說“提出了一種GLRT檢測器、Rao檢測器或 Wald檢測器”時,指的是根據(jù) GLRT準(zhǔn)則、Rao準(zhǔn)則或Wald準(zhǔn)則,提出了相應(yīng)的檢測器。這一用法在現(xiàn)有文獻(xiàn)中被普遍采用[24-27]。。此外,在實際中,三者對應(yīng)的兩步檢測器設(shè)計準(zhǔn)則也經(jīng)常被應(yīng)用。兩步檢測器設(shè)計準(zhǔn)則的設(shè)計流程為:先假設(shè)協(xié)方差矩陣已知,然后根據(jù)相應(yīng)的設(shè)計準(zhǔn)則得到檢測器,最后用采樣協(xié)方差矩陣代替已得到檢測器中的未知協(xié)方差矩陣[9,16]。

2.1 均勻環(huán)境中的目標(biāo)檢測

均勻環(huán)境指的是待檢測單元中雜波加噪聲的統(tǒng)計特性與訓(xùn)練樣本中的統(tǒng)計特性完全相同[11]。在KGLRT的基礎(chǔ)上,Chen等人[10]與Robey等人[9]利用兩步GLRT設(shè)計準(zhǔn)則在均勻環(huán)境下分別獨立提出了自適應(yīng)匹配濾波器(Adaptive Matched Filter,AMF)。De Maio分別在文獻(xiàn)[17]和文獻(xiàn)[18]中根據(jù)Rao檢測器和Wald檢測器提出了相應(yīng)的檢測器,并且證明了Wald檢測器與AMF等價。為敘述方便,記文獻(xiàn)[17]中的 Rao檢測器為 DMRao(De Maio’s Rao)。

2.2 非均勻環(huán)境中的目標(biāo)檢測

由于載機(jī)飛行姿態(tài)的變化以及陣列結(jié)構(gòu)擺放(共形陣、雙基地)的影響,在實際中機(jī)載雷達(dá)所面臨的環(huán)境往往是非均勻的。部分均勻環(huán)境是非均勻的一種,是指待檢測單元的協(xié)方差矩陣和訓(xùn)練樣本的協(xié)方差矩陣具有相同的結(jié)構(gòu),但具有不同的功率。文獻(xiàn)[16]通過實測數(shù)據(jù)驗證了部分均勻環(huán)境模型適用于機(jī)載雷達(dá)所面臨的實際環(huán)境?;?S-GLRT設(shè)計準(zhǔn)則,Scharf于1996年提出了自適應(yīng)相關(guān)估計器(Adaptive Coherence Estimator, ACE)[19],該檢測器被證明是部分均勻環(huán)境中的 GLRT[19],相應(yīng)的Rao和Wald檢測器在文獻(xiàn)[20]中提出,并且均等價于ACE。

文獻(xiàn)[21,22]提出了一種廣義特征關(guān)系(Generalized Eigen-Relation, GER)非均勻環(huán)境,并指出 GER非均勻模型在實際中往往可以很好地近似滿足。該非均勻環(huán)境中的GLRT被證明與KGLRT具有相同的形式[23],相應(yīng)的Rao檢測器即為雙歸一化自適應(yīng)匹配濾波器(Double-Normailized AMF,DN-AMF),而Wald檢測器被證明與AMF等價[24]。

其它非均勻模型包括復(fù)合高斯模型[25,26]、球不變隨機(jī)過程(Spherically Invariant Random Process,SIRP)模型[27]、及貝葉斯非均勻[28]、復(fù)橢圓等高線分布(Elliptically Contoured Distribution, ECD)非均勻[29,30]等。

2.3 信號失配下的目標(biāo)檢測

上述檢測器都是在目標(biāo)導(dǎo)向矢量確知情況下得到的,在實際中,由于存在陣元校正誤差、指向誤差和多徑效應(yīng)等影響,往往存在導(dǎo)向矢量失配的情況。文獻(xiàn)[31]從濾波的角度研究了導(dǎo)向矢量失配對輸出 SCNR的影響,并推廣了 RMB(Reed-Mallet-Brennan)準(zhǔn)則[8]。通過理論分析,文獻(xiàn)[31]指出,當(dāng)存在導(dǎo)向矢量失配時,只有通過增加訓(xùn)練樣本數(shù)才能減小SCNR損失。信號失配下的檢測最早由Kelly開始研究,在文獻(xiàn)[32]中,Kelly指出信號失配對濾波和檢測的影響不同,通過合理的設(shè)計檢測器,可以降低信號失配對自適應(yīng)檢測的影響。這一功能由檢測器的CFAR特性實現(xiàn)。

在Kelly的研究[32]基礎(chǔ)上不斷有新方法被提出,按照對失配信號的敏感程度可把檢測器分為兩類,一類為穩(wěn)健檢測器,另一類為失配敏感檢測器。前者在導(dǎo)向矢量失配量相對較大的情況下,仍然能以較高的檢測概率檢測出目標(biāo)。而對于后者,即使導(dǎo)向矢量失配較小,檢測器的檢測概率也會大為下降,即不把失配信號作為感興趣的目標(biāo)。實際中究竟需要穩(wěn)健檢測器還是失配敏感檢測器,要視具體情況而定。一般來說,當(dāng)雷達(dá)工作在搜索模式時,需要選擇穩(wěn)健檢測器,當(dāng)雷達(dá)工作在跟蹤模式時,需要選擇失配敏感檢測器。

針對導(dǎo)向矢量失配下的檢測,通常有4種檢測器設(shè)計方法:直接建模法[33-37]、增加虛擬信號/干擾法[38-42]、檢測器級聯(lián)法[17,22,43-49]和可調(diào)檢測器法[49-52]。直接建模法指的是確定失配角的范圍,假設(shè)目標(biāo)實際導(dǎo)向矢量位于以陣列指向為軸心的真錐中,通過(凸)優(yōu)化技術(shù)設(shè)計檢測器。增加虛擬信號/干擾法指的是在 H0假設(shè)檢驗下,假設(shè)存在確定(非隨機(jī))信號或者虛擬隨機(jī)干擾。檢測器級聯(lián)法指的是檢測器由兩個子檢測器級聯(lián)組成,并且這兩個子檢測器分別為穩(wěn)健檢測器和失配敏感檢測器??烧{(diào)檢測器法指的是通過控制可調(diào)參數(shù)來控制檢測器對失配信號的敏感程度。

值得指出的是直接建模法往往得不到閉合解;增加虛擬信號/干擾法得到的檢測器對失配信號具有很好的抑制作用,但缺乏穩(wěn)健性。檢測器級聯(lián)法和可調(diào)檢測器法的一個共同特點是,針對匹配信號,通過實際合理的選擇門限對或者可調(diào)參數(shù),二者均可以達(dá)到比子檢測器(對于檢測器級聯(lián)法)或特例檢測器(對于可調(diào)檢測器法)更高的檢測概率。另外,檢測器級聯(lián)法對失配信號的穩(wěn)健性和失配敏感性受制于子檢測器的穩(wěn)健性和敏感性,而可調(diào)檢測器往往不受特例檢測器對失配信號敏感程度的影響,具有更高的靈活性。

2.4 小訓(xùn)練樣本數(shù)下的目標(biāo)檢測

機(jī)載雷達(dá)的自由度為陣元數(shù)與脈沖數(shù)的乘積。該自由度往往很大,導(dǎo)致雜波加噪聲的協(xié)方差矩陣維數(shù)很高。根據(jù)RMB準(zhǔn)則[8],要獲得滿意的協(xié)方差矩陣估計,至少需要兩倍于系統(tǒng)自由度維數(shù)的訓(xùn)練樣本,然而這在實際中很難滿足。因此,有必要研究小訓(xùn)練樣本數(shù)下的自適應(yīng)檢測。

文獻(xiàn)[53]分析了級聯(lián) STAD的性能,并與常規(guī)STAD進(jìn)行了比較。文獻(xiàn)[54]把聯(lián)合域局域處理(Joint Domain Localised, JDL)與KGLRT結(jié)合,形成了JDL-GLRT檢測器。文獻(xiàn)[55]把對角加載[56]技術(shù)與 KGLRT結(jié)合,提出了對角加載 GLRT(Diagonally Loaded GLRT, DL-GLRT)。文獻(xiàn)[6,7]把對角加載技術(shù)與AMF和ACE結(jié)合,提出了對角加載AMF(Diagonally Loaded AMF, DL-AMF)和對角加載 ACE(Diagonally Loaded ACE, DLACE)。文獻(xiàn)[57]把主分量法[58]應(yīng)用 KGLRT, AMF和 ACE中,形成了降秩 GLRT(Reduced-Rank GLRT, RR-GLRT),降秩 AMF(Reduced-Rank AMF, RR-AMF)和降秩ACE(Reduced-Rank ACE,RR-ACE)。文獻(xiàn)[59, 60]根據(jù)正交投影變換的思想,提出相應(yīng)的降秩檢測器,文獻(xiàn)[61]把這一思想與ACE結(jié)合,提出了新的降秩檢測器。

共軛梯度(Conjugate Gradient, CG)[62]、多級維納濾波器(Multistage Wiener Filter, MWF)[63]和自適應(yīng)輔助向量濾波器(Auxiliary-Vector Filtering,AVF)[64]屬于Krylov子空間技術(shù)(數(shù)值計算中的一類方法)。近年來,Krylov子空間技術(shù)被成功應(yīng)用到自適應(yīng)檢測中。文獻(xiàn)[65]把CG法應(yīng)用到最優(yōu)檢測器(即匹配濾波器,或稱為匹配檢測器,該檢測器在協(xié)方差矩陣已知的前提下得到)中。文獻(xiàn)[66]把MWF與AVF應(yīng)用到自適應(yīng)檢測中,提出了相應(yīng)的檢測器。

上述新的檢測方法比常規(guī)的KGLRT, AMF和ACE等方法具有更高的檢測概率,尤其是在訓(xùn)練樣本數(shù)小的情況下,這一優(yōu)勢更為明顯。

3 結(jié)論與展望

通過上文的分析可以看出,STAP以雜波抑制為目標(biāo),而STAD以檢測目標(biāo)的有無為目標(biāo)。雜波抑制體現(xiàn)在STAD的中間過程中,而非作為一個獨立的步驟。下面列出自適應(yīng)檢測的幾個亟待解決的問題或新的研究方向:

(1) 嚴(yán)重非均勻及非高斯環(huán)境下的檢測[67-69];

(2) 結(jié)構(gòu)化協(xié)方差矩陣下的檢測[70-74];

(3) 擴(kuò)展目標(biāo)的檢測[14,16,75-79];

(4) 機(jī)載MIMO或多基地檢測[80-84];

(5) 壓縮感知檢測[85];

(6) 認(rèn)知雷達(dá)檢測[86];

(7) 基于先驗知識的檢測[82,87-94]。

[1]Brennan L E and Reed L S.Theory of adaptive radar[J].IEEE Transactions on Aerospace and Electronic Systems,1973, 9(2): 237-252.

[2]王永良, 彭應(yīng)寧.空時自適應(yīng)信號處理[M].北京: 清華大學(xué)出版社, 2000.Wang Yong-liang and Peng Ying-ning.Space-Time Adaptive Processing[M].Beijing: Tsinghua University Press, 2000.

[3]Klemm R.Principles of Space-Time Adaptive Processing[M].3rd Edition, London: The Institution of Electrical Engineers,2006.

[4]Guerci J R.Space-Time Adaptive Processing for Radar[M].Boston: Artech House, 2003.

[5]Nickel U.Design of generalised 2D adaptive sidelobe blanking detectors using the detection margin[J].Signal Processing,2010, 90(5): 1357-1372.

[6]Liu W, Xie W, and Wang Y.Diagonally loaded space-time adaptive detection[C].IEEE International Conference on Radar, Chengdu, 2011.

[7]劉維建, 謝文沖, 王永良.基于對角加載的自適應(yīng)匹配濾波器和自適應(yīng)相干估計器[J].系統(tǒng)工程與電子技術(shù), 2013, 35(3):463-468.Liu Wei-jian, Xie Wen-chong, and Wang Yong-liang.AMF and ACE detectors based on diagonal loading[J].Systems Engineering and Electronics, 2013, 35(3): 463-468.

[8]Reed I S, Mallett J D, and Brennan L E.Rapid convergence rate in adaptive arrays[J].IEE E Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.

[9]Robey F C, Fuhrmann D R, Kelly E J, et al..A CFAR adaptive matched filter detector[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.

[10]Chen W-S and Reed I S.A new CFAR detection test for radar[J].Digital Signal Processing, 1991, 1(4): 198-214.

[11]Kelly E J.An adaptive detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 1986,22(1): 115-127.

[12]Kay S M.Fundamentals of Statistical Signal Processing:Detection Theory[M].Englewood Cliffs, NJ: Prentice-Hall,1998.

[13]De Maio A, Kay S M, and Farina A.On the invariance,coincidence, and statistical equivalence of the GLRT, Rao test, and wald test[J].IEEE Transactions on Signal Processing, 2010, 58(4): 1967-1979.

[14]Liu W, Wang Y, and Xie W.Fisher information matrix, Rao test, and Wald test for complex-valued signals and their applications[J].Signal Processing, 2014,DOI:10.1016/j.sigpro.2013.06.032.

[15]Klemm R.Applications of Space-Time Adaptive Processing[M].London: The Institution of Electrical Engineers, 2004: 415.

[16]Conte E, Maio A D, and Ricci G.GLRT-based adaptive detection algorithms for range-spread targets[J].IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.

[17]De Maio A.Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J].IEEE Transactions on Signal Processing, 2007, 55(7): 3577-3584.

[18]De Maio A.A new derivation of the adaptive matched filter[J].IEEE Signal Processing Letters, 2004, 11(10):792-793.

[19]Kraut S and Scharf L L.The CFAR adaptive subspace detector is a scale-invariant GLRT[J].IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.

[20]De Maio A and Iommelli S.Coincidence of the Rao test, Wald test, and GLRT in partially homogeneous environment[J].IEEE Signal Processing Letters, 2008, 15: 385-388.

[21]Richmond C D.Statistics of adaptive nulling and use of the generalized eigenrelation (GER) for modeling inhomogeneities in adaptive processing[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1263-1273.

[22]Richmond C D.Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1248-1262.

[23]Besson O and Orlando D.Adaptive detection in nonhomogeneous environments using the generalized eigenrelation[J].IEEE Signal Processing Letters, 2007, 14(10):731-734.

[24]Hao C, Orlando D, and Hou C.Rao and Wald tests for nonhomogeneous scenarios[J].Sensors, 2012, 12(4): 4730-4736.

[25]Conte E, Lops M, and Ricci G.Asymptotically optimum radar detection in compound-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems, 1995,31(2): 617-625.

[26]Gini F and Farina A.Vector subspace detection in compound-Gaussian clutter part I: Survey and new results[J].IEEE Transactions on Aerospace and Electronic Systems,2002, 38(4): 1295-1311.

[27]Conte E, Lops M, and Ricci G.Adaptive matched filter detection in spherically invariant noise[J].IEEE Signal Processing Letters, 1996, 3(8): 248-250.

[28]Bidon S, Besson O, and Tourneret J-Y.A Bayesian approach to adaptive detection in nonhomogeneous environments[J].IEEE Transactions on Signal Processing, 2008, 56(1):205-217.

[29]Richmond C D.A note on non-Gaussian adaptive array detection and signal parameter estimation[J].IE EE Signal Processing Letters, 1996, 3(8): 251-252.

[30]Besson O and Abramovich Y I.Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions[J].Journal of Multivariate Analysis, 2014, 124: 237-246.

[31]Boroson D M.Sample size considerations for adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(4): 446-451.

[32]Kelly E J.Performance of an adaptive detection algorithm:rejection of unwanted signals[J].IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 122-133.

[33]De Maio A.Robust adaptive radar detection in the presence of steering vector mismatches[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1322-1337.

[34]Bandiera F, De Maio A, and Ricci G.Adaptive CFAR radar detection with conic rejection[J].IEEE Transactions on Signal Processing, 2007, 55(6): 2533-2541.

[35]De Maio A, De Nicola S, and Farina A.GLRT versus mflrt for adaptive CFAR radar detection with conic uncertainty[J].IEEE Signal Processing Letters, 2009, 16(8): 707-710.

[36]Bandiera F, Orlando D, and Ricci G.CFAR detection strategies for distributed targets under conic constraints[J].IEEE Transactions on Signal Processing, 2009, 57(9):3305-3316.

[37]Maio A D, Nicola S D, Farina A, et al..Adaptive detection of a signal with angle uncertainty[J].IET Radar, Sonar &Navigation, 2010, 4(4): 537-547.

[38]Pulsone N B and Rader C M.Adaptive beamformer orthogonal rejection test[J].IEEE Transactions on Signal Processing, 2001, 49(3): 521-529.

[39]Bandiera F, Besson O, and Ricci G.An abort-like detector with improved mismatched signals rejection capabilities[J].IEEE Transactions on Signal Processin g, 2008, 56(1): 14-25.

[40]Besson O.Detection in the presence of surprise or undernulled interference[J].IEEE Signal Processing Letters,2007, 14(5): 352-354.

[41]Orlando D and Ricci G.A Rao test with enhanced selectivity properties in homogeneous scenarios[J].IEE E Transactions on Signal Processing, 2010, 58(10): 5385-5390.

[42]Liu W, Xie W, and Wang Y.A Wald test with enhanced selectivity properties in homogeneous environments[J].E URASIP Journal on Ad vances in Signal Processing, 2013,DOI:10.1186/1687-6180-2013-14.

[43]Richmond C D.Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments[J].IEEE Transactions on Signal Processing, 2000, 48(5): 1235-1247.

[44]Pulsone N B and Zatman M A.A computationally efficient two-step implementation of the GLRT[J].IEEE Transactions on Signal Processing, 2000, 48(3): 609-616.

[45]Bandiera F, Orlando D, and Ricci G.A subspace-based adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4141-4151.

[46]Raghavan R S, Pulsone N, and McLaughlin D J.Performance of the GLRT for adaptive vector subspace detection[J].IEEE Transactions on Aerospace and Electronic Systems, 1996,32(4): 1473-1487.

[47]Bandiera F, Besson O, Orlando D, et al..An improved adaptive sidelobe blanker[J].IEEE Transactions on Signal Processing, 2008, 56(9): 4152-4161.

[48]Hao C, Liu B, and Cai L.Performance analysis of a two-stage Rao detector[J].Signal Processing, 2011, 91(8): 2141-2146.

[49]Bandiera F, Orlando D, and Ricci G.One- and two-stage tunable receivers[J].IEEE Transactions on Signal Processing,2009, 57(8): 3264-3273.

[50]Kalson S Z.An adaptive array detector with mismatched signal rejection[J].IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 195-207.

[51]Hao C, Liu B, Yan S, et al..Parametric adaptive radar detector with enhanced mismatched signals rejection capabilities[J].EUR ASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/375136.

[52]Liu W, Xie W, and Wang Y.Parametric detector in the situation of mismatched signals[J].IET Radar, Sonar &Navigation, 2014, 8(1): 48-53.

[53]Reed I S, Gau Y L, and Truong T K.CFAR detection and estimation for STAP radar[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 722-735.

[54]Wang H and Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems[J].IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660-670.

[55]Ayoub T F and Haimovich A M.Modified GLRT signal detection algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 810-818.

[56]Carlson B D.Covariance matrix estimation errors and diagonal loading in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397-401.

[57]Wang Y, Liu W, Xie W, et al..Reduced-rank space-time adaptive detection for airborne radar[J].S CIENCE CHINA Information Sciences, 2014,DOI:10.1007/s11432-013-4984-5.

[58]Guerci J R, Goldstein J S, and Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 647-663.

[59]Reed I S and Gau Y-L.A fast CFAR detection space-time adaptive processing algorithm[J].IEEE Transactions on Signal Processing, 1999, 47(4): 1151-1154.

[60]Gau Y-L and Reed I S.An improved reduced-rank CFAR space-time adaptive radar detection algorithm[J].IE EE Transactions on Signal Processing, 1998, 46(8): 2139-2146.

[61]Liu W, Xie W, and Wang Y.Adaptive detection based on orthogonal partition of the primary and secondary data[J].Journal of Systems Engineerin g and Electronics, 2014, 25(1):34-42.

[62]Chang P S and Alan N W, Jr.Analysis of conjugate gradient algorithms for adaptive filtering[J].IEEE Transactions on Signal Processing, 2000, 48(2): 409-418.

[63]Goldstein J S, Reed I S, and Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Th eory,1998, 44(7): 2943-2959.

[64]Pados D A and Batalama S N.Joint space-time auxiliary-vector filtering for ds/CDMA systems with antenna arrays[J].IEEE Transactions on Communications, 1999,47(9): 1406-1415.

[65]Jiang C, Li H, and Rangaswamy M.On the conjugate gradient matched filter[J].IEEE Transactions on Signal Processing, 2012, 60(5): 2660-2666.

[66]Liu W, Xie W, and Wang Y.Adaptive detectors in the Krylov subspace[J].S CIEN CE CHINA Information Sciences,2014,DOI:10.1360/SCIS-2012-0749.R4.

[67]Michels J H, Himed B, and Rangaswamy M.Robust STAP detection in a dense signal airborne radar environment[J].S ignal Processin g Special Section on New Trends and Find ings in Antenna Array Processing for Radar, 2004, 84(9):1625-1636.

[68]Maio A D.Generalized CFAR property and UMP invariance for adaptive signal detection[J].IEEE Transactions on Signal Processing, 2013, 61(8): 2104-2115.

[69]Guan J, Chen X-L, Huang Y, et al..Adaptive fractional fourier transform-based detection algorithm for moving target in heavy sea clutter[J].IET Radar, Sonar &Navigation, 2012, 6(5): 389-401.

[70]Fuhrmann D R.Application of Toeplitz covariance estimation to adaptive beamforming and detection[J].IE EE Transactions on Signal Processing, 1991, 39(10): 2194-2198.

[71]Kim H S, Alfred O, and Hero I.Comparison of GLR and invariant detectors under structured clutter covariance[J].IEEE Transactions on Image Processing, 2001, 10(10):1509-1520.

[72]Bose S and Steinhardt A O.A maximal invariant framework for adaptive detection with structured and unstructured covariance matrices[J].IE EE Transactions on Signal Processing, 1995, 43(9): 2164-2175.

[73]Wang P, Li H, and Himed B.A new parametric GLRT for multichannel adaptive signal detection[J].IEEE Transactions on Signal Processing, 2010, 58(1): 317-325.

[74]Gao Y, Liao G, Zhu S, et al..Persymmetric adaptive detectors in homogeneous and partially homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(2): 331-342.

[75]Liu W, Xie W, and Wang Y.Rao and Wald tests for distributed targets detection with unknown signal steering[J].IEEE Signal Processin g Letters, 2013, 20(11): 1086-1089.

[76]Shuai X, Kong L, and Yang J.Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests[J].SCIEN CE CHINA Information Sciences, 2012, 55(6):1290-1300.

[77]Hao C, Yang J, Ma X, et al..Adaptive detection of distributed targets with orthogonal rejection[J].IET Radar,Sonar & Navigation, 2012, 6(6): 483-493.

[78]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part I: Homogeneous environments[J].IEE E Transactions on Signal Processing,2014, 62(9): 2345-2357.

[79]Liu W, Xie W, Liu J, et al..Adaptive double subspace signal detection in Gaussian background—Part II: Partially homogeneous environments[J].IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369.

[80]Wang J, Jiang S, He J, et al..Adaptive detectors with diagonal loading for airborne multi-input multi-output radar[J].IET Radar, Sonar & Navigation, 2009, 3(5): 493-501.

[81]王鞠庭, 江勝利, 何勁, 等.基于對角加載的機(jī)載MIMO雷達(dá)GLRT檢測器[J].電子學(xué)報, 2009, 37(12): 2614-2619.Wang Ju-ting, Jiang Sheng-li, He Jin, et al..GLRT detector with diagonal loading for MIMO radars[J].Acta Electronica Sinica, 2009, 37(12): 2614-2619.

[82]Zhang T, Cui G, Kong L, et al..Adaptive Bayesian detection using MIMO radar in spatially heterogeneous clutter[J].IEEE Signal Processin g Letters, 2013, 20(6): 547-550.

[83]Goodman N A and Bruyere D.Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(2): 806-813.

[84]江勝利, 王鞠庭, 何勁, 等.基于對角加載的機(jī)載MIMO雷達(dá)自適應(yīng)匹配濾波檢測器[J].宇航學(xué)報, 2009, 30(5): 1979-1984.

[85]Anitori L, Maleki A, Otten M, et al..Design and analysisof compressed sensing radar detectors[J].IE EE Transactions on Signal Processing, 2013, 61(4): 813-827.

[86]Zhang J, Zhu D, and Zhang G.Adaptive compressed sensing radar oriented toward cognitive detection in dynamic sparse target scene[J].IEEE Transactions on Signal Processing,2012, 60(4): 1718-1729.

[87]De Maio A, Farina A, and Wicks M.KB-GLRT: exploiting knowledge of the clutter ridge in airborne radar[J].IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(6):421-428.

[88]Bandiera F, Besson O, and Ricci G.Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J].IEEE Transactions on Signal Processing, 2011, 58(10): 5390-5396.

[89]Besson O, Tourneret J-Y, and Bidon S.Knowledge-aided Bayesian detection in heterogeneous environments[J].IEEE Signal Processing Letters, 2007, 14(5): 355-358.

[90]Maio A D, Farina A, and Foglia G.Knowledge-aided Bayesian radar detectors & their application to live data[J].IEEE Transactions on Aerospace and Electronic Systems,2010, 46(1): 170-183.

[91]Zhou Y and Zhang L-R.Knowledge-aided Bayesian radar adaptive detection in heterogeneous environment: GLRT,Rao and Wald test[J].AEU-International Journal of Electronics and Communications, 2012, 66(3): 239-243.

[92]Aubry A, Maio A D, Pallotta L, et al..Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions[J].IEEE Transactions on Signal Processing, 2013,61(20): 4949-4961.

[93]Bidon S, Besson O, and Tourneret J-Y.Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1863-1879.

[94]Hao C, Shang X, Bandiera F, et al..Bayesian radar detection with orthogonal rejection[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(2): 596-599.

猜你喜歡
失配訓(xùn)練樣本雜波
基于無差拍電流預(yù)測控制的PMSM電感失配研究
STAR2000型空管一次雷達(dá)雜波抑制淺析
人工智能
基于特征分解的方位向多通道SAR相位失配校正方法
寬帶光譜成像系統(tǒng)最優(yōu)訓(xùn)練樣本選擇方法研究
融合原始樣本和虛擬樣本的人臉識別算法
基于稀疏重構(gòu)的機(jī)載雷達(dá)訓(xùn)練樣本挑選方法
密集雜波環(huán)境下確定性退火DA-HPMHT跟蹤算法
殘留應(yīng)變對晶格失配太陽電池設(shè)計的影響
交錯采樣技術(shù)中的失配誤差建模與估計
上思县| 滨州市| 海门市| 嘉禾县| 乌拉特后旗| 黑龙江省| 广河县| 潮州市| 石景山区| 壤塘县| 辽源市| 普宁市| 苏尼特右旗| 崇阳县| 四川省| 昌宁县| 贵德县| 浦江县| 罗田县| 东阿县| 海门市| 澎湖县| 两当县| 道孚县| 化州市| 左权县| 九寨沟县| 筠连县| 奉贤区| 会理县| 苍山县| 海兴县| 沐川县| 明水县| 石柱| 拜泉县| 双桥区| 广河县| 定西市| 吉木萨尔县| 五莲县|