戚 霽,鄧慧萍,劉 浩
(1.同濟大學(xué) 環(huán)境科學(xué)與工程學(xué)院,上海 200092;2.西安科技大學(xué) 建筑與土木工程學(xué)院,西安 710054)
多環(huán)芳烴類化合物(polycyclic aromatic hydrocarbons,PAHs)是一種典型的持久性有機污染物(persistent organic pollutants,POPs),是煤、石油和煤焦油等在還原氣氛中熱分解和不完全燃燒時的產(chǎn)物,具有致畸、致癌、致突變和難生物降解等特性,國家飲用水衛(wèi)生標準中PAHs的總量上限為0.002 mg/L.芘和熒蒽是典型的PAHs,帶有4個苯環(huán),其分子量較大,沸點較高,不易揮發(fā),水溶性較低,遺傳毒性較高且不易降解[1],傳統(tǒng)水處理工藝無法將其有效去除.
目前去除PAHs的方法主要有生物[2-6]、物理[7-12]和高級氧化[13-23]等方法,但上述方法都存在不同程度的缺點.將O3工藝和活性炭(AC)吸附工藝相結(jié)合,由于AC可快速吸附水中的有機污染物,有利于O3的氧化降解,因此提高了O3的利用率.此外,AC和O3接觸可形成羥基自由基(·OH),由于·OH的氧化還原電位較高,對有機物的氧化選擇性較差,因此其去除PAHs的效果較好.目前研究人員制備了多種負載型催化劑,如Fe2O3-AC,MnO-AC,MnO2-AC,TiO2-AC和Cu-AC等.
本文研發(fā)一種新型負載型催化劑(鈰-活性炭),并對其進行表征.通過將其應(yīng)用于O3氧化工藝中,對比單獨O3,AC+O3,Ce-AC+O3工藝對芘和熒蒽的處理效果,并考察Ce-AC的催化性能.
圖1 靜態(tài)實驗流程Fig.1 Processs chart of static test
采用靜態(tài)實驗法,工藝流程如圖1所示.O3由純氧經(jīng)O3發(fā)生器產(chǎn)生,產(chǎn)量為3 g/h,產(chǎn)生的O3通入4 ℃的去離子水中,尾氣由KI溶液吸收,約20~30 min后形成高質(zhì)量濃度的O3儲備液,對其質(zhì)量濃度進行測試.取出適量的O3儲備液加入反應(yīng)器(容積為1.15 L)中,開始計時,定時取樣,在水樣中加入少量Na2S2O3溶液去除樣品中殘留的O3后,通過0.45 μm濾膜,待測.
利用粉末投加法測定零電荷點pH(pHZPC);采用美國Thermo Fisher公司生產(chǎn)的NitonXL3t600型X射線熒光分析儀分析X射線熒光光譜.
利用高效液相色譜檢測芘和熒蒽的質(zhì)量濃度,用C18反相色譜柱(填料粒徑5 μm,柱長250 mm,柱直徑4.6 mm).芘檢測條件:流量0.8 mL/min,流動相為V(甲醇)∶V(水)=7∶3,柱溫40 ℃,進樣量50 μL,檢測器為熒光檢測器,λex=338 nm,λem=375 nm.熒蒽檢測條件:流量0.8 mL/min,流動相為V(甲醇)∶V(水)=8∶2;柱溫40 ℃;進樣量50 μL,檢測器為熒光檢測器,λex=290 nm,λem=490 nm.
先用去離子水浸泡AC并攪拌3 h,再用100 ℃去離子水反復(fù)沖洗,在100 ℃烘箱中烘干并稱質(zhì)量.重復(fù)上述程序,直至AC的質(zhì)量不變,將其置于玻璃樣品瓶中備用.采用浸漬法制備催化劑:將煤質(zhì)AC浸泡在質(zhì)量分數(shù)為1%的硝酸鈰溶液中,調(diào)節(jié)pH=8±0.5,振蕩24 h,在25 ℃靜置24 h,于100 ℃烘箱中烘干.制得的AC和Ce-AC質(zhì)量分數(shù)的X射線熒光光譜分析(XRF)結(jié)果列于表1.
表1 AC和Ce-AC質(zhì)量分數(shù)的XRF結(jié)果Table 1 Results of XRF analysis of AC and Ce-AC
當芘和熒蒽的初始質(zhì)量濃度均為0.15 mg/L,pH=3,催化劑的投加量為1.5 g/L,O3的初始質(zhì)量濃度為2 mg/L,溫度為 25 ℃時,O3,AC,O3+AC,O3+Ce-AC工藝處理水中芘和熒蒽的效果如圖2所示.
圖2 不同工藝對水中芘(A)和熒蒽(B)的去除效果Fig.2 Decomposition efficiencies of pyrene (A) and fluoranthene (B) in different processes
由圖2可見:芘和熒蒽的降解率隨反應(yīng)時間的增加而增加,芘和熒蒽的降解導(dǎo)致反應(yīng)物質(zhì)量濃度降低,中間產(chǎn)物的質(zhì)量濃度發(fā)生變化,其降解速度逐漸降低;O3+AC和O3+Ce-AC工藝明顯高于O3工藝對芘和熒蒽的去除率:O3工藝對芘和熒蒽的去除率均小于15%,O3+AC和O3+Ce-AC工藝對芘和熒蒽的去除率均大于70%,表明催化劑Ce-AC對O3有較好的催化作用;AC和Ce-AC對芘和熒蒽單純吸附作用的去除率約為50%,這與芘和熒蒽的憎水性有關(guān);Ce-AC略低于AC對有機污染物的吸附,這與負載Ce后比表面積及孔徑的變化有關(guān)[24];在Ce-AC吸附作用較差的情況下,O3+Ce-AC工藝優(yōu)于O3+AC工藝,表明在臭氧催化氧化工藝中,Ce-AC比AC有更好的催化性能.
圖3 不同工藝中叔丁醇對熒蒽去除效果的影響Fig.3 Effect of tertiary butanol on the removal of fluoranthene in different processes
采用叔丁醇作為·OH捕獲劑,考察·OH捕獲劑對實驗的影響,結(jié)果如圖3所示.由圖3可見,加入叔丁醇后,O3+AC工藝對熒蒽的去除率由約70%降低至50%;O3+Ce-AC工藝對熒蒽的去除率由80%降低至50%,表明污染物的去除率受到顯著抑制.
圖4 不同初始質(zhì)量濃度對O3+Ce-AC工藝去除芘(A)和熒蒽(B)的影響Fig.4 Effect of intial concentration on the remomval of pyrene (A) and fluoranthene (B) in the O3+Ce-AC processes
在其他實驗條件不變的條件下,當芘和熒蒽的初始質(zhì)量濃度分別為0.1,0.15,0.2 mg/L時,O3+Ce-AC工藝的處理結(jié)果如圖4所示.由圖4可見,在不同的初始質(zhì)量濃度下,O3+Ce-AC工藝對芘和熒蒽的去除率均大于75%,這是吸附與氧化共同作用的結(jié)果,表明芘和熒蒽在此質(zhì)量濃度范圍內(nèi)的輕微波動對吸附效果影響較小.
在其他實驗條件不變的條件下,考察催化劑投加量對O3+Ce-AC工藝去除芘和熒蒽的影響,結(jié)果如圖5所示.由圖5可見,O3+Ce-AC工藝對芘和熒蒽的去除率隨催化劑投加量的增加而增加.當反應(yīng)時間為12 min,催化劑投量為1.5 g時,對芘和熒蒽的去除率分別約為90%和83%,比O3工藝分別提高了68%和66%.繼續(xù)加入催化劑,O3+Ce-AC工藝對芘和熒蒽的去除率增加較小.因此,催化劑的最佳投加量為1.5 g/L.
圖5 催化劑投加量對O3+Ce-AC工藝去除芘(A)和熒蒽(B)的影響Fig.5 Effect of catalyst loading on the romoval of pyrene (A) and fluoranthene (B) in the O3+Ce-AC processes
圖6 催化劑多次使用對芘去除率的影響Fig.6 Stability experiment of catalyst for the decomposition of pyrene
催化劑多次使用對水中芘去除率的影響如圖6所示.每次使用后的催化劑不變,將反應(yīng)液換為初始質(zhì)量濃度的污染物,連續(xù)使用5次為一個循環(huán).由圖6可見,經(jīng)過5個循環(huán)后(每個循環(huán)催化劑應(yīng)用5次),O3+Ce-AC工藝對芘的去除率約為85%,O3+AC工藝對芘的去除率約為70%.即Ce-AC具有更好的催化穩(wěn)定性.
對O3催化氧化工藝處理后的水樣進行多次檢測,均未檢測出Ce離子,表明AC上負載的金屬Ce較穩(wěn)定.
圖7 O3+Ce-AC工藝中芘和熒蒽單一組分溶液與混合液去除率的對比Fig.7 Degradation of pyrene,fluoranthene and the mixtures of pyrene and fluoranthene in the O3+Ce-AC process
將芘和熒蒽兩種有機物制備成混合溶液并進行O3多相催化氧化研究.實驗條件:ρ(芘)=ρ(熒蒽)=75 μg/L,pH=3,催化劑的投加量為1.5 g/L,ρ(O3)=2 mg/L,反應(yīng)時間為12 min,溫度為25 ℃,實驗結(jié)果如圖7所示.由圖7可見,O3+Ce-AC工藝處理混合后有機物中芘和熒蒽的去除率分別為95.11%和87.06%,分別比單組分條件下提高了4.12%和2.18%.表明O3在多相催化氧化降解多種PAHs過程中,各PAHs間彼此促進,即存在協(xié)同作用.產(chǎn)生協(xié)同作用的原因為有機污染物在降解過程中形成中間產(chǎn)物有利于O3的分解,相當于自由基的引發(fā)劑,其結(jié)果表現(xiàn)為有機物去除率的提高.
此外,當多種PAHs共存時,O3催化氧化工藝對芘的去除率>熒蒽的去除率,與單組分的去除率大小順序一致.可見O3多相催化氧化工藝更易氧化降解芘.
在其他實驗條件不變的條件下,對比O3+Ce-AC工藝在不同pH值下對芘、熒蒽及芘和熒蒽混合有機物的去除率,結(jié)果如圖8所示.由圖8可見:當pH值較低時,去除率隨pH值的升高而增大,這是因為水中OH-離子濃度的增加有利于O3分解產(chǎn)生·OH,即OH-可引發(fā)鏈反應(yīng),從而加速·OH等活性物質(zhì)的生成,提高去除率;當pH值較高時,去除率隨pH值的升高而減小,這是因為隨著OH-離子濃度的增加,使得短時間內(nèi)水中·OH濃度激增,過多的·OH彼此相互淬滅,導(dǎo)致·OH總量降低,從而去除率下降.
在其他實驗條件不變的條件下,對比O3+Ce-AC工藝在不同O3投加量對芘、熒蒽及芘和熒蒽混合有機物的降解率,結(jié)果如圖9所示.由圖9可見:當O3質(zhì)量濃度較低時,去除率隨O3質(zhì)量濃度的升高而增大,這是因為水中O3質(zhì)量濃度增加,使得在單位時間形成的·OH增多,從而去除率增加;當O3質(zhì)量濃度較高時,去除率隨O3質(zhì)量濃度的升高而減小,這是因為O3質(zhì)量濃度過大使得短時間內(nèi)水中·OH濃度激增,過多的自由基彼此相互淬滅,導(dǎo)致·OH總量降低,從而去除率下降.
圖8 O3+Ce-AC工藝中pH值對芘和熒蒽去除率的影響Fig.8 Effect of pH on the removal of pyrene and fluoranthene in the O3+Ce-AC process
圖9 O3+Ce-AC工藝中ρ(O3)對芘和熒蒽去除率的影響Fig.9 Effect of ρ(O3) on removal of pyrene,fluoranthene in the O3+Ce-AC process
在其他實驗條件不變的條件下,對比O3+Ce-AC工藝催化氧化對自來水和去離子水配置的溶液中芘、熒蒽及芘和熒蒽混合有機物的去除率,結(jié)果如圖10所示.由圖10可見,芘和熒蒽在自來水中比去離子水中的去除率均略有提高.與去離子水相比,自來水中各種無機離子、有機物和腐殖酸的濃度較大,有利于催化O3分解產(chǎn)生自由基.表明水中存在的微量無機物和有機物可促進O3催化氧化工藝.
采用發(fā)光細菌對水樣進行毒理學(xué)研究[25-26],結(jié)果如圖11所示.
圖10 水質(zhì)本體條件對O3+Ce-AC工藝中芘和熒蒽去除率的影響Fig.10 Effect of water background on the removal of pyrene and fluoranthene in the O3+Ce-AC process
圖11 芘和熒蒽的毒理學(xué)變化Fig.11 Comparison of combined toxictity changes of pyrene and fluoranthene
由圖11可見,反應(yīng)前芘和熒蒽對發(fā)光細菌的抑制為80%,毒性均較大;隨著反應(yīng)時間的增加,水樣對發(fā)光細菌的抑制作用減弱,即在O3多相催化氧化工藝降解芘和熒蒽過程中,水樣對生物的毒性不斷變小,表明芘和熒蒽降解產(chǎn)物的毒性減小了.
1) 本文選用浸漬法,以活性炭為載體,制備了新型負載型Ce-AC催化劑.催化劑參與的O3多相催化氧化工藝對芘和熒蒽均具有較好的去除效果,其去除率比O3、活性炭以及活性炭和O3組合催化氧化工藝分別提高了50%,30%和10%,實驗條件最優(yōu)為ρ(污染物)=0.15 mg/L,催化劑投量為1.5 g/L.
2) 通過對毒理學(xué)測試可知,芘比熒蒽的毒性大,在O3+Ce-AC工藝去除芘和熒蒽過程中,水樣的毒性逐漸降低.Ce-AC多次循環(huán)使用不影響催化效果,未析出金屬Ce,表明該工藝處理芘和熒蒽安全可靠,可應(yīng)用于飲用水的處理.
3) 過量投加叔丁醇降低了O3+Ce-AC工藝對熒蒽的去除率,表明Ce-AC有助于O3分解產(chǎn)生·OH等自由基.
4) 隨著pH值和O3質(zhì)量濃度的增加,污染物的去除率先升高后降低.當pH值和O3質(zhì)量濃度升高時,·OH的濃度升高,促進反應(yīng)進行;·OH的濃度過高會相互淬滅,使得其濃度降低,導(dǎo)致污染物去除率降低.
[1] Hughes J B,Beckles D M,Chandra S D,et al.Utilization of Bioremediation Processes for the Treatment of PAH-Contaminated Sediments [J].Journal of Industrial Microbiology &Biotechnology,1997,18(2/3):152-160.
[2] Amir S,Hafidi M,Merlina G,et al.Fate of Polycyclic Aromatic Hydrocarbons during Composting of Lagooning Sewage Sludge [J].Chemosphere,2005,58(4):449-458.
[3] CAI Quan-ying,MO Ce-hui,WU Qi-tang,et al.Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs)-Contaminated Sewage Sludge by Different Composting Processes [J].Journal of Hazardous Materials,2007,142(1/2):535-542.
[4] Antizar-Ladislao B,Beck A J,Spanova K,et al.The Influence of Different Temperature Programmes on the Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) in a Coal-Tar Contaminated Soil by in-Vessel Composting [J].Journal of Hazardous Materials,2007,144(1/2):340-347.
[5] Antizar-Ladislao B,Lopez-Real J,Beck A J.Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in an Aged Coal Tar Contaminated Soil under in-Vessel Composting Conditions [J].Environmental Pollution,2006,141(3):459-468.
[6] Oleszczuk P.Changes of Polycyclic Aromatic Hydrocarbons during Composting of Sewage Sludges with Chosen Physico-Chemical Properties and PAHs Content [J].Chemosphere,2007,67(3):582-591.
[7] GONG Zong-qiang,Alef K,Wilke B M,et al.Dissolution and Removal of PAHs from a Contaminated Soil Using Sunflower Oil [J].Chemosphere,2005,58(3):291-298.
[8] GONG Zong-qiang,Alef K,Wilke B M,et al.Activated Carbon Adsorption of PAHs from Vegetable Oil Used in Soil Remediation [J].Journal of Hazardous Materials,2007,143(1/2):372-378.
[9] Ania C O,Cabal B,Pevidac C,et al.Removal of Naphthalene from Aqueous Solution on Chemically Modified Activated Carbons [J].Water Research,2007,41(2):333-340.
[10] Karapanagioti H K.Removal of Phenanthrene from Saltwater Solutions Using Activated Carbon [C]//9th International Conference on Environmental Science and Technology.Amsterdam:Elsevier,2005:274-280.
[11] Zeledón-Toruo Z C,Lao-Luque C,Heras F X,de Las,et al.Removal of PAHs from Water Using an Immature Coal (Leonardite) [J].Chemosphere,2007,67(3):505-512.
[12] GAO Yan-zheng,XIONG Wei,LING Wan-ting,et al.Sorption of Phenanthrene by Soils Contaminated with Heavy Metals [J].Chemosphere,2006,65(8):1355-1361.
[13] ZENG Yu,Hong P K A,Wavrek D A.Chemical-Biological Treatment of Pyrene [J].Water Research,2000,34(4):1157-1172.
[14] Choi Y I,Hong A.Ozonation of Polycyclic Aromatic Hydrocarbon in Hexane and Water:Identification of Intermediates and Pathway [J].Korean Journal of Chemical Engineering,2007,24(6):1003-1008.
[15] Sun P,Weavers L K.Sonolytic Reactions of Phenanthrene in Organic Extraction Solutions [J].Chemosphere,2006,65(11):2268-2274.
[16] Chiu C Y,Chen Y H,Huang Y H.Removal of Naphthalene in Brij 30-Containing Solution by Ozonation Using Rotating Packed Bed [J].Journal of Hazardous Materials,2007,147(3):732-737.
[17] Shemer H,Linden K G.Photolysis,Oxidation and Subsequent Toxicity of a Mixture of Polycyclic Aromatic Hydrocarbons in Natural Waters [J].Journal of Photochemistry and Photobiology A:Chemistry,2007,187(2/3):186-195.
[18] Shemer H,Linden K G.Aqueous Photodegradation and Toxicity of the Polycyclic Aromatic Hydrocarbons Fluorene,Dibenzofuran,and Dibenzothiophene [J].Water Research,2007,41(4):853-861.
[19] García-Martínez M J,Riva I,de,Canoira L,et al.Photodegradation of Polycyclic Aromatic Hydrocarbons in Fossil Fuels Catalysed by Supported TiO2[J].Applied Catalysis B:Environmental,2006,67(3/4):279-289.
[20] Gimeno O,Rivas F J,Beltrn F J,et al.Photocatalysis of Fluorene Adsorbed onto TiO2[J].Chemosphere,2007,69(4):595-604.
[21] Jonsson S,Persson Y,Frankki S,et al.Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Soils by Fenton’s Reagent:A Multivariate Evaluation of the Importance of Soil Characteristics and PAH Properties [J].Journal of Hazardous Materials,2007,149(1):86-96.
[22] Flotron V,Delteil C,Padellec Y,et al.Removal of Sorbed Polycyclic Aromatic Hydrocarbons from Soil,Sludge and Sediment Samples Using the Fenton’s Reagent Process [J].Chemosphere,2005,59(10):1427-1437.
[23] Lundstedt S,Persson Y,Oberg L.Transformation of PAHs during Ethanol-Fenton Treatment of an Aged Gasworks’ Soil [J].Chemosphere,2006,65(8):1288-1294.
[24] Chang C F,Chang C Y,Chen K H,et al.Adsorption of Naphthalene on Zeolite from Aqueous Solution [J].Journal of Colloid and Interface Science,2004,277(1):29-34.
[25] Antunes S C,Figueiredo D R,de,Marques S M,et al.Evaluation of Water Column and Sediment Toxicity from an Abandoned Uranium Mine Using a Battery of Bioassays [J].Science of the Total Environment,2007,374(2/3):252-259.
[26] Lahr J,Maas-Diepeveen J L,Stuijfzand S C,et al.Responses in Sediment Bioassays Used in the Netherlands:Can Observed Toxicity Be Explained by Routinely Monitored Priority Pollutants [J].Water Research,2003,37(8):1691-1710.