袁 彬,蘇玉亮,豐子泰,徐 晨,薛繼超,魯明晶
中國(guó)石油大學(xué)(華東)石油工程學(xué)院,山東 青島266580
縫網(wǎng)壓裂是在水力壓裂過(guò)程中,使天然裂縫不斷擴(kuò)張和脆性巖石產(chǎn)生剪切滑移,形成2 級(jí)及更多級(jí)次生裂縫,最終實(shí)現(xiàn)相互交錯(cuò)的裂縫網(wǎng)絡(luò),從而增加改造體積,提高初始產(chǎn)量和最終采收率[1-5].若成藏壓力較高,加之采用縫網(wǎng)壓裂技術(shù)壓出網(wǎng)絡(luò)裂縫,使儲(chǔ)集層孔喉與裂縫達(dá)到極大限度的溝通,導(dǎo)流能力極大增強(qiáng),儲(chǔ)集層滲流阻力減小,使低滲透致密儲(chǔ)集層滲流啟動(dòng)壓力梯度自然“消失”,流體流動(dòng)將表現(xiàn)出無(wú)“啟動(dòng)壓力梯度”的特征[6-10].在實(shí)施“體積改造”過(guò)程中,由于儲(chǔ)集層形成復(fù)雜裂縫網(wǎng)絡(luò),使儲(chǔ)集層滲流特征發(fā)生了改變,主要體現(xiàn)在基質(zhì)中的流體可以“最短距離”向各方向裂縫滲流,然后從裂縫向井筒流動(dòng),然而,縫網(wǎng)壓裂后次生裂縫網(wǎng)絡(luò)密度、延伸距離、作用范圍和滲流特征都能顯著影響基質(zhì)流動(dòng)的“最短距離”[11-14]. 因此,針對(duì)致密儲(chǔ)集層,明確縫網(wǎng)壓裂次生裂縫網(wǎng)絡(luò)的幾何參數(shù)、滲流特征及縫網(wǎng)產(chǎn)能貢獻(xiàn)對(duì)于確定縫網(wǎng)壓裂施工排量、砂比、壓裂液黏度和凈壓力等參數(shù),形成最優(yōu)“縫網(wǎng)”系統(tǒng),快速推動(dòng)“立體體積改造技術(shù)”和“裂縫轉(zhuǎn)向技術(shù)”,促使致密油氣藏的高效開(kāi)發(fā)至關(guān)重要[15-17]. 為此,本研究基于流線模擬技術(shù),探討流體質(zhì)點(diǎn)在水平井縫網(wǎng)壓裂復(fù)雜縫網(wǎng)滲流環(huán)境的運(yùn)動(dòng)規(guī)律,及油藏空間壓力場(chǎng)變化規(guī)律,明確縫網(wǎng)尤其次生裂縫對(duì)縫網(wǎng)壓裂增產(chǎn)的影響及滲流特征,為認(rèn)清縫網(wǎng)壓裂水平井在開(kāi)發(fā)超低滲油藏中的滲流規(guī)律提供理論依據(jù).
油藏注水開(kāi)發(fā)過(guò)程中,流線軌跡由源(注水井)入?yún)R(采油井),與等壓線垂直. 一系列流線構(gòu)成流線場(chǎng),可直觀反映油藏各流體質(zhì)點(diǎn)在某一時(shí)刻的滲流情況,其疏密程度一定程度反映復(fù)雜油藏空間中不同位置流體質(zhì)點(diǎn)在該時(shí)刻的滲流特征. 通過(guò)ECLIPSE 流線模擬方法,使流體沿著流線在壓力梯度方向運(yùn)移,形成自然運(yùn)移網(wǎng)絡(luò),追蹤油、水在油藏中的移動(dòng). 本次流線模擬采用油水兩相模型,模擬超低滲油藏參數(shù)為:平均油層厚度為15 m,平均滲透率0.6 ×10-3μm2,平均孔隙度為12.4%,地層原油黏度為1.18 mP·s,原始地層壓力16.7 MPa,原始含油飽和度為54%,地面原油密度0.835 g/cm3. 模擬采用水平井采油和直井注水的5點(diǎn)井網(wǎng),井距為160 m,排距為310 m,水平段長(zhǎng)度為800 m,縫網(wǎng)壓裂8 級(jí),主裂縫長(zhǎng)320 m,主/次裂縫導(dǎo)流能力40/4 μm2·m,以注采平衡方式開(kāi)采,注水井最大井底流壓40 MPa,生產(chǎn)井最低井底流壓8 MPa,產(chǎn)液量上限為50 m3/d.
圖1 水平井縫網(wǎng)壓裂改造示意圖Fig.1 Schematic diagram of volume-fracturing horizontal well
在井網(wǎng)形式、水平段長(zhǎng)度和壓裂段數(shù)一定的情況下,首先確定次生裂縫的合理參數(shù),并在此基礎(chǔ)上進(jìn)行滲流特征及產(chǎn)能分布研究. 由于次裂縫密度主要受天然裂縫密度控制[18-20],因此,設(shè)模型次裂縫密度0.025 條/m. 研究主要針對(duì)次裂縫延伸帶寬優(yōu)化,先保持其他參數(shù)不變,改變次裂縫帶寬0、10、30、50、70 和90 m,得水驅(qū)特征曲線如圖2.
圖2 不同縫網(wǎng)帶寬下縫網(wǎng)壓裂水平井水驅(qū)規(guī)律曲線Fig.2 Water flooding curve of horizontal well with of different network width
由圖2 可知:①隨次裂縫延伸帶寬增大,開(kāi)發(fā)末期(含水率95%)縫網(wǎng)壓裂水平井采出率越大,但當(dāng)次裂縫延伸帶寬大于70 m 后,采出率的增加不再明顯,采出率比分段壓裂水平井(縫網(wǎng)帶寬0 m)提高約10%;②相同采出率下,次裂縫延伸帶寬越大,縫網(wǎng)壓裂水平井含水率越低;但當(dāng)次裂縫帶寬大于70 m 后,含水降幅明顯變小. 研究表明,增大次裂縫延伸帶寬,有利于改善油藏水驅(qū)效果,提高致密油藏的最終采收率. 因此,在該5 點(diǎn)井網(wǎng)井排距和水平段長(zhǎng)度下,縫網(wǎng)壓裂水平井最優(yōu)次裂縫延伸帶寬為70 m,穿透比約0.35.
致密油藏縫網(wǎng)壓裂水平井注水開(kāi)發(fā)過(guò)程中,其滲流可分為3 個(gè)階段,但與常規(guī)分段壓裂水平井流線形態(tài)存在差異:
1)縫網(wǎng)附近線性流. 流線垂直于壓裂裂縫,以線性流方式流入水平井井筒,形成垂直裂縫線性流,見(jiàn)圖3 (a)和圖3 (b). 由于次裂縫的存在,縫網(wǎng)壓裂線性流明顯復(fù)雜,流線縱橫交錯(cuò),表明縫網(wǎng)壓裂較分段壓裂裂縫兩側(cè)區(qū)域流體明顯加速流入井筒.
2)縫網(wǎng)附近擬徑向流. 縫網(wǎng)段與段間流線較為密集,同時(shí)流線以縫網(wǎng)指端為中心呈徑向散射狀,見(jiàn)圖3 (c)和圖3 (d). 縫網(wǎng)壓裂縫網(wǎng)內(nèi)部平行次裂縫流線密集,表明此時(shí)縫網(wǎng)壓裂除流線連接區(qū)域的流體開(kāi)始流動(dòng)外,縫網(wǎng)內(nèi)部流動(dòng)強(qiáng)度要強(qiáng)于分段壓裂.
3)油水井連通后的擬徑向流:油水井井流線溝通,壓力波及整個(gè)油藏,整個(gè)區(qū)域的流動(dòng)近似看成平面徑向流;縫網(wǎng)壓裂較分段壓裂明顯存在平行主、次裂縫流線,次裂縫溝通縫間,流線明顯富集,縫間流體流動(dòng)加強(qiáng).
圖4 為縫網(wǎng)壓裂水平井在開(kāi)發(fā)初期、中期(含水率約80%)和末期(含水率大于95%)的流線場(chǎng)和飽和度場(chǎng)分布. 結(jié)果表明:①開(kāi)發(fā)初期. 流線形態(tài)以平行主次裂縫的線性流和縫網(wǎng)附近擬徑向流為主,飽和度場(chǎng)形成以水平井及縫網(wǎng)為中心的橢圓形區(qū)域,注水井附近壓力較高;②開(kāi)發(fā)中期. 油水井間流線連通,流線呈平面擬徑向流形態(tài),流線富集,注水前緣首先突破外端縫網(wǎng)、裂縫指端及次裂縫,并逐漸推進(jìn),剩余油形成以水平段為中心的十字形分布,水平井中部?jī)蓚?cè)高含油飽和度分布范圍廣;③開(kāi)發(fā)末期. 流線大部分富集水平井最外端縫網(wǎng)內(nèi)外側(cè),中部附近流線明顯稀疏,仍存在平行次裂縫流線,注入水沿裂縫形成優(yōu)勢(shì)通道導(dǎo)致縫網(wǎng)段間流線減少,剩余油主要分布在注水井間及縫網(wǎng)段間,但次裂縫的存在使得段間剩余油富集不再明顯.
圖3 縫網(wǎng)壓裂與分段壓裂水平井不同流線形態(tài)特征Fig.3 Different streamline characteristics of volume-fractured and multiple-fractured horizontal well
分析圖5 縫網(wǎng)壓裂水平井的不同位置縫網(wǎng)產(chǎn)液量分布曲線可知,除水平井中部縫網(wǎng)外,其他位置各縫網(wǎng)產(chǎn)液量均先減少后增加至趨于穩(wěn)定;中部縫網(wǎng)產(chǎn)液量先減后增,然后趨于穩(wěn)定;在水驅(qū)前緣位未到達(dá)縫網(wǎng)之前,產(chǎn)液量主要來(lái)自近井帶流體,且隨地層壓力下降,產(chǎn)液量逐漸減少;水驅(qū)前緣突破縫網(wǎng)后,即各縫網(wǎng)產(chǎn)液量最低點(diǎn)對(duì)應(yīng)時(shí)刻,注入水與壓裂縫網(wǎng)間形成優(yōu)勢(shì)通道,產(chǎn)液量逐漸增大至趨于穩(wěn)定;注入水首先突破外端縫網(wǎng),外端縫網(wǎng)產(chǎn)液量增大,而中間縫網(wǎng)供液能力最差,產(chǎn)液量貢獻(xiàn)最小(不同位置縫網(wǎng)累積產(chǎn)油貢獻(xiàn)率如圖6),由于定產(chǎn)液量生產(chǎn)導(dǎo)致后期產(chǎn)液量下降至趨于穩(wěn)定.
圖4 縫網(wǎng)壓裂水平井不同開(kāi)發(fā)階段滲流場(chǎng)圖Fig.4 Fluid flow field figures of volume-fractured horizontal well at different time
由圖6 可知,水平井最中間縫網(wǎng)貢獻(xiàn)率最高(32%),最外端縫網(wǎng)次之(27%),其他位置縫網(wǎng)貢獻(xiàn)相當(dāng)(20%),主要因?yàn)橥舛丝p網(wǎng)見(jiàn)水早,后期含水率高,產(chǎn)油量偏低;而外端縫網(wǎng)見(jiàn)水見(jiàn)效后有利中間縫網(wǎng)附近剩余油驅(qū)替,而此時(shí)中間縫網(wǎng)含水率低,產(chǎn)油量增加.
圖5 縫網(wǎng)壓裂水平井不同位置縫網(wǎng)產(chǎn)液分布曲線Fig.5 Fracture network liquid production distribution curve at different position of horizontal well
圖6 體積壓裂水平井不同位置縫網(wǎng)產(chǎn)液產(chǎn)油貢獻(xiàn)率Fig.6 Fracture network liquid & oil production at different position of horizontal well
圖7 和圖8 為縫網(wǎng)壓裂水平井不同位置縫網(wǎng)的產(chǎn)油分布和含水上升曲線,結(jié)果表明,低滲透油藏注水開(kāi)發(fā)初期,縫網(wǎng)壓裂水平井最外端縫網(wǎng)產(chǎn)油量最大,之后迅速下降,后期見(jiàn)水后含水率迅速上升,產(chǎn)油量趨于穩(wěn)定;越靠近水平井中部的縫網(wǎng)初期產(chǎn)油量越低,隨之略有增加后迅速下降,見(jiàn)水后趨于穩(wěn)定;端部縫網(wǎng)見(jiàn)水之后中部縫網(wǎng)見(jiàn)水之前,中部縫網(wǎng)附近壓力上升,但含水率增加不明顯,產(chǎn)油量增加,生產(chǎn)中后期(含水率80% ~90%)中部縫網(wǎng)產(chǎn)油量高于外端縫網(wǎng);中部縫網(wǎng)見(jiàn)水后,含水率迅速上升,產(chǎn)油量下降漸趨穩(wěn)定,達(dá)到與外端縫網(wǎng)產(chǎn)油量相當(dāng)?shù)乃?,其低含水生產(chǎn)期最長(zhǎng),外端縫網(wǎng)含水達(dá)95%時(shí),中部縫網(wǎng)僅約58%.
圖7 縫網(wǎng)壓裂水平井不同位置縫網(wǎng)產(chǎn)油分布曲線Fig.7 Fracture network oil production distribution curve at different position of horizontal well
圖8 體積壓裂水平井不同位置縫網(wǎng)含水上升曲線Fig.8 Fracture network water cut rising curve at different position of horizontal well
綜上可知,水平井縫網(wǎng)壓裂技術(shù)可明顯改善致密油藏注水開(kāi)發(fā)效果,提高最終采收率,其縫網(wǎng)特征、滲流特征及產(chǎn)能分布主要有:
1)在本例中,水平井縫網(wǎng)壓裂次裂縫帶寬最優(yōu)穿透比約0.35,整個(gè)滲流過(guò)程分3 個(gè)階段,縫網(wǎng)附近線性流、縫網(wǎng)附近擬徑向流和油水井連通后擬徑向流;
2)隨著開(kāi)發(fā)時(shí)間延續(xù),縫網(wǎng)壓裂水平井外端縫網(wǎng)與注水井間流線越密集,水平井中部及縫網(wǎng)間流線相對(duì)稀疏,剩余油主要分布在注水井間壓力平衡區(qū)及縫網(wǎng)間低壓區(qū),次裂縫的存在可明顯改善縫網(wǎng)間低壓區(qū)剩余油分布;
3)不同位置的縫網(wǎng)產(chǎn)能及含水上升不同. 最外端縫網(wǎng)產(chǎn)液水平最高,含水率也高,導(dǎo)致產(chǎn)油能力低于中部縫網(wǎng),外端縫網(wǎng)見(jiàn)水后上升速度較快.因此,合理優(yōu)化縫網(wǎng)裂縫參數(shù)設(shè)計(jì),保持各縫網(wǎng)間產(chǎn)液/油量均勻分布和減緩?fù)獠靠p網(wǎng)含水上升速度是高效發(fā)揮縫網(wǎng)壓裂在致密油藏開(kāi)發(fā)優(yōu)勢(shì)的關(guān)鍵.
/ References:
[1]Chen Zuo,Xue Chengjin,Jiang Tingxue,et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV)in shale gas wells in China [J]. Natural Gas Industry,2010,30(10):30-32.(in Chinese)陳 作,薛承瑾,蔣廷學(xué),等. 頁(yè)巖氣井體積壓裂技術(shù)在我國(guó)的應(yīng)用建議[J]. 天然氣工業(yè),2010,30(10):30-32.
[2]Wu Qi,Xu Yun,Wang Tengfei,et al. The revolution of reservoir stimulation:An introduction of volume fracturing[J]. Natural Gas Industry,2011,31(4):7-12.(in Chinese)吳 奇,胥 云,王騰飛,等. 增產(chǎn)改造理念的重大變革:體積壓裂技術(shù)概論[J]. 天然氣工業(yè),2011,31(4):7-12.
[3]Tang Meirong,Zhao Zhenfeng,Li Xianwen,et al. Study and test on the new technology of multi-fracture fracturing[J]. Drilling & Production Technology,2010,32(2):71-74.(in Chinese)唐梅榮,趙振峰,李憲文,等. 多縫壓裂新技術(shù)研究與試驗(yàn)[J]. 石油鉆采工藝,2010,32(2):71-74.
[4]Weng Dingwei,Lei Qun,Xu Yun,et al. Network fracturing techniques and its application in the field [J]. Acta Petrolei Sinica,2011,32(2):280-284.(in Chinese)翁定為,雷 群,胥 云,等. 縫網(wǎng)壓裂技術(shù)及其現(xiàn)場(chǎng)應(yīng)用[J]:石油學(xué)報(bào). 2011,32(2):280-284.
[5]Wang Wendong,Su Yuliang,Mu Lijun,et al. Influencing factors of stimulated reservoir volume vertical wells in tight oil reservoirs [J]. Journal of China University of Petroleum Natural Science Edition. 2013,37(3):1-5.(in Chinese)王文東,蘇玉亮,慕立俊,等. 致密油藏直井體積壓裂儲(chǔ)層改造體積的影響因素[J]. 中國(guó)石油大學(xué)學(xué)報(bào)自然科學(xué)版,2013,37(3):1-5.
[6]Yuan Bin,Gu Yonghong,Li Hongying,et al. The optimum of parameters effect on the productivity of fractured horizontal well in tight gas reservoir [J]. Journal of Xi'an Shiyou University Natural Science Edition,2013,28(2):46-48.(in Chinese)袁 彬,古永紅,李紅英,等. 蘇里格東區(qū)致密氣藏壓裂水平井產(chǎn)能影響因素及其優(yōu)化設(shè)計(jì)[J]. 西安石油大學(xué)學(xué)報(bào)自然科學(xué)版,2013,28(2):46-48.
[7]Gale J F,Reed R M,Holder J,et al. Natural fracture in the Barnett Shale and their importance for hydraulic fracture treatments [J]. AAPG Bulletin,2007,91(4):603-622.
[8]Bruce R Meyer,Lucas W Bazan. A discrete fracture network model for hydraulically induced fractures:theory,parametric and case studies [C]// Society of Petroleum Engineers. SPE Hydraulic Fracturing Technology Conference. Woodlands(USA):[s.n.],2011:24-26.
[9] Valencia K L,Chen Z,Rahman S S. Design and evaluation of hydraulic fracture simulation of gas and coalbed methane reservoirs under complex geology and stress conditions [C]// International Petroleum Technology Conference.InternationalPetroleumTechnology Conference. Doha (Qatar):[s.n.],2005:21-23.
[10]Dou Hong'en,Yang Yang,et al. Further understanding on fluid flow through multi-porous media in low permeability reservoirs [J]. Petroleum Exploration and Development,2012,39(5):633-639.(in Chinese)竇宏恩,楊 旸. 低滲透油藏流體滲流再認(rèn)識(shí)[J].石油勘探與開(kāi)發(fā),2012,39 (5):633-639.
[11]Fisher M K,Wright C A,Davidson B M,et al. Integrating fracture-mapping technologies to improve stimulations in the Barnett Shale [J]. SPE Production & Facilities,2005,20(2):85-93.
[12]Wu Qi,Xu Yun,Wang Xiaoquan,et al. Volume fracturing technology of unconventional reservoirs:connotation,optimization design and implementation [J]. Petroleum Exploration and Development,2012,39(3):352-355.(in Chinese)吳 奇,胥 云,王曉泉,等. 非常規(guī)油氣藏體積改造技術(shù)——內(nèi)涵、優(yōu)化設(shè)計(jì)與實(shí)現(xiàn)[J]. 石油勘探與開(kāi)發(fā),2012,39(3):352-355.
[13]Su Yuliang,Cao Guoliang,Yuan Bin,et al. Hydroelectric simulation experimental research on fractured well pattern in low permeability reservoirs [J]. Journal of Shenzhen University of Science and Engineering. 2013,30(3):293-298.(in Chinese)蘇玉亮,曹國(guó)梁,袁 彬,等. 低滲透油藏壓裂井網(wǎng)水電模擬[J]. 深圳大學(xué)學(xué)報(bào)理工版,2013,30(3):293-298.
[14]Mckoy M L,Sams W N. Tight gas reservoir simulation:modeling discrete irregular strata-bound fracture networks and metwork flow,including dynamic recharge from Matrix[C]// Proceedings of the Natural Gas Conference Emerging Technologies for the Natural Gas Industry. [s.n. ],1997.
[15]Meyer B R,Bazan L W,Jacot R H,et al. Optimization of multiple transverse hydraulic fracture in horizontal wellbore[C]// Society of Petroleum Engineers. SPE Unconventional Gas Conference. Pittsburgh(USA):[s.n.],2010:23-25.
[16]Mayerhofer M J,Lolon E P,Warpinski N R,et al. What is simulation reservoir volume? [J]. SPE Production &Operations,2010,25(1):89-98.
[17]Cipolla C L,Warpinski N R,Mayerhofer M J,et al. The relationship between fracture complexity,reservoir properties,and fracture-treatment design [C]// Society of Petroleum Engineers,SPE Annual Technical Conference and Exhibition. Denver(USA):[s.n.],2008:21-24.
[18]Warpinski N R,Mayerhofer M J,Vincent M C,et al.Stimulating unconventional reservoirs:maximizing network growth while optimizing fracture conductivity [C]//Society of Petroleum Engineers. SPE Unconventional Reservoirs Conference. Keystone (USA):[s.n.],2008:10-12.
[19]Bumger A P,Zhang X,Jeffery R G. Parameters effecting the interaction among closely spaced hydraulic fractures[J]. SPE Journal,2012,17(1):292-306.
[20]Potluri N,Zhu D,Hill A D. Effect of natural fractures on hydraulic fracture propagation [C]// Society of Petroleum Engineers. SPE European Formation Damage Conference.[s.n.],2005:25-27.