郝慧娥,高玉斌
(中北大學(xué)數(shù)學(xué)系,山西 太原 030051)
近年來(lái),基于非記憶通訊系統(tǒng)中信息傳遞的研究,M.Akelbek、柳伯濂等引入了scrambling指數(shù)及其廣義scrambling指數(shù).在文獻(xiàn)[1][2]中作者給出scrambling指數(shù)和廣義scrambling指數(shù)的定義,文獻(xiàn)[3]中,作者刻劃了具有最大scrambling指數(shù)的本原有向圖,文獻(xiàn)[4]中,Hwa Kyung K im和Sung Gi P ark引入本原有向圖的廣義competition指數(shù)的定義,文獻(xiàn)[4-8]得到了一些本原有向圖的廣義competition指數(shù),并進(jìn)行了極圖刻畫(huà).本文將研究?jī)深恘階本原有向圖的廣義competition指數(shù).文章中所涉及到的符號(hào)表示的含義詳見(jiàn)文獻(xiàn)[4][7][8].
定義1 設(shè)D是n階本原有向圖.如果存在正整數(shù)k,對(duì)D中任意頂點(diǎn)vi和vj,總存在w∈V(D),這里w可能與vi,vj有關(guān),使得從vi和vj到w都有k長(zhǎng)途徑,滿足這樣條件的最小正整數(shù)k稱為n階本原有向圖D的scrambling指數(shù),記作k(D).
定義2 設(shè)D為n階本原有向圖,1≤m≤n,對(duì)于任意的頂點(diǎn)u,v∈V(D),存在正整數(shù)m,在D中總能找到m個(gè)點(diǎn),使得u,v到這m個(gè)點(diǎn)都存在k長(zhǎng)途徑,上述k的最小值稱為D的m-competiiton指數(shù),記作km(D).m-competiiton.指數(shù)也稱為廣義competition指數(shù).
定義3 設(shè)D是本原有向圖,v∈V(D),則RDt(v)表示有向圖D中頂點(diǎn)v經(jīng)過(guò)t長(zhǎng)途徑所能到達(dá)的頂點(diǎn)的集合,其中t為非負(fù)整數(shù).
定理 1 設(shè) D1為 n(≥3)階本原有向圖,其頂點(diǎn)集 V(D1)={v1,v2,…,vn-1,vn},邊集 E(D1)={(vi,vi+1)|i=1,2,…,n - 1}∪{(vn-1,v1),(vn-1,v2),(vn,v2)},則本原有向圖 D1的廣義 competition 指數(shù) km
證明:設(shè) C 是 n-2長(zhǎng)圈,x,y∈V(D1).由 D1的本原性可得是本原的,V)=V(D1),E()={(vi,vi-1)|i=2,…,n}∪{(vi,vi)|i=2,3,…,n -1}∪{(v1,vn-1),(v2,vn)}
Case 1 n+m 是偶數(shù).
由本原有向圖 D1可得V(C),使得(x,vi),(y,vj)∈E(D1).在本原有向圖中都是環(huán)點(diǎn),從經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)的個(gè)數(shù)最少為同理.若從v,v至少有一個(gè)點(diǎn)經(jīng)過(guò)ij長(zhǎng)途徑所能到達(dá)的點(diǎn)中包含v1,不妨設(shè)vi,則,故反之,則故從 vi,vj經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)最小為m.因此,從而另一方面,對(duì)于長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)小于m ,所以
Case 2 n+m是奇數(shù).(1≤m≤n-1)
同理本原有向圖 D1中∈V(C),使得都是環(huán)點(diǎn),從vi經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)的個(gè)數(shù)最少為同理.除環(huán)點(diǎn)外有且僅有兩個(gè)n-1圈,故從經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)最小為m.因此
定理得證.
定理 2 設(shè) D2為 n(≥3)階本原有向圖,其頂點(diǎn)集,則本原有向圖 D2的廣義 competition 指數(shù)
證明:設(shè) C1是 n-3長(zhǎng)圈,C2是 n-2長(zhǎng)圈.x,y∈V(D2).
Case 1 n+m是偶數(shù).
由本原有向圖 D2可得∈V(C1),使得(x,vi),(y,vj)∈E(D2).:
vi, vj都是環(huán)點(diǎn),從 vi經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)的個(gè)數(shù)最少為同理,故從 v,v經(jīng)過(guò)ij長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)最小為m.因此,km(:vi,vj)≤,
從而km(D2:x,y)≤1+()(n-3)
另一方面,對(duì)于 v1,v[]∈V(),v1經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)集 {vn,vn-2,vn-3,…,},經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)集 {,…,vn,v2,vn-1,v1,vn,vn-2,vn-3,…,},從經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)小于m,所以k(D:v,v)> ()(n-3).m2ij
Case 2 n+m是奇數(shù).
vi,vj都是環(huán)點(diǎn),從 vi經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的點(diǎn)的個(gè)數(shù)最少為同理包含一個(gè)n-3長(zhǎng)圈,故從 vi,vj經(jīng)過(guò)長(zhǎng)途徑所能到達(dá)的公共點(diǎn)的個(gè)數(shù)最小為 m.因此,km(:vi,vj)≤,從而k(D:x,y)≤1+()(n-2)m2
[1] Mahmud Akelbek,Steve Kirkland .Coefficients of ergodicity and the scrambling index[J].Linear Algebra and its Applications,2009,430:1111 -1130.
[2] Yufei Huang,Bolian Liu.Generalized scrambling indices of a primitive digraph[J].Linear Algebra and its Applications,2010,433:1798-1808.
[3] Mahmud Akelbek,Steve Kirkland .Primitive digraphs with the largest scrambling index[J].Linear Algebra and its Applications,2009,430:1109 -1110.
[4] Hwa Kyung Kim.Generalized competition index of a primitive digraph[J].Linear Algebra and its Applications,2010,433:72 -79.
[5] Hwa Kyung Kim,Sung Gi Park.A bound of generalized competition index of a primitive digraph[J].Linear Algebra and its Applications,2012,436:86 -98.
[6] Min Soo Sim,Hwa Kyung Kim.On generalized competition index of a primitive tournament[J].Discrete Mathematics,2011,311:2657-2662.
[7] Hwa Kyung Kim.A bound on the generalized competition index of a primitive matrix using Boolean rank[J].Linear Algebra and its Applications,2011,435:2166 -2174.
[8] Hwa Kyung Kim,Sang Hoon Lee.Generalized competition indices of symmetric primitive digraphs[J].Discrete Applied Mathematics,2010,160:1583 -1590.