国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

運(yùn)動(dòng)對(duì)骨骼肌線(xiàn)粒體生物合成調(diào)節(jié)因子影響進(jìn)展研究

2013-12-05 21:05
關(guān)鍵詞:骨骼肌線(xiàn)粒體誘導(dǎo)

王 震

(廣東青年職業(yè)學(xué)院,廣東廣州 510507)

1 前言

線(xiàn)粒體是細(xì)胞能量代謝的主要場(chǎng)所,其生物合成過(guò)程有少數(shù)新蛋白產(chǎn)生,一千多種多肽參與,僅有少數(shù)是線(xiàn)粒體DNA編碼,其余核DNA編碼[1]。線(xiàn)粒體生物合成是核基因和線(xiàn)粒體基因共同參與調(diào)控[2]。Davies等研究表明[3,4]運(yùn)動(dòng)或電刺激均能誘導(dǎo)線(xiàn)粒體生物合成。運(yùn)動(dòng)誘導(dǎo)線(xiàn)粒體生物合成的主要步驟:起始信號(hào)→蛋白質(zhì)翻譯→進(jìn)入線(xiàn)粒體,運(yùn)動(dòng)誘導(dǎo)肌肉中線(xiàn)粒體數(shù)量增多。因此,了解運(yùn)動(dòng)引起線(xiàn)粒體生物合成的相關(guān)調(diào)節(jié)因子,對(duì)提高耐力水平并可為醫(yī)治因線(xiàn)粒體功能障礙引起的疑難雜癥提供幫助。本文是作者對(duì)近幾年來(lái)關(guān)于運(yùn)動(dòng)誘導(dǎo)線(xiàn)粒體生物合成各種調(diào)節(jié)因子研究成果的綜述。

2 運(yùn)動(dòng)時(shí)NO、Ca2+、ROS與線(xiàn)粒體生物合成

2.1 NO

內(nèi)源性生成NO調(diào)控線(xiàn)粒體生物合成,揭示eNOS作為一種分子轉(zhuǎn)換子,引發(fā)線(xiàn)粒體生物合成過(guò)程[5,6]。2003 年,有研究發(fā)現(xiàn)氣態(tài) NO 通過(guò)可溶性鳥(niǎo)苷酸環(huán)化酶(sGC)——環(huán)一磷酸鳥(niǎo)苷(cGMP)信號(hào)通路激活PGC-1α誘導(dǎo)線(xiàn)粒體生物合成。冷刺激激活β3-腎上腺受體產(chǎn)生NO,能提高細(xì)胞內(nèi)Ca2+和cAMP的含量,誘導(dǎo)PGC-1α基因過(guò)度表達(dá)。NO能激發(fā)不同細(xì)胞系中線(xiàn)粒體生物合成,如棕色脂肪組織(BAT)、3T3-L1和 HeLa細(xì)胞等[7]。NO的這種效應(yīng)是通過(guò)sGC-cGMP途徑,激活線(xiàn)粒體生物合成的關(guān)鍵轉(zhuǎn)錄因子PGC-1α。

身體的生理刺激,包括運(yùn)動(dòng)、熱冷刺激和限食均能調(diào)控線(xiàn)粒體生物合成,主要是通過(guò)調(diào)控 NO[7,8]。B淋巴細(xì)胞慢性白血病(CLL)患者內(nèi)源性NO水平較高,結(jié)果含有的線(xiàn)粒體多于正常淋巴細(xì)胞,經(jīng)檢測(cè)多數(shù)CLL標(biāo)本發(fā)現(xiàn)NRF-1和Tfam表達(dá)與細(xì)胞內(nèi)NO水平相關(guān)。外源性NO處理B細(xì)胞導(dǎo)致線(xiàn)粒體體積大幅提高[9]。NO補(bǔ)劑可上調(diào)安靜狀態(tài)下骨骼肌COXIV mRNA的表達(dá),其機(jī)制可能是骨骼肌中PGC-1αmRNA 表達(dá)上調(diào)[10]。耐力訓(xùn)練可上調(diào)骨骼肌PGC-1α含量和COXIV mRNA的表達(dá)水平,促進(jìn)骨骼肌線(xiàn)粒體轉(zhuǎn)錄因子的表達(dá),加快線(xiàn)粒體生物合成速率[11]。

2.2 Ca2+

胞獎(jiǎng)內(nèi)Ca2+是誘導(dǎo)肌肉收縮的基本信號(hào)通路,通過(guò)運(yùn)動(dòng)能激活骨該信號(hào)傳導(dǎo)通路,可調(diào)節(jié)線(xiàn)粒體生物合成。通過(guò)細(xì)胞培養(yǎng)的方法增加胞漿內(nèi)Ca2+,導(dǎo)致線(xiàn)粒體數(shù)量增加,當(dāng)減少胞漿內(nèi)Ca2+釋放時(shí),抑制了這一過(guò)程的發(fā)生[12]。

Ca2+介導(dǎo)線(xiàn)粒體生物合成的研究集中在鈣調(diào)神經(jīng)磷酸酶(CaN),是一種鈣離子/鈣調(diào)素依賴(lài)性蛋白激酶(CaMK)[13]。抑制CaN表達(dá)不影響運(yùn)動(dòng)刺激PGC-1α誘導(dǎo)的線(xiàn)粒體生物合成[14]。運(yùn)動(dòng)誘導(dǎo)骨骼肌PGC-1α調(diào)節(jié)與CaN之間的關(guān)系需要進(jìn)一步研究證實(shí)。激活Ca2+/CaMK可使許多蛋白磷酸化,從而促使肌細(xì)胞增強(qiáng)因子-2從抑制復(fù)合體中釋放出來(lái),如組蛋白脫乙酰酶HDAC1/2,抑制因子Cabin-1和適應(yīng)子mSin3,這些因子的釋放可能與線(xiàn)粒體生物合成增多有關(guān)[15]。Wu等[16]通過(guò)轉(zhuǎn)基因小鼠研究發(fā)現(xiàn),骨骼肌表達(dá)具有活性的CaMK能促進(jìn)PGC-1α表達(dá),加快線(xiàn)粒體生物合成,表明CaMK可能是PGC-1α上游促進(jìn)線(xiàn)粒體生物合成的關(guān)鍵信號(hào)因子,并在同樣的實(shí)驗(yàn)中發(fā)現(xiàn)選擇性表達(dá)Ca2+/CaMKⅣ的活性,導(dǎo)致線(xiàn)粒體DNA復(fù)制能力提高與線(xiàn)粒體生物合成相關(guān)基因表達(dá)增強(qiáng)。有研究證實(shí)[17]:在骨骼肌細(xì)胞L6中發(fā)現(xiàn),增加活性氧可以促進(jìn) PGC-1α表達(dá)和線(xiàn)粒體生物合成,同時(shí)Ca2+/CaMK含量也增多。

2.3 ROS

ROS已被證明影響線(xiàn)粒體生物合成,形態(tài)和功能。ROS對(duì)線(xiàn)粒體生物合成的有益影響可能是通過(guò)上調(diào)轉(zhuǎn)錄因子 PGC-1α、AMPK 活性[18]。Halliwell等[19]研究發(fā)現(xiàn),劇烈運(yùn)動(dòng)導(dǎo)致線(xiàn)粒體電子漏生成,使外源性ROS生成增多,在MnSOD作用下快速地被歧化或自發(fā)性歧化生成H2O2。由于H2O2比其它的ROS更加穩(wěn)定,能夠自由地跨膜擴(kuò)散且距離較長(zhǎng),被認(rèn)為最有可能參與細(xì)胞信號(hào)的傳導(dǎo)作用。Lander[20]對(duì)哺乳動(dòng)物實(shí)驗(yàn)研究認(rèn)為,H2O2做為一種信使在信號(hào)傳導(dǎo)通路中起某種作用。Lee等[21]實(shí)驗(yàn)證明,H2O2能誘導(dǎo)培養(yǎng)人類(lèi)肺成纖維細(xì)胞線(xiàn)粒體數(shù)量、體積以及mt DNA的含量。有研究者發(fā)現(xiàn),在衰老的細(xì)胞中,線(xiàn)粒體生物合成相關(guān)因子NRF-1和PGC-1mRNA,用H2O2處理30分鐘后,其表達(dá)水平顯著升高[22]。

正常條件下,多數(shù)ROS來(lái)源于線(xiàn)粒體呼吸鏈。測(cè)得不完全通過(guò)電子呼吸鏈氧氣轉(zhuǎn)化為活性氧的百分率約為1%至4%,運(yùn)動(dòng)中ROS增加也可能由其他原因所致[23]。質(zhì)膜上黃素蛋白氧化還原酶系統(tǒng),是肌肉收縮活動(dòng)時(shí)細(xì)胞外過(guò)氧化物產(chǎn)生的重要激活器[24]。ROS已被證實(shí)能誘導(dǎo)網(wǎng)狀線(xiàn)粒體分支和延伸,線(xiàn)粒體的復(fù)制隨骨骼肌細(xì)胞中ROS增加而增多[25]。線(xiàn)粒體體積隨著自身DNA的增加而增大,這個(gè)反應(yīng)是通過(guò)PGC-1a和NRF-1調(diào)節(jié)出現(xiàn)的,因?yàn)镻GC-1a和 NRF-1可上調(diào)外源ROS的表達(dá)[26]。最近研究[27]表明ROS能增強(qiáng)啟動(dòng)子PGC-1a的活性及表達(dá),通過(guò)兩條通路實(shí)現(xiàn)其一是依靠AMPK通路,其二是獨(dú)立于AMPK通路。這些通路中有活性氧存在的地方可觀(guān)察到線(xiàn)粒體生物合成增加。

3 AMPK與線(xiàn)粒體生物合成

研究發(fā)現(xiàn)[28],運(yùn)動(dòng)能激活腺苷單磷酸活化蛋白激酶(AMPK)。激活的AMPK能誘導(dǎo)PGC-1α促進(jìn)線(xiàn)粒體生物合成,這種酶是由一個(gè)催化亞基α和兩個(gè)調(diào)節(jié)亞基β和γ組成的一種異三聚體。催化亞基α1和α2異構(gòu)體在骨骼肌中有表達(dá)作用,運(yùn)動(dòng)可高度激活α2異構(gòu)體。α2 AMPK的活化隨著5-氨基咪唑-4甲酰胺核苷抑制而發(fā)生。通過(guò)5-氨基咪唑-4甲酰胺核苷的藥理作用激活A(yù)MPK可增加PGC-1a mRNA[29]。這可能是轉(zhuǎn)錄活化作用的調(diào)節(jié),因?yàn)锳MPK的活化導(dǎo)致PGC-1a啟動(dòng)子活性增強(qiáng)[30]。缺乏AMPK活性遺傳的老鼠對(duì)AMP增長(zhǎng)的反應(yīng)不表現(xiàn)出PGC-1a和線(xiàn)粒體含量增加[31]。

運(yùn)動(dòng)中當(dāng)ATP/AMP降低時(shí),AMPK活性就升高[32]。Raynald 等[33]研究表明,AMPK 在骨骼肌運(yùn)動(dòng)應(yīng)激過(guò)程中起重要作用,通過(guò)誘導(dǎo)中間產(chǎn)物變化加速線(xiàn)粒體生物合成。此外,使用5-氨基咪唑-4酰胺核苷長(zhǎng)期激活A(yù)MPK會(huì)導(dǎo)致線(xiàn)粒體酶的增加,如骨骼肌中細(xì)胞色素C、檸檬酸合成酶和蘋(píng)果酸脫氫酶[34]。因此,激活A(yù)MPK是一個(gè)重要調(diào)節(jié)線(xiàn)粒體生物合成因子,是在肌細(xì)胞中能源供求失衡的條件下起作用的。研究表明,使用藥物激活A(yù)MPK,促進(jìn)骨骼肌PGC-1α表達(dá)和線(xiàn)粒體生物合成,反之亦然。有實(shí)驗(yàn)證實(shí)[35],基因干預(yù)AMPK小鼠運(yùn)動(dòng)時(shí)仍能誘導(dǎo)骨骼肌PGC-1α表達(dá)和線(xiàn)粒體生物合成。因此,對(duì)運(yùn)動(dòng)誘導(dǎo)骨骼肌PGC-1α表達(dá)和線(xiàn)粒體生物合成是否與AMPK的激活有關(guān)仍存在爭(zhēng)議。

4 PGC-1a和運(yùn)動(dòng)引起線(xiàn)粒體生物合成

過(guò)氧化物酶體增殖因子激活受體(PPARγ)共激活因子-1α(PGC-1a)是細(xì)胞蛋白質(zhì)代謝領(lǐng)域研究的熱點(diǎn)。它已被確定為多種代謝過(guò)程重要的調(diào)節(jié)器,包括肝臟中糖原生成棕色脂肪產(chǎn)熱,骨骼肌中肌纖維類(lèi)型的分化,肌肉和心臟中線(xiàn)粒體生物合成[36]。不同肌肉PGC-1a表達(dá)能增加線(xiàn)粒體內(nèi)物質(zhì)含量,從而產(chǎn)生對(duì)耐力訓(xùn)練的適應(yīng),包括I型肌纖維比例的增加并提高抗疲勞能力[37,38]。

4.1 PGC-1α與NRF和mtTFA表達(dá)

PGC-1α刺激NRF和mtTFA表達(dá)以激活核編碼和線(xiàn)粒體基因表達(dá)。PGC-1α與PPARγ和NRF-1不結(jié)合時(shí)處于相對(duì)靜止?fàn)顟B(tài),結(jié)合時(shí)會(huì)募集活化蛋白SRC-1和p300的組蛋白乙酰轉(zhuǎn)移酶[39]。經(jīng)ROS誘導(dǎo)的氨基己糖活化途徑,盡可能地減少了PPARγ 與 p300、SRC-1、PGC-1α 三者的聯(lián)系,可有效減少PGC-1α的活化,從而降低NRF誘導(dǎo)的線(xiàn)粒體基因轉(zhuǎn)錄[40]。多數(shù)線(xiàn)粒體最初的生物合成都與PGC-1a和核呼吸因子NRF-1、NRF-2的相互作用有關(guān)。NRF-1和NRF-2結(jié)合的地點(diǎn)位于激活多個(gè)核基因編碼的線(xiàn)粒體蛋白質(zhì)上,這些蛋白質(zhì)包括細(xì)胞色素c、電子運(yùn)輸鏈復(fù)合物的組成部分、線(xiàn)粒體進(jìn)口蛋白質(zhì)、血紅素合成蛋白質(zhì)、線(xiàn)粒體轉(zhuǎn)錄因子A(Tfam)。因此,PGC-1a能有效地雙重調(diào)控線(xiàn)粒體基因組生物合成。目前有關(guān)PGC-1α對(duì)mt-TFA表達(dá)的影響與線(xiàn)粒體生物合成的研究甚少。

4.2 PGC-1a與p38

PGC-1a活性影響最重要的是上游激酶p38絲裂原活化蛋白激酶。p38的磷酸化通過(guò)調(diào)節(jié)蛋白降解上調(diào)PGC-1a的活性[41],PGC-1a可逆的乙?;{(diào)節(jié)p38的活性。由T1(SIRT1)調(diào)節(jié)PGC-1a脫乙酰,可提高PGC-1a協(xié)同轉(zhuǎn)錄糖異生基因的作用,但對(duì)細(xì)胞色素C和β-ATP合酶轉(zhuǎn)錄共活化作用沒(méi)有影響[42]。因此,翻譯后的修飾能改變PGC-1a所涉及的線(xiàn)粒體生物合成相關(guān)基因協(xié)同轉(zhuǎn)錄的能力。身體活動(dòng)方式的改變能調(diào)節(jié)PGC-1a的表達(dá),單一的大強(qiáng)度訓(xùn)練使大鼠、人PGC-1a mRNA和蛋白質(zhì)大量增加[43,44,45],基因表達(dá)的增加在練習(xí)后最初兩小時(shí)最明顯。大鼠有計(jì)劃的長(zhǎng)時(shí)間訓(xùn)練過(guò)程中PGC-1a蛋白逐漸增多[46]。急性運(yùn)動(dòng)后PGC-1a mRNA增加歸因轉(zhuǎn)錄量的增加微乎其微[47],主要是練習(xí)產(chǎn)生的信號(hào)對(duì)PGC-1a表達(dá)起作用。p38是下游Ca2+/CaMK信號(hào)通路,增加胞漿Ca2+導(dǎo)致PGC-1a表達(dá)和肌肉線(xiàn)粒體生物合成加強(qiáng)[48]。有實(shí)驗(yàn)表明p38蛋白激酶磷酸化、PGC-1a的活化能增強(qiáng)結(jié)合和激活轉(zhuǎn)錄因子,同時(shí)調(diào)控PGC-1a的活性和表達(dá)。p38激活轉(zhuǎn)錄因子2(ATF-2),然后結(jié)合位于PGC-1a上的cAMP誘導(dǎo)PGC-1a轉(zhuǎn)錄。研究認(rèn)為[49]:通過(guò)激活 CAMK到 p38通路,Ca2+誘導(dǎo)肌肉PGC-1a增加和線(xiàn)粒體生物合成加強(qiáng),抑制p38將阻止Ca2+誘導(dǎo)線(xiàn)粒體生物合成。研究[50]表明鈣調(diào)蛋白激酶和p38通過(guò)激活cAMP反應(yīng)蛋白因子和ATF-2可提高PGC-1a的活性。這些結(jié)果表明通過(guò)p38激活PGC-1a可調(diào)節(jié)Ca2+及其他轉(zhuǎn)錄因子促進(jìn)線(xiàn)粒體生物合成。

4.3 PGC-1a與 MEF2、p53

PGC-1a有一個(gè)肌細(xì)胞增強(qiáng)因子-2(MEF2)固定的結(jié)合位點(diǎn),MEF2是鈣調(diào)蛋白激酶和p38激活的轉(zhuǎn)錄因子。電刺激大鼠骨骼肌激活PGC-1a啟動(dòng)子,當(dāng)MEF2或cAMP反應(yīng)因子固定結(jié)合位點(diǎn)變化時(shí)就沒(méi)有這種效果[51]。PGC-1a通過(guò)MEF2相互作用激活自身啟動(dòng)因子,其結(jié)果使鈣調(diào)磷酸酶加強(qiáng)。在PGC-1a啟動(dòng)因子中發(fā)現(xiàn)了p53的結(jié)合位點(diǎn)[52],暗示p53可能對(duì)調(diào)節(jié)PGC-1a的穩(wěn)定性起作用。在缺乏p53的動(dòng)物肌肉中發(fā)現(xiàn)PGC-1a含量減少[53]。這些研究指出起協(xié)同作用的MEF2、cAMP反應(yīng)蛋白結(jié)合因子、ATF-2、p53轉(zhuǎn)錄因子可能改變PGC-1a對(duì)大多數(shù)練習(xí)產(chǎn)生信號(hào)反應(yīng)的轉(zhuǎn)錄。

PGC-1a對(duì)線(xiàn)粒體生物合成很重要,但是否需要運(yùn)動(dòng)誘導(dǎo)線(xiàn)粒體生物合成仍不清楚?切除PGC-1a老鼠(PGC-1a–/–)骨骼肌線(xiàn)粒體體積小于野生鼠,且Tfam、細(xì)胞色素C和細(xì)胞色素氧化酶亞基6(COXIV)的表達(dá)隨之減少[54]。PGC-1a –/–需要增加輸出功率滿(mǎn)足慢肌代謝的需要,從而造成能量?jī)?chǔ)備下降。具體的說(shuō),PGC-1a–/–表現(xiàn)出的耐力運(yùn)動(dòng)及抗疲勞能力減弱,無(wú)線(xiàn)粒體的動(dòng)物顯示ADP刺激呼吸能力下降。因此,PGC-1a維持肌肉線(xiàn)粒體含量和功能、耐力運(yùn)動(dòng)起非常重要的作用。但PGC-1a的缺乏不影響耐力訓(xùn)練對(duì)線(xiàn)粒體生物合成的效果,因?yàn)樵跓o(wú)PGC-1a的動(dòng)物中標(biāo)記類(lèi)蛋白質(zhì)隨訓(xùn)練的增多是一樣的明顯。這也暗示在耐力訓(xùn)練中選擇轉(zhuǎn)錄因子可替代動(dòng)物中缺乏的PGC-1a,協(xié)調(diào)運(yùn)動(dòng)引起線(xiàn)粒體含量增加。

5 小結(jié)與展望

運(yùn)動(dòng)誘導(dǎo)線(xiàn)粒體生物合成的相關(guān)調(diào)節(jié)因子較多,它們通過(guò)不同途徑誘導(dǎo)線(xiàn)粒體生物合成,且因子之間信號(hào)通路傳導(dǎo)和相互作用可能是運(yùn)動(dòng)誘導(dǎo)線(xiàn)粒體生物合成的啟動(dòng)因素。線(xiàn)粒體是細(xì)胞能量加工場(chǎng),其能量合成的調(diào)控因子較多,也是各種中間代謝產(chǎn)物的源頭,這些使線(xiàn)粒體生物合成過(guò)程和影響因子變得更加復(fù)雜。運(yùn)動(dòng)對(duì)加速線(xiàn)粒體生物合成速度起重要作用。一系列信號(hào)通路傳導(dǎo)不但可以提高耐力水平,而且對(duì)改善肌肉退行性改變,線(xiàn)粒體功能障礙有重要意義。從而提高肌肉質(zhì)量和工作效率,這將成為運(yùn)動(dòng)醫(yī)學(xué)未來(lái)研究的熱點(diǎn)問(wèn)題。

[1]Hoppeler H,Luthi P,Claassen H,et al.The ultrastructure of the normal human skeletal muscle.A morphometric analysis on untrained men,women and well-trained orienteers[J].Pflugers Arch,1973,344(3):217-232.

[2] Garesse R,Vallejo CG.Animal mitochondrial biogenesis and function:A regulatory cross-talk between two genomes[J].Gene,2001,263(1-2):1-16.

[3]Davies KJ,PackerL,Brooks GA.Biochemical adaptation of mitochondria,muscle,and whole-animal respiration to endurance training[J].Arch Biochem Biophys,1981,209:539-554.

[4] Takahashi M,Hood DA.Chronic stimulation-induced changes in mitochondria and performance in rat skeletal muscle[J].J Appl Physiol,1993,74:934-941.

[5]Ballinger SW,Patterson C,Knight-LozanoCA,et al.Mitochondrial integrity and function in atherogenesis[J].Circulation,2002,106(5):544-549.

[6]Quagliaro L,PiconiL,AssaloniR,et al.Intermittenthigh glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells:the role ofprotein kinase C and NAD(P)Hoxidase activation[J].Diabetes,2003,52(11):2795-804.

[7]Nisoli E,Clementi E,Paolucci C,et al.Mitochondrial biogenesis in mammals:The role of endogenous nitric oxide[J].Science,2003,299:896-899.

[8]Nisoli E,Tonello C,Cardile A,et al.Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS[J].Science,2005,310:314-317.

[9]Carew JS,Nawrocki ST,Xu RH,et al.Increased mitochondrial biogenesis in primary leukemia cells:the role of endogenous nitric oxide and impact on sensitivity to fludarabine[J].Leukemia,2004,18:1934-1940.

[10]劉曉然,丁虎,文立,等.一氧化氮與運(yùn)動(dòng)誘導(dǎo)的線(xiàn)粒體生物合成[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2009,28(3):104-108.

[11]劉曉然,丁虎,孫衛(wèi)東,等.NO-cGMP參與大鼠骨骼肌線(xiàn)粒體生物合成:耐力訓(xùn)練和L-精氨酸補(bǔ)充的作用[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2007,26(6):663-668.

[12]Ojuka EO,Jones TE,Han DH,et al.Intermittent increases in cytosolic Ca2+stimulate mitochondrial biogenesis in muscle cells[J].Am J Physiol,2002,283:1040-1045.

[13]Chin ER,Olson JA,Richardson EN,et al.A calcineurindependent transcriptional pathway controls skeletal muscle fiber type[J].Genes Dev,1998,12:2499-2509.

[14]Garcia-Roves PM,Huss J.Role of calcineurin in exercise-induced mitochondrial biogenesis[J].Am J Physiol,2006,290:1172-1179.

[15]Corcoran EE,Means AR.Defining Ca2+/calmodulindependent protein kinase cascades in transcriptional regulation[J].J Biol Chem,2001,276:2975-2978.

[16]Wu H,Kanatous SB,Thurmond FA.Regulation of mitochondrial biogenesis in skeletal muscle by CaMK[J].Science,2002,296:349-352,349.

[17]Hashimoto T,Hussien R,Oommen S,et al.Lactate sensitive transcription factor network in L6 cells:activation of MCT1 and mitochondrial biogenesis[J].Faseb J,2007,21(10):2602.

[18] Isabella Irrcher,Vladimir Ljubicic,David A.Interactions between ROS and AMP kinase activity in the regulation of PGC-1 transcription in skeletal muscle cells[J].Am J Physiol,2008,210:213-214.

[19] Halliwell B,Gutteridge J.Free radicals in biology and medicine[J].Oxford:Clarendon Press,1989,12:112-114.

[20]Lander HM.An essential role for free radicals and derived species in signal transduction[J].Faseb J,1997,11:118-124.

[21]Lee HC,Yin PH,Lu CY,et al.Increase of mitochondrial and mitochondrial DNA in response to oxidative stress in human cells[J].Biochem J,2000,348(2):425-432.

[22]Lee HC,Yin PH,Chi CW,et al.Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence[J].J Biomed Sci,2002,9(6):517-526.

[23]McArdle A,vander,Meulen,et al.Role of mitochondrial superoxide dismutase in contraction-induced generation of reactive oxygen species in skeletal muscle extracellular space[J].Am J Physiol,2004,286:1152-1158.

[24]Pattwell DM,McArdle.Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells[J].Biol Med,2004,37:1064-1072.

[25]Pesce V,Cormio.Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles[J].Med Sci,2005,60:715-723.

[26] Suliman,HB,Carraway,et al.Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1[J].J Biol Chem,2003,278:41510-41518.

[27]Irrcher I,Ljubicic.Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells[J].Am J Physiol,2009,296:116-123.

[28]Winder WW,Hardie DG.Inactivation of acetyl-CoA carboxylase and activation ofAMP-activated protein kinase in muscle during exercise[J].Am J Physiol,1996,270:299-304.

[29] Irrcher,I,Adhihetty,et al.PPARgamma coactivator-1alpha expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations[J].Am J Physiol,2003,284:1669-1677.

[30]Irrcher,I,Ljubicic,et al.AMPactivated protein kinaseregulated activation of the PGC-1alpha promoter in skeletal muscle cells[J].Plos One,2008,3:3614.

[31]Zong,H,Ren,et al.AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation[J].Sci USA,2002,99:15983-15987.

[32]Ponticos M,Lu QL,Morgan JE,et al.Dual regulation of the AMP-activated protein kinase povides a novel mechanism for the control of creatine kinase in skeletal muscle[J].Embo J,1998,17:1688-1699.

[33]Raynald B,Jian MR,Kevin S,et al.Chonic activation of AMP kinase in NRF-1 activation and mitochondrial biogenesis[J].Am J Physiol Endocrinol Metab,2001,281:1340-1346.

[34]Winder,WW,Holmes,et al.Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle[J].J Appl Physiol,2000,88:2219-2226.

[35]Jorgensen,SB,Wojtaszewski JF,et al.Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J].Faseb J,2005,19:1146-1148.

[36] Lin,J,Handschin,et al.Metabolic control through the PGC-1 family of transcription coactivators[J].Cell Metab,2005,1:361-370.

[37]Calvo,JA,Daniels,et al.Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake[J].2008,4:212-215.

[38]Lin,J,Wu,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J].Nature,2002,418:797-801.

[39]Zou MH,Shi C,Cohen RA.High glucose via peroxynitrite causes tyrosine nitration and inactivation ofprostacyclin synthase that is associated with thromboxane/prostaglandin H2receptor-mediated apoptosis and adhesion molecule expression in cultured human aorticendothelial cells[J].Diabetes,2002,51(1):198-200.

[40]Craven PA,Melhem MF,Phillips SL,et al Overexpression of Cu2+/Zn2+superoxid dismutase protects against early diabetic glomerular injury in transgenic mice[J].Diabetes,2001,50(3):2114-2125.

[41] Akimoto,T,Pohnert,et al.Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway[J].J Biol,2005,280:19587-19593.

[42]Rodgers,JT,Lerin,et al.Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1[J].Nature,2005,434:113-118.

[43]Baar,K,Wende,et al.Adaptations of skeletal muscle to exercise:rapid increase in the transcriptional coactivator PGC-1[J].Faseb J,2002,16:1879-1886.

[44]Norrbom,J,Sundberg,et al.PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle[J].J Appl Physiol,2004,96:189-194.

[45]Pilegaard,H,Saltin,et al.Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle[J].J Physiol,2003,546:851-858.

[46]Taylor,EB,Lamb,et al.Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance:effects of time and intensity[J].Am J Physiol,2005,289:960-968.

[47]Pilegaard,H,Saltin,et al.Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle[J].J Physiol,2003,546:851-858.

[48]David C,Wright,Paige C,et al.Calcium Induces Increases in Peroxisome Proliferator-activated Receptor_Coactivator-1_and Mitochondrial Biogenesis by a Pathway Leading to p38 Mitogen-activated Protein Kinase Activation[J].Jbc,2007,234,432-435.

[49]Handschin,C,Rhee,et al.An autoregulatory loop controls peroxisome proliferatoractivated receptor gamma coactivator 1alpha expression in muscle[J].Sci USA,2003,100:7111-7116.

[50]Akimoto,T,Sorg,et al.Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1alpha promoter activity in skeletal muscles of living mice[J].Cell Physiol,2004,287:790-796.

[51]Irrcher,I,Ljubicic,et al.AMPactivated protein kinaseregulated activation of the PGC-1alpha promoter in skeletal muscle cells[J].Plos One,2008,3:3614.

[52]Saleem,A,Adhihetty,et al.Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle[J].Physiol Genomics,2009,37:58-66.

[53]Leone,TC,Lehman,et al.PGC-1alpha deficiency causes multi-system energy metabolic derangements:muscle dysfunction,abnormal weight control and hepatic steatosis[J].PLoS Biol,2005,3:101.

猜你喜歡
骨骼肌線(xiàn)粒體誘導(dǎo)
特發(fā)性肺纖維化中的線(xiàn)粒體質(zhì)量控制
隧道智能逃生誘導(dǎo)系統(tǒng)
不同誘導(dǎo)系對(duì)不同基因型玉米材料的誘導(dǎo)率評(píng)價(jià)
線(xiàn)粒體自噬在纖維化疾病中作用的研究進(jìn)展
姜黃素抑制骨肉瘤細(xì)胞增殖、遷移和侵襲并誘導(dǎo)凋亡的作用研究
鳶尾素(Irisin):運(yùn)動(dòng)誘導(dǎo)骨骼肌自噬的新靶點(diǎn)
巨噬細(xì)胞在骨骼肌損傷再生中的研究進(jìn)展
線(xiàn)粒體自噬在蛛網(wǎng)膜下腔出血中的研究進(jìn)展
憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
運(yùn)動(dòng)介導(dǎo)AMPK調(diào)控線(xiàn)粒體質(zhì)量控制的機(jī)制研究進(jìn)展
永修县| 西峡县| 通江县| 卓尼县| 得荣县| 洮南市| 嘉义市| 乐清市| 石门县| 涞源县| 平邑县| 惠州市| 西畴县| 民勤县| 铜山县| 乌拉特后旗| 汉源县| 城口县| 遵义市| 天峨县| 婺源县| 伊春市| 乐东| 曲靖市| 奉新县| 二连浩特市| 台中市| 南漳县| 洛扎县| 万年县| 宽城| 茌平县| 错那县| 淮安市| 册亨县| 冀州市| 胶南市| 郸城县| 资溪县| 昌邑市| 图们市|