任京力, 王雁梅, 宋國(guó)華, 康紅鈺, 孫明振
(漯河醫(yī)學(xué)高等??茖W(xué)校醫(yī)學(xué)生物工程重點(diǎn)實(shí)驗(yàn)室,河南漯河462000)
血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)在病理狀態(tài)如炎癥、損傷以及血流動(dòng)力學(xué)改變時(shí)會(huì)發(fā)生表型轉(zhuǎn)化,即由正常的收縮型轉(zhuǎn)化為合成型,是臨床上多種心血管疾病如高血壓、動(dòng)脈粥樣硬化、冠脈成形術(shù)后再狹窄、動(dòng)脈瘤等發(fā)生的病理生理學(xué)基礎(chǔ)。鈣信號(hào)在VSMCs表型轉(zhuǎn)化中起著重要作用。Wamhoff等[1]首先報(bào)道在大鼠主動(dòng)脈平滑肌細(xì)胞上去極化引起的鈣內(nèi)流首先激活RhoA GTP結(jié)合蛋白(RhoA GTP-binding protein,RhoA),繼而激活Rho相關(guān)卷曲螺旋形成蛋白激酶(Rho-associated coiled-coil forming protein kinase,ROCK),磷酸化其下游的LIM(3種同源異型結(jié)構(gòu)域蛋白Lin-11、Isl-1和Mec-3)激酶(LIM kinase,LIMK)和絲切蛋白2(cofilin-2),使纖維絲狀肌動(dòng)蛋白(F-actin)降解減少,并可以引起胞漿中的血清反應(yīng)因子(serum response factor,SRF)轉(zhuǎn)移至胞核內(nèi),調(diào)控VSMCs分化標(biāo)志物如平滑肌α-肌動(dòng)蛋白(smooth muscle α-actin,α-SMA)、鈣結(jié)合蛋白(calponin)等的表達(dá),對(duì)維持VSMCs的分化狀態(tài)非常重要;并且提出了“興奮-轉(zhuǎn)錄偶聯(lián)”的概念。小鼠門靜脈的VSMCs沿血管長(zhǎng)軸縱向排列,與動(dòng)脈VSMCs的環(huán)狀排列顯著不同。去極化刺激對(duì)平滑肌細(xì)胞分化的調(diào)控是否相同尚不完全清楚。肌細(xì)胞增強(qiáng)因子2(myocyte enhancer factor 2,MEF2)屬于轉(zhuǎn)錄調(diào)節(jié)因子MADS-Box家族,包括MEF2A、MEF2B、MEF2C和 MEF2D這4種亞型,在骨骼肌和心肌的發(fā)育、分化過程中起重要作用[2-3],但對(duì)VSMCs的分化調(diào)控尚無確切機(jī)制。為此,本研究擬原代培養(yǎng)小鼠門靜脈VSMCs,觀察去極化刺激對(duì)其分化的調(diào)節(jié),探討MEF2在其中的作用機(jī)制,以期為血管表型轉(zhuǎn)換的防治提供新思路。
SPF級(jí)昆明小鼠,25~30 g,雌雄不拘,購于河南省動(dòng)物實(shí)驗(yàn)中心。電壓依賴性鈣通道特異性阻斷劑維拉帕米(verapamil,Ver)、ROCK特異性抑制劑Y-27632、anti-calponin 抗體 、anti-α-SMA 抗體、Cy2/Cy5-conjugated anti-mouse secondary antibody等購于Sigma;total/phospho-ERK1/2、total/phospho-cofilin-2、total/phospho-LIMK等購于Cell Signaling;GAPDH和anti-Rho(clone 55)單克隆抗體購于Millipore;總RNA提取試劑盒、SM22α、MEF2A及MEF2B的引物購于Qiagen;MEF2C、MEF2D、GAPDH和心肌素(mycardin)引物購于北京三博遠(yuǎn)志生物技術(shù)公司;膠原酶 II購于Invitrogen。
2.1 門靜脈血管平滑肌細(xì)胞的原代培養(yǎng) 按本室建立的方法并參考相關(guān)文獻(xiàn)[4]:在體式顯微鏡下,仔細(xì)去除血管外膜和內(nèi)皮層,用眼科剪將門靜脈條剪成約2 mm×2 mm的碎片,置于含1 mL DEME培養(yǎng)液的 Eppendorf管中(含 1.4 g/L 膠原酶 II、1×105U/L青霉素和100 mg/L鏈霉素)于細(xì)胞培養(yǎng)箱中孵育3 h,1 000 r/min離心3 min,去掉上清液,加入1 mL新鮮DMEM(含10%胎牛血清)并輕微振蕩成懸液。然后將懸液轉(zhuǎn)移入新的35 mm培養(yǎng)皿或6孔板中,補(bǔ)充培養(yǎng)基至2 mL,重新置于細(xì)胞培養(yǎng)箱中孵育4~5 d,即見VSMCs從細(xì)胞碎片爬出,見圖1A。通過免疫組化(見方法2.2)及激光共聚焦顯微鏡掃描,可見VSMCs內(nèi)呈現(xiàn)典型的肌絲樣結(jié)構(gòu),見圖1B、C,說明細(xì)胞處于分化狀態(tài)。將圖1A中的細(xì)胞常規(guī)胰酶消化、傳代、培養(yǎng)即為第2代的血管平滑肌細(xì)胞。本文中所有實(shí)驗(yàn)均在第2代細(xì)胞上進(jìn)行。
Figure 1.Identification of primarily cultured mouse portal vein VSMCs.A:primarily cultured VSMCs growing from the portal vein patch(× 100);B:smooth muscle αactin immunofluorescence assay(in red);C:calponin immunofluorescence assay(in red).SYTOX Green was used to stain nucleus(in green).Bar=20 μm in B and C.圖1 小鼠門靜脈血管平滑肌細(xì)胞的原代培養(yǎng)及鑒定
2.2 免疫組化 平滑肌細(xì)胞在適當(dāng)?shù)拇碳ず?,?%多聚甲醛固定15 min后,與0.2%Triton X-100孵育10 min。然后與相應(yīng)的Ⅰ抗在暗室中孵育2 h[anti-calponin(1∶10 000)、anti-α-SMA(1∶10 000)和anti-RhoA(1∶5]單克隆抗體)后,PBS洗滌3次,繼續(xù)與Ⅱ抗孵育(Cy2/Cy5-conjugated anti-mouse secondary antibody,1∶2 000)1 h,PBS 洗滌 3 次,以SYTOX Green進(jìn)行核染色。所用樣本通過激光共聚焦顯微鏡掃描成像。
2.3 Western blotting檢測(cè)蛋白質(zhì)表達(dá) 原代培養(yǎng)的小鼠門靜脈VSMCs約90%融合時(shí),加入0.2 mL/well蛋白裂解液(含1%PMSF、抑肽酶和亮肽素)裂解細(xì)胞。小心收集后超聲粉碎、離心,取上清液,考馬斯亮藍(lán)法蛋白定量。進(jìn)行聚丙烯酰胺凝膠電泳,轉(zhuǎn)膜,5%脫脂奶粉室溫封閉2 h,加適當(dāng)?shù)蘑窨梗?℃過夜,PBST洗滌3次,再加入相對(duì)應(yīng)的Ⅱ抗,室溫孵育1 h,PBST洗滌 3次,用 ECL Advanced Western Blotting Detection Kit(Bio-Rad)顯色3~5 min后,Bio-Rad圖像分析系統(tǒng)掃描,Quantity One軟件分析處理。
2.4 siRNA轉(zhuǎn)染及實(shí)時(shí)熒光定量RT-PCR檢測(cè)mRNA表達(dá) 細(xì)胞的轉(zhuǎn)染按試劑供應(yīng)商的說明書進(jìn)行。為優(yōu)化轉(zhuǎn)染效果,設(shè)計(jì)了一系列的siRNA濃度(2~20 nmol/L),同時(shí)設(shè)立對(duì)照RNA組。所用siRNA序列如下:MEF2A 5'-CAC ATT CTG CTG AAT TAT TTA-3';MEF2D 5'-CCG CCA GGT GAC CTT CAC CAA-3'。對(duì)照組siRNA序列為制造商專利。細(xì)胞總RNA提取按照供應(yīng)商試劑盒的說明進(jìn)行。實(shí)時(shí)熒光定量RT-PCR按照供應(yīng)商試劑盒的說明在實(shí)時(shí)熒光定量PCR儀上進(jìn)行。反應(yīng)條件如下:50℃ 10 min,95℃ 5 min,37個(gè)循環(huán),95℃ 10 s,60℃的退火和擴(kuò)展。GAPDH為內(nèi)參照,上游引物 5'-CCTGCCAAGTATGATGAC-3',下游引物 5'-GGAGTTGCTGTT-GAAGTC-3';MEF2C上游引物5'-CCCAATCTTCTGCCACTG-3',下游引物5'-GGTTGCCGTATCCATTCC-3';MEF2D上游引物5'-GCTATGGGTCATCTGTTC-3',下游引物5'-ACTTGGATTGCTG AACTG-3';心肌素上游引物 5'-GCCACTGTGCGTCCTCCTACC-3',下游引物5'-TCGGAACTTCCTTCTAATCAGCAAAGAG-3'。SM22α、calponin-1、calponin-2、MEF2A 及 MEF2B的引物序列為Qiagen合成。
采用SPSS 16.0統(tǒng)計(jì)軟件處理。數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。兩組數(shù)據(jù)之間比較用Student's t檢驗(yàn)。組間比較用單因素方差分析和Bonferroni post tests。以 P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
用60 mmol/L KCl分別刺激 VSMCs 30 s、1 min和4 min后通過免疫組化觀察RhoA蛋白變化,同時(shí)設(shè)立空白對(duì)照組和維拉帕米組。結(jié)果顯示RhoA蛋白在高鉀去極化刺激后30 s即發(fā)生了明顯的胞膜移位,見圖 2B、C、D(箭頭所示),5 μmol/L 維拉帕米則抑制了RhoA的胞膜移位,見圖2E。
Figure 2.Membrane translocation of RhoA upon 60 mmol/L KCl-induced depolarization.VSMCs were fixed after exposure to 60 mmol/L KCl for the indicated time and immunostained for RhoA using a Cy2-conjugated secondary antibody(green).Translocation of RhoA is shown by arrows.Verapamil inhibited membrane translocation of RhoA.A:control;B:cells treated with 60 mmol/L KCl for 30 s;C:cells treated with 60 mmol/L KCl for 1 min;D:cells treated with 60 mmol/L KCl for 4 min;E:cells treated with 60 mmol/L KCl for 4 min in the presence of 5 μmol/L verapamil.Bar=20 μm.圖2 RhoA蛋白在高鉀去極化刺激時(shí)發(fā)生胞膜移位
60 mmol/L KCl分別刺激 VSMCs 10 min、30 min和60 min后,提取總蛋白,通過Western blotting檢測(cè)RhoA信號(hào)轉(zhuǎn)導(dǎo)通路中下游蛋白LIMK和cofilin-2的磷酸化表達(dá)變化。結(jié)果顯示LIMK的磷酸化在高鉀去極化刺激10 min后達(dá)到峰值,蛋白表達(dá)量增加了42.2%(P<0.01),見圖3A;其底物cofilin-2的磷酸化則在高鉀刺激30 min達(dá)到峰值,蛋白表達(dá)量增加了32.75%(P <0.01),見圖 3B。5 μmol/L 維拉帕米能顯著抑制 LIMK(P<0.01)和 cofilin-2(P<0.05)對(duì)高鉀刺激的敏感性。這說明RhoA/ROCK/LIMK/cofilin-2信號(hào)途徑被高鉀引起的去極化激活。
Figure 3.Effects of 60 mmol/L KCl stimulus on the phosphorylation of LIMK(A)and cofilin-2(B).1:control;2:cells treated with 60 mmol/L KCl for 10 min;3:cells treated with 60 mmol/L KCl for 30 min;4:cells treated with 60 mmol/L KCl for 30 min in the presence of 5 μmol/L verapamil;5:cells treated with 60 mmol/L KCl for 60 min.Mean±SD.n=4 ~5.*P <0.05,**P <0.01 vs group 1;#P <0.05,##P <0.01 vs group 3.圖3 高鉀去極化刺激對(duì)LIM激酶和絲切蛋白2磷酸化的影響
60 mmol/L KCl刺激 VSMCs 24 h后,提取總RNA后,通過real-time RT-PCR檢測(cè)轉(zhuǎn)錄因子心肌素及平滑肌標(biāo)志物SM22α、calponin-1和calponin-2 mRNA的表達(dá)。結(jié)果顯示:高鉀刺激顯著增加心肌素(P <0.01)、SM22α(P <0.01)、calponin-1(P <0.01)及calponin-2(P<0.01)mRNA的表達(dá)水平,見圖 4。5 μmol/L 維拉帕米 及 10 μmol/L Y27632(ROCK特異性抑制劑)均能完全抑制高鉀去極化刺激引起心肌素mRNA表達(dá)增加,見圖4A;5 μmol/L維拉帕米可完全抑制高鉀去極化引起的SM22α、calponin-1和calponin-2 mRNA表達(dá)增加(均P<0.01),見圖4B~D。這說明高鉀去極化通過激活 Rho/ROCK信號(hào)通路誘導(dǎo)心肌素表達(dá)的增加,進(jìn)而調(diào)控平滑肌標(biāo)志物的表達(dá)。
Figure 4.Effects of 60 mmol/L KCl stimulus on the mRNA expression of myocardin(A)and smooth muscle markers(B,C and D).1:control;2:cells treated with 60 mmol/L KCl for 24 h;3:cells treated with 60 mmol/L KCl for 24 h in the presence of 5 μmol/L verapamil;4:cells treated with 60 mmol/L KCl for 24 h in the presence of 10 μmol/L Y27632.Mean ± SD.n=6.**P <0.01 vs group 1;##P <0.01 vs group 2.圖4 高鉀去極化刺激對(duì)血管平滑肌細(xì)胞心肌素及平滑肌標(biāo)志物mRNA表達(dá)的影響
60 mmol/L KCl刺激 VSMCs 24 h后,提取總RNA后,通過real-time RT-PCR檢測(cè)MEF2四種亞型mRNA的表達(dá)。結(jié)果顯示:MEF2A和MEF 2D mRNA表達(dá)顯著增加,分別增加 47.63%(P<0.05)和48.15%(P<0.01),維拉帕米和ROCK的特異性抑制劑Y27632能顯著抑制MEF2A和MEF2D mRNA的表達(dá)(均P<0.01)對(duì)高鉀刺激的敏感性,見圖5A、D。這說明高鉀去極化刺激 VSMCs引起的MEF2A和MEF2D表達(dá)增加受到Rho/ROCK信號(hào)通路的調(diào)控。而MEF2B和EEF2C mRNA表達(dá)對(duì)高鉀刺激不敏感,見圖5B、C。
Figure 5.Effects of high KCl-induced depolarization on the mRNA expression of MEF2 isoforms.1:control;2:cells treated with 60 mmol/L KCl for 24 h;3:cells treated with 60 mmol/L KCl for 24 h in the presence of 5 μmol/L verapamil;4:cells treated with 60 mmol/L KCl for 24 h in the presence of 10 μmol/L Y27632.Mean ±SD.n=6.*P <0.05,**P <0.01 vs group 1;##P <0.01 vs group 2.圖5 高鉀去極化對(duì)MEF2四種亞型mRNA表達(dá)的影響
分別設(shè)置空白對(duì)照組、無關(guān)對(duì)照組、假轉(zhuǎn)染組、陰性對(duì)照組和實(shí)驗(yàn)組,用2~20 nmol/L siRNA分別轉(zhuǎn)染VSMCs 48 h后,提取細(xì)胞總RNA,通過real-time RT-PCR檢測(cè)沉默效果,發(fā)現(xiàn)10 nmol/L siRNA即能顯著抑制 MEF2A和 MEF2D mRNA的表達(dá),見圖6A。在沉默MEF2A和MEF2D的VSMCs中,心肌蛋白mRNA的表達(dá)對(duì)高鉀去極化刺激不再敏感,見圖6B;但是SM22α的表達(dá)在高鉀去極化刺激后仍然顯著增加(P<0.05),見圖6C。這說明心肌素 mRNA的表達(dá)受控于MEF2A和MEF2D。SM22α的表達(dá)并沒有受到沉默MEF2A和MEF2D的影響,提示平滑肌標(biāo)志物的表達(dá)除了受心肌素調(diào)控外,可能還存在另外的調(diào)控通路。
Figure 6.Effects of MEF2A/2D knockdown on the sensitivity of myocardin and SM22α mRNA expression to high KCl-induced depolarization.A:MEF2A and MEF2D mRNA expression.1:empty control;2:scrambled siRNA control;3:vehicle control;4:negative control;5:cells transfected with 2 nmol/L siRNA;6:cells transfected with 10 nmol/L siRNA;7:cells transfected with 20 nmol/L siRNA.Mean±SD.n=3.B and C:myocardin and SM22α mRNA expression,respectively.1:wild type control;2:wild type control cells treated with 60 mmol/L KCl for 24 h;3:MEF2A knockdown;4:MEF2A knockdown cells treated with 60 mmol/L KCl for 24 h;5:MEF2D knockdown group;6:MEF2D knockdown cells treated with 60 mmol/L KCl for 24 h.Mean ±SD.n=6.*P <0.05;**P <0.01 vs group 1;#P <0.05 vs group 3;△P <0.05 vs group 5.圖6 沉默MEF2A/2D對(duì)高鉀去極化引起的心肌素和SM22α mRNA表達(dá)的影響
VSMCs具有收縮表型和合成表型。收縮表型VSMCs胞漿內(nèi)主要是收縮纖維、游離核糖體及高爾基體,內(nèi)質(zhì)網(wǎng)很少,分布于核周區(qū)域,主要對(duì)機(jī)械刺激和化學(xué)物質(zhì)起收縮反應(yīng)并維持血管壁的張力;合成表型VSMCs有少量肌纖維,大量的高爾基體、游離核糖體和粗面內(nèi)質(zhì)網(wǎng),具有合成功能,主要參與細(xì)胞外基質(zhì)的形成和合成血管活性物質(zhì),合成表型的VSMCs見于生長(zhǎng)和修復(fù)過程,而VSMCs在血管損傷因素刺激下發(fā)生的表型轉(zhuǎn)換是其獲得增殖能力的決定因素[5-6]。因此,闡明VSMCs增殖的發(fā)生機(jī)制,對(duì)防治血管重塑和逆轉(zhuǎn)增殖性血管病變具有重要的意義。MEF2是MADS(酵母MCMI基因、擬南芥AGAMOUS基因、金魚草DEFTCI基因及人類SRF基因的英文首字母)家族成員之一,在動(dòng)物發(fā)育過程中起到重要的調(diào)節(jié)作用。在脊椎動(dòng)物中,MEF2基因是由4個(gè)基因(MEF2A、MEF2B、MEF2C 和 MEF2D)組成的多基因家族。MEF2廣泛存在于肌肉組織、心肌組織和神經(jīng)組織。MEF2蛋白的N末端序列保守,包含MADS結(jié)構(gòu)域和MEF2結(jié)構(gòu)域,能夠與其它因子形成二聚體并具有DNA結(jié)合活性;C末端含有磷酸化位點(diǎn),是多種激酶的靶點(diǎn),與啟動(dòng)基因表達(dá)有關(guān),是MEF2因子活性調(diào)節(jié)及發(fā)揮功能的主要區(qū)域。對(duì)骨骼肌和心肌細(xì)胞分化過程的調(diào)控研究表明MEF2最突出的功能是控制肌細(xì)胞分化過程中的基因轉(zhuǎn)錄,主要作用是在骨骼肌、心肌和平滑肌的發(fā)育過程中介導(dǎo)細(xì)胞的分化[7-9]。但MEF2對(duì)VSMCs分化過程的調(diào)控報(bào)道不多,并且有不同的結(jié)論[10-12]。
本研究觀察到:首先,在原代培養(yǎng)的小鼠門靜脈VSMCs中,60 mmol/L KCl去極化刺激可激活Rho/ROCK-LIMK-cofilin-2信號(hào)轉(zhuǎn)導(dǎo)通路,表現(xiàn)為RhoA蛋白發(fā)生顯著的胞膜移位,其下游底物L(fēng)IMK以及cofilin-2的磷酸化分別在去極化刺激10 min和30 min達(dá)到峰值,并且上述變化均對(duì)5 μmol/L維拉帕米敏感。與Wamhoff等[1]的報(bào)道一致;其次,平滑肌標(biāo)志物的重要調(diào)控因子心肌素mRNA表達(dá)的顯著增加具有高鉀去極化依賴性并受到Rho/ROCK信號(hào)通路的調(diào)控,表現(xiàn)為其表達(dá)對(duì)5 μmol/L維拉帕米和ROCK特異性抑制劑 Y27632敏感;再次,心肌素mRNA表達(dá)還受MEF2A和MEF2D的調(diào)控,表現(xiàn)為在沉默MEF2A和MEF2D兩種亞型的VSMCs,心肌素的表達(dá)失去了對(duì)高鉀去極化刺激的敏感性。這與在心臟和骨骼肌中,心肌素受MEF2調(diào)控的報(bào)道相一致[13-14],提示 MEF2A/2D與心肌素很可能作為RhoA/ROCK信號(hào)轉(zhuǎn)導(dǎo)通路的一個(gè)新的分支在調(diào)控平滑肌標(biāo)志物的表達(dá)過程中起重要作用。最后,在沉默MEF2A和MEF2D的VSMCs中,高鉀去極化刺激仍然能引起SM22α表達(dá)顯著增加,提示平滑肌特異基因的調(diào)控可能通過其它通路,如RhoA/ROCK/LIMK/mDia/profilin 信號(hào)通路進(jìn)行代償[15]。至于MEF2A和MEF2D之間如何協(xié)同作用,以及是否與其它轉(zhuǎn)錄因子相互作用調(diào)節(jié)VSMCs的分化過程有待進(jìn)一步實(shí)驗(yàn)研究。
綜上所述,MEF2A和MEF2D通過調(diào)控心肌素的表達(dá)參與了高鉀去極化引起的VSMCs平滑肌標(biāo)志物的表達(dá)。
[1] Wamhoff BR,Bowles DK,McDonald OG,et al.L-type voltage-gated Ca2+channels modulate expression of smooth muscle differentiation marker genes via a Rho kinase/myocardin/SRF-dependent mechanism[J].Circ Res,2004,95(4):406-414.
[2] Yu Z,Li Z,Jolicoeur N,et al.Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers[J].Nucleic Acids Res,2007,35(13):4535-4541.
[3] Haberland M,Arnold MA,McAnally J,et al.Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation[J].Mol Cell Biol,2007,27(2):518-525.
[4] Ren J,Albinsson S,Hellstrand P.Distinct effects of voltage-and storedependent calcium influx on stretch-induced differentiation and growth in vascular smooth muscle [J].J Biol Chem,2010,285(41):31829-31839.
[5] Anwar MA,Shalhoub J,Lim CS,et al.The effect of pressure-induced mechanical stretch on vascular wall differential gene expression[J].J Vasc Res,2012,49(6):463-478.
[6] 鄭 輝,薛 松,連 鋒,等.人Gax基因轉(zhuǎn)染對(duì)血管平滑肌細(xì)胞增殖、遷移和細(xì)胞周期的影響[J].中國(guó)病理生理雜志,2012,28(2):216-221.
[7] Seok HY,Tatsuguchi M,Callis TE,et al.miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation [J].J Biol Chem,2011,286(41):35339-35346.
[8] AI Madhoun AS,Mehta V,Li G,et al.Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C [J].EMBO J,2011,30(12):2477-2489.
[9] Tessier SN,Storey KB.Myocyte enhancer factor-2 and cardiac muscle gene expression during hibernation in thirteen-lined ground squirrels[J].Gene,2012,501(1):8-16.
[10] Pagiatakis C,Gordon JW,Ehyai S,et al.A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression[J].J Biol Chem,2012,287(11):8361-8370.
[11] Katsuyama M,Ozgur Cevik M,Arakawa N,et al.Myocyte enhancer factor 2B is involved in the inducible expression of NOX1/NADPH oxidase,a vascular superoxide-producing enzyme [J].FEBS J,2007,274(19):5128-5136.
[12] Ginnan R,Sun LY,Schwarz JJ,et al.MEF2 is regulated by CaMKIIδ2and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells[J].Biochem J,2012,444(1):105-114.
[13] Creemers EE,Sutherland LB,McAnally J,et al.Myocardin is a direct transcriptional target of Mef2,Tead and Foxo proteins during cardiovascular development[J].Development,2006,133(21):4245-4256.
[14] Kuwahara K,Teg Pipes GC,McAnally J,et al.Modulation of adverse cardiac remodeling by STARS,a mediator of MEF2 signaling and SRF activity [J].J Clin Invest,2007,117(5):1324-1334.
[15] Lai SL,Chan TH,Lin MJ,et al.Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements[J].PLoS One,2008,3(10):e3439.