国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物UDP-糖基轉(zhuǎn)移酶生化特性和功能研究進(jìn)展

2013-08-07 09:02姬向楠段長青
食品科學(xué) 2013年9期
關(guān)鍵詞:糖基糖苷基轉(zhuǎn)移酶

姬向楠,何 非,段長青,王 軍*

(中國農(nóng)業(yè)大學(xué)食品科學(xué)與營養(yǎng)工程學(xué)院,葡萄與葡萄酒研究中心,北京 100083)

糖基轉(zhuǎn)移酶(glycosyltransferases,GT;EC 2.4.x.y)幾乎存在于所有有機(jī)體中,催化糖基的轉(zhuǎn)移反應(yīng),將糖基從活化的供體分子轉(zhuǎn)移到受體分子上,是最重要的生物轉(zhuǎn)化反應(yīng)之一,直接參與二糖、單糖苷、低聚糖、聚糖苷和多糖的生物合成[1]。糖基供體分子包括雙糖或多糖、1-磷酸糖、核苷-2-磷酸糖、尿苷二磷酸葡萄糖醛酸[2]。植物中最常見的糖基供體為UDP-葡萄糖[3-4],此外還有UDP-半乳糖、UDP-鼠李糖、UDP-木糖和UDP-葡萄糖醛酸等[5-10]。常見的糖基受體除了單糖、低聚糖和多糖外,還包括非碳水化合物,如蛋白質(zhì)、脂質(zhì)、抗生素、固醇、酚類物質(zhì)、萜烯類物質(zhì)、氰醇、植物激素、生物堿、植物毒素和外源物質(zhì)(如除草劑和殺蟲劑)等[3,11-15],其糖基化部位在受體分子的O(—OH、—COOH)、N(—NH2)、S(—SH)和C(C—C)原子上[3-4],生成相應(yīng)的糖苷或糖酯[15-16]。糖基化可以改變受體分子的親水性、化學(xué)穩(wěn)定性、生物活性、亞細(xì)胞定位,有助于其在細(xì)胞內(nèi)和生物體內(nèi)的運(yùn)輸和貯藏等[3-4,17-18]。

由于這類酶催化的底物種類繁多,其在植物生長發(fā)育、代謝調(diào)節(jié)、解除內(nèi)外源毒素毒性及次生代謝產(chǎn)物合成、貯存等方面具有重要作用。本文就與次生代謝產(chǎn)物、植物激素及生物同/異源物質(zhì)糖基化相關(guān)的UDP-糖基轉(zhuǎn)移酶的生化及分子生物學(xué)研究進(jìn)展進(jìn)行綜述。

1 GT的分類和UGT的命名

1.1 GT的分類

CAZY數(shù)據(jù)庫(carbohydrate-active enzyme database)收錄來自不同生物編碼GT基因序列已超過85000個(gè)(http://www.cazy.org/fam/acc_GT.html)。國際生物化學(xué)和分子生物學(xué)聯(lián)盟(IUBMB)推薦的命名法既不能表明酶蛋白本身的結(jié)構(gòu)和催化特征,也不能充分適應(yīng)作用于幾個(gè)不同底物的酶,即同一個(gè)酶可能有幾個(gè)EC(enzyme commission)編碼[1,19]。GT為高度分歧的多源基因家族[2],其分類主要依據(jù)酶蛋白氨基酸序列的相似性、催化特性以及有無保守序列[1,20]。因此,某一GT既可以通過生物化學(xué)方法鑒定其底物,也可以通過生物信息學(xué)方法研究其與已知酶基因或酶蛋白氨基酸序列的同源性,而加以分類[1,19]。

圖 1 依據(jù)折疊方式的糖基轉(zhuǎn)移酶分類系統(tǒng)[19]Fig.1 Hierarchical classifi cation of glycosyltransferases from folds to clans[19]

圖 2 “轉(zhuǎn)化型”和“保留型”糖苷轉(zhuǎn)移酶的反應(yīng)機(jī)制[15,19]Fig.2 Reaction mechanisms of converting and reserving GTs[15,19]

根據(jù)GT的空間結(jié)構(gòu),可將其分為GT-A型折疊和GT-B型折疊兩類(圖1)[21]。其中GT-A型折疊的空間結(jié)構(gòu)特點(diǎn)是含有2個(gè)緊密相連的β/α/β類Rossmann折疊區(qū)域。GT-A的家族成員需要利用一個(gè)DXD基序來結(jié)合二價(jià)金屬離子(多數(shù)情況下為Mn2+),而金屬離子對(duì)GT-A成員的催化反應(yīng)來說是必需的,它能幫助UDP-糖供體的焦磷?;鶊F(tuán)固定在酶活性位點(diǎn)上。由于GT-A成員通常不識(shí)別除UDP-糖供體以外的糖供體,所以其受體的多樣性也相對(duì)較低。GT-B型折疊的空間結(jié)構(gòu)特點(diǎn)是含有兩個(gè)正對(duì)的β/α/β類Rossmann折疊區(qū)域,并且這2個(gè)區(qū)域以較為靈活的方式連接。GT-B成員不需要二價(jià)金屬離子來保持活性,這是GT-B與GT-A家族成員的一個(gè)明顯區(qū)別[22-23]。根據(jù)GT催化反應(yīng)機(jī)制,將其分為“轉(zhuǎn)化型”和“保留型”(圖2)[15,19,24]。“轉(zhuǎn)化型”GT的催化反應(yīng)機(jī)制是一個(gè)類SN-2機(jī)制的直接親核取代反應(yīng),即一個(gè)含有活性位點(diǎn)的側(cè)鏈作為催化劑對(duì)供體(親核試劑)進(jìn)行去質(zhì)子化,以促進(jìn)活化磷酸基團(tuán)離去的類SN-2直接取代反應(yīng);“保留型”GT的催化機(jī)制目前來說仍不明確,以往研究推測其機(jī)制是一種雙取代反應(yīng)機(jī)制,中間體為一個(gè)以共價(jià)鍵連接的糖基-酶復(fù)合體,但是目前在“保留型”GT的活性位點(diǎn)并未找到一個(gè)能夠支持這種理論的親核試劑存在。目前認(rèn)為保留型GT最可能的催化機(jī)制是中間體為短暫存在的含氧碳正離子的雙取代反應(yīng)機(jī)制[23]。綜合GT的空間結(jié)構(gòu)和反應(yīng)類型,可以將GT大致分為4個(gè)目,目下面分為不同的家族(圖1)。

根據(jù)GT氨基酸序列相似性、形成糖苷的立體化學(xué)結(jié)構(gòu)和已知底物的特異性,目前已將其分為94個(gè)已編號(hào)的家族,植物GT分屬于其中的40個(gè)家族[1,19],但不同家族間的進(jìn)化關(guān)系仍并不清楚[18]。截至2012年1月31日,家族1(GT1)包含4388個(gè)基因序列,這些序列來源于古細(xì)菌、細(xì)菌、真核生物和病毒(http://www.cazy.org/fam/acc_GT.html),其反應(yīng)機(jī)制為“轉(zhuǎn)化型”[1,15,19],大部分與植物激素、次生代謝產(chǎn)物糖苷化的GT位于該家族[3-4,12-16,18,25-26]。由于GT1中很多GT的C末端含有1個(gè)由44個(gè)氨基酸組成的保守序列,因此將GT1單獨(dú)歸為一個(gè)尿苷二磷酸糖基轉(zhuǎn)移酶(UGT)超家族[2,18],其成員主要以UDP-葡萄糖和UDP-葡糖醛酸為糖基供體[11],該保守序列被認(rèn)為是結(jié)合糖基供體的區(qū)域[2];而不含保守序列的GT歸為另一個(gè)家族,其成員較少,其中的植物源GT催化固醇和甘油酯類的糖苷化[27-28]。催化植物次生代謝產(chǎn)物糖苷化的UGT保守序列亦由44個(gè)氨基酸組成(圖3)[11,29]。

圖 3 植物次生代謝產(chǎn)物UGT的保守序列Fig.3 PSPG-box consensus sequence of plant secondary products from glycosyltransferases

1.2 UGT的命名

圖 4 植物UGT超家族命名體系概要[2,18]Fig.4 Summary of current plant UGT superfamily nomenclaturesystem[2,18]

UGT為一個(gè)超家族,其分類和命名采用GT命名委員會(huì)所建立的體系[2]。該命名體系要點(diǎn)如下:UGT表示UDP-glycosyltransferase,其后的阿拉伯?dāng)?shù)字表示家族,字母表示亞家族,字母后的阿拉伯?dāng)?shù)字表示單個(gè)基因(圖4);如果在一個(gè)家族中無第2個(gè)亞家族或第2個(gè)基因存在,則亞家族和基因編號(hào)可省略,如UGT8;如果亞家族中第2個(gè)基因被鑒定,則亞家族字母和基因編號(hào)不能省略,如UGT101A1、UGT101A2。1~50家族為動(dòng)物源、51~70家族為酵母源、71~100家族為植物源、101~200家族為細(xì)菌源。如果分配的家族編號(hào)使用完畢,則家族編號(hào)以10倍擴(kuò)大(如UGT71~UGT100后為UGT701~UGT1000);基因編號(hào)后的“P”表示該基因?yàn)榧倩颉?/p>

2 植物UGT的分離鑒定及生化特征

植物UGT的分離純化一般采用將陰離子交換、疏水作用色譜、染料配體層析和凝膠過濾等技術(shù)組合利用的方法,利用仿生染料(如活性黃3,活性綠19)作為親合層析的柱料可以減少純化步驟,從提取物中分離出一定含量的UGT[5,30-31]。這種仿生染料模擬底物與UGT結(jié)合成束縛酶形式,隨后可以通過加入底物(如UDP-葡萄糖),采用高濃度鹽洗脫得到純度較高的UGT。

UGT的功能鑒定可以通過其植物組織酶提取液的體外功能進(jìn)行鑒定[5-6,32-43],也可以通過其基因編碼的異源重組酶的體外酶學(xué)特性進(jìn)行鑒定[26-27,44-49]。大部分植物UGT為可溶性的酸性單體蛋白,分離純化后的分子質(zhì)量大約在40~60kD間,等電點(diǎn)在4.2~6.1,對(duì)糖基受體Km在0.4~3600μmol/L,最適pH值為5.9~9.0,絕大多數(shù)UGT以UDP-葡萄糖為糖基供體,糖基受體包括黃酮、黃酮醇、異黃酮、黃烷酮、花色素、花色苷、甾醇等[3-6,30,34-35,38,42-43,50]。大腸桿菌或酵母重組的UGT分子質(zhì)量在50~84kD間,對(duì)糖基受體Km在1~137μmol/L,最適pH值為6.0~8.5,重組UGT的糖基供體與植物源UGT類似,糖基受體除植物次生代謝產(chǎn)物外,還包括植物激素、外源殺蟲劑等[45-46,49,51-55]。

3 UGT的結(jié)構(gòu)和亞細(xì)胞定位

3.1 UGT的結(jié)構(gòu)

根據(jù)擬南芥(Arabidopsis thaliana)的88個(gè)UGT基因序列推測其編碼的氨基酸序列,所含氨基酸在442~507之間[17],由其他植物UGT的cDNA推測的UGT氨基酸個(gè)數(shù)也大致在這個(gè)范圍之內(nèi)[49-50,56]。UGT含有9個(gè)保守區(qū),其中包括定義UGT的保守序列,而第5保守區(qū)將UGT分為C末端區(qū)和N末端區(qū)[17-18],不同UGT的氨基酸序列相似性在95%~24%間[17-18,26],N末端可變性高于C末端[18],這個(gè)結(jié)構(gòu)特點(diǎn)符合N末端為識(shí)別和結(jié)合不同糖基受體區(qū)、C末端為結(jié)合糖基供體區(qū)的推測[57]。家族1中UGT的空間結(jié)構(gòu)為GT-B型折疊,它由兩個(gè)類Rossmann折疊組成,中間被一個(gè)較深的裂縫分開[12-13,15,19,58-59]。一種重組的葡萄UGT蛋白由456個(gè)氨基酸組成,兩個(gè)類Rossmann區(qū)分別包括第7~250個(gè)氨基酸殘基和第260~437個(gè)氨基酸殘基,第437~456個(gè)氨基酸殘基形成的C末端螺旋橫跨C末端區(qū)和N末端折疊區(qū)[59]。該葡萄UGT的3-D結(jié)構(gòu)表明,其C末端由44個(gè)氨基酸的殘基組成的保守序列決定了糖基供體結(jié)合位點(diǎn)的微環(huán)境,其中Asp374和Gln375對(duì)識(shí)別供體糖分子(UDP-葡萄糖)起關(guān)鍵作用,這個(gè)區(qū)域氨基酸的變化決定了不同UGTs利用不同糖基供體。此外,N末端Thr141對(duì)識(shí)別UDP-葡萄糖也起到很重要的作用[59]。它的一種糖基受體(莰非醇)結(jié)合于該UGT蛋白N末端區(qū)由Phe15、Phe121、Phe200、Phe372及Ile87、Val281組成的疏水開口口袋中,通過Gln84和His150與莰非醇7-OH、4’-OH之間形成的氫鍵與莰非醇分子相結(jié)合,His20通過對(duì)莰非醇3-OH的去質(zhì)子化作用,接受來自供體糖基分子上末端異構(gòu)中心的親核攻擊,這是UGT催化糖基轉(zhuǎn)移反應(yīng)的基礎(chǔ)[59]。

3.2 UGT的亞細(xì)胞定位

UGT通常為可溶性蛋白[3-4]。植物細(xì)胞不同組分UGT的活性實(shí)驗(yàn)證明,大部分UGT在細(xì)胞質(zhì)中表現(xiàn)活性[60-64]。到目前為止,已鑒定的植物源UGT既不含有明確的信號(hào)序列,也不含有任何已知的跨膜或膜導(dǎo)向信號(hào)[17]。因此,一般認(rèn)為大部分UGT定位于細(xì)胞質(zhì)中[4,12,17-18,65-67]。此外,黃酮類化合物是在細(xì)胞質(zhì)中合成的,其生物合成相關(guān)酶以多酶復(fù)合體的形式存在于靠近內(nèi)質(zhì)網(wǎng)的細(xì)胞質(zhì)中,通過膜蛋白與PAL、C4H和F3’H的弱相互作用,將其與粗糙型內(nèi)質(zhì)網(wǎng)膜錨定[4,68-69],形成代謝區(qū)室[70]。但也有一些實(shí)驗(yàn)結(jié)果表明,一些UGT定位于內(nèi)質(zhì)網(wǎng)膜腔[71]、液泡內(nèi)[63],或與質(zhì)膜[72]、內(nèi)質(zhì)網(wǎng)膜[73]、微粒體膜[74]、花粉膜相連[75]。不同種類的UGT可能定位于不同細(xì)胞或同一細(xì)胞的不同細(xì)胞器,以催化不同底物的糖基轉(zhuǎn)移反應(yīng)[58],如催化植物甾醇的UGT與質(zhì)膜和微粒體膜結(jié)合[72]。目前有關(guān)UGT在植物組織和器官中的分布情況尚無研究報(bào)道,但根據(jù)UGT參與生成的植物次生代謝產(chǎn)物在植物組織和器官中的分布情況推測,UGT可能較多地存在于植物的花、葉、果實(shí)與根等組織中。

4 UGT的生物學(xué)功能

植物UGT催化的糖苷化反應(yīng)底物種類非常廣泛,包括植物激素、植物次生代謝產(chǎn)物和生物同/異源物質(zhì)(如含氰苷、除草劑等)[3]。糖苷化可以改變糖苷配基(aglycones)的許多性質(zhì),如生物活性、溶解性、在細(xì)胞內(nèi)及植物組織和器官內(nèi)的轉(zhuǎn)運(yùn)性,其在植物生長發(fā)育、代謝調(diào)節(jié)、解除內(nèi)外源毒素毒性及次生代謝產(chǎn)物合成、貯存等方面具有重要作用[3-4,12-16]。

4.1 UGT與植物次生代謝產(chǎn)物的合成

植物次生代謝物種類繁多,結(jié)構(gòu)迥異,一般分為酚類、萜類、含氮有機(jī)化合物三大類。每一類已知化合物都有數(shù)千種甚至數(shù)萬種以上,如已鑒定的類黃酮就有6000種[75-80],這些化合物中有一部分是通過化學(xué)修飾的,其中糖基化反應(yīng)是其重要的修飾反應(yīng)之一[4]。

在擬南芥中,Kim等[81]克隆了一個(gè)參與類黃酮糖苷物生成的糖基轉(zhuǎn)移酶UGT73B2。其底物選擇性為黃酮醇>黃烷酮>黃酮。該酶會(huì)優(yōu)先催化底物的3-OH,但也能在3-OH不存在的條件下催化底物的7-OH形成相應(yīng)的糖苷物。此外,Jones等[82]在擬南芥中發(fā)現(xiàn)的UGT73C6和UGT78D1也具有催化生成黃酮醇糖苷物的功能。在葡萄中,F(xiàn)ord等[43]首次在歐亞種葡萄中報(bào)道了一個(gè)既能催化黃酮醇,又能催化花青素形成相應(yīng)糖苷物的糖基轉(zhuǎn)移酶。Ono等[83]在歐亞種葡萄中鑒定到2個(gè)參與黃酮醇糖基化的UGT(VvGT5和VvGT6),其中VvGT5以UDP-葡萄糖醛酸為糖基供體;而VvGT6是以UDP-葡萄糖和UDP-半乳糖為糖基供體的雙功能UGT。在美洲種葡萄“康可”中也鑒定到一個(gè)既能催化黃酮醇,又能催化花青素的類黃酮糖基轉(zhuǎn)移酶VL3GT[84]。此外,在該葡萄種中發(fā)現(xiàn)了3個(gè)能對(duì)黃酮醇及污染物2,4,5-三氯苯酚(TCP)的7-OH進(jìn)行糖基化的UGT[85]。

花色苷(anthocyanin)屬于黃酮類化合物,可賦予植物器官各種顏色[86]。在花色苷的生物合成途徑中,糖基化常作為花色苷合成的終反應(yīng),能降低其反應(yīng)活性,提高其穩(wěn)定性和轉(zhuǎn)運(yùn)性[87]。在這些UGT中,最常見的是能催化花青素生成花青素3-O-糖苷物的3GT,但目前在三花龍膽(Gentiana trifl ora)[88]、紫蘇(Perilla frutescens)[45]、荷蘭鳶尾(Iris hollandica)[48]等植物中發(fā)現(xiàn)了能催化花青素3-O-糖苷物生成花青素3,5-O-雙糖苷物的UGT,這些UGT又被稱為5GT。系統(tǒng)分析表明,3GT與5GT亞家族明顯不同[49]。在葡萄中,一般認(rèn)為歐亞種葡萄(Vitis vinifera)僅能合成單糖苷,除歐亞種之外幾乎所有葡萄種及種間雜種中均含有花色素雙糖苷[89]。然而目前有關(guān)葡萄5GT的研究較少,僅在種間歐美雜種葡萄“Regent”中克隆得到了一個(gè)能催化花青素3-O-糖苷物生成花青素3,5-O-雙糖苷物的5GT,而歐亞種葡萄缺失雙糖苷是由于其5GT基因發(fā)生突變而喪失基本生化功能造成的[90]。到目前為止,葡萄中還沒有發(fā)現(xiàn)花色素的三糖苷及其衍生物。近年來,研究葡萄中5GT的基因序列和生物功能,以及葡萄花色苷生物合成的機(jī)理已經(jīng)成為本領(lǐng)域研究的熱點(diǎn)。

三萜烯皂苷是一類具有廣泛生物活性的植物次生代謝產(chǎn)物。Achnine等[25]在豆科模式植物蒺藜苜蓿(Medicago truncatula)中鑒定了2個(gè)UGT。其中UGT73K1能催化常春藤皂苷元、大豆皂醇B和大豆皂醇E;而UGT71G1既能糖基化苜蓿酸,也能催化黃酮醇類的槲皮素及特定的異黃酮,且該酶對(duì)黃酮類底物的催化效率要高于三萜烯類底物。此外,Kurosawa等[91]在發(fā)芽的大豆種子中鑒定了1個(gè)以UDP-葡萄糖醛酸為糖基供體來糖基化大豆皂醇的UGT。

4.2 UGT與植物內(nèi)激素平衡

植物體內(nèi)激素含量水平的變化在植物的生長發(fā)育和環(huán)境應(yīng)答中起到重要的調(diào)節(jié)作用。一般來說,植物游離激素形成結(jié)合態(tài)激素的反應(yīng)是可逆的,故而此類反應(yīng)能夠調(diào)控植物體內(nèi)激素的含量水平。糖基化反應(yīng)是其中主要的結(jié)合反應(yīng)之一[76,92-94]。

在擬南芥中,Grubb等[92]鑒定了1個(gè)對(duì)硫苷合成起重要作用的糖基轉(zhuǎn)移酶UGT74B1,在缺失該基因的植株中發(fā)現(xiàn)硫苷含量上升,游離及總生長素含量上升,同時(shí)表現(xiàn)出與IAA生成過多相符合的表型。Jackson等[93]在擬南芥中用離體生化方法鑒定了1個(gè)糖基轉(zhuǎn)移酶UGT84B1。該酶可在離體條件下使生長素IAA糖基化。過表達(dá)該基因的植株表現(xiàn)出生長素缺陷表型,同時(shí)其根系失去向地性[52,93]。

細(xì)胞分裂素(cytokinin)的糖基化一般發(fā)生在其嘌呤環(huán)或側(cè)鏈上,分別產(chǎn)生N-糖苷和O-糖苷。其中N-糖苷的激素活性無法恢復(fù);而O-糖苷可在一定條件下恢復(fù)為有活性的激素,是此激素的失活貯藏形式[94-95]。Hou等[54]在擬南芥中發(fā)現(xiàn)了5個(gè)與細(xì)胞分裂素有關(guān)的UGT,其中的UGT76C1和UGT76C2屬于N-UGT;而UGT85A1、UGT73C1、UGT73C5屬于O-UGT。Wang等[95]在擬南芥中對(duì)UGT76C2進(jìn)行深入研究后發(fā)現(xiàn),細(xì)胞分裂素N-糖苷的含量在該基因的失活植株中明顯下降,而在該基因的過表達(dá)植株中顯著上升;在失活植株中與細(xì)胞分裂素相關(guān)基因的表達(dá)水平都發(fā)生了變化。這證明UGT76C2在植物體內(nèi)以細(xì)胞分裂素N-糖基化的形式參與調(diào)控細(xì)胞分裂素的應(yīng)答及其含量的動(dòng)態(tài)平衡。

Xu等[52]在赤豆(Vigna angularis)中克隆到1個(gè)UGT的基因,該酶的體外重組蛋白實(shí)驗(yàn)表明其對(duì)反式脫落酸的糖基化具有特異性。在擬南芥中,Lim等[96]鑒定到1個(gè)糖基轉(zhuǎn)移酶UGT71B6,該基因產(chǎn)物能催化天然存在的順式脫落酸。Priest等[97]對(duì)該基因在擬南芥中對(duì)脫落酸(ABA)含量動(dòng)態(tài)平衡的影響作了進(jìn)一步研究,發(fā)現(xiàn)在該基因的過表達(dá)植株中,ABA葡糖酯(ABA-GE)大量積累,而ABA氧化代謝產(chǎn)物紅花菜豆酸(PA)和二氫紅花菜豆酸(DPA)的含量下降,但自由ABA的含量無明顯變化。

4.3 UGT與植物解除內(nèi)外源毒素

植物需要對(duì)多種不同小分子物質(zhì)進(jìn)行解毒或調(diào)控其生物活性來保證自身在自然環(huán)境中的正常生長。這些小分子物質(zhì)從來源上可分為生物同源物質(zhì)和生物異源物質(zhì)。植物通常需要活化反應(yīng)、結(jié)合反應(yīng)、區(qū)室化來完成對(duì)此類脂溶性小分子物質(zhì)的解毒作用[98-99]。其中結(jié)合反應(yīng)既能降低或去除同/異源物質(zhì)的毒性,又為其代謝物參與區(qū)室化作用提供了重要的水溶性,所以結(jié)合反應(yīng)是植物解毒過程中的重要步驟,而其中糖基化反應(yīng)是最為普遍的結(jié)合反應(yīng)之一。

Brazier-Hicks等[100]報(bào)道了一種來源于擬南芥的糖基轉(zhuǎn)移酶UGT72B1,經(jīng)體外實(shí)驗(yàn)證實(shí)其對(duì)污染物TCP和3,4-二氯苯胺(DCA)有高度的結(jié)合活性。而經(jīng)敲除UGT72B1的植物提取物對(duì)于TCP 和DCA的結(jié)合活性顯著下降。進(jìn)一步研究證實(shí)UGT72B1具有O-糖基化和N-糖基化的雙功能催化活性[97]。Messner等[101]通過體外實(shí)驗(yàn)證實(shí),擬南芥中的UGT72E1、UGT75B1、UGT75D1、UGT84A1、UGT84A2、UGT84B1都能夠作用于外源TCP。

鐮刀霉(Fusarium)在侵染植物的過程中會(huì)釋放出毒素脫氧雪腐鐮刀菌醇(deoxynivalenol,DON)。該毒素在造成谷物減產(chǎn)及經(jīng)濟(jì)損失的同時(shí)也會(huì)對(duì)人類及動(dòng)物的健康構(gòu)成嚴(yán)重威脅。Poppenberger等[102]報(bào)道了一種來自擬南芥的糖基轉(zhuǎn)移酶UGT73C5,該酶能糖基化這種毒素從而使其毒性喪失。過表達(dá)該基因的植物對(duì)此毒素的抗性得到了提升。

5 結(jié) 語

有關(guān)植物UGT的研究已取得了很大進(jìn)展,特別是有關(guān)幾個(gè)植物源UGT三維結(jié)構(gòu)的研究(葡萄VvGT1、擬南芥UGT72B1、苜蓿UGT71G1、苜蓿UGT85H2、苜蓿UGT78G1)[59,99,103-105],為通過定點(diǎn)突變或蛋白質(zhì)改造技術(shù)來設(shè)計(jì)人類所期望的UGT打下了堅(jiān)實(shí)的基礎(chǔ)。目前有關(guān)UGT的應(yīng)用主要是將其作為生物催化劑,在體外的生物轉(zhuǎn)化系統(tǒng)中進(jìn)行催化反應(yīng)以得到期望的糖苷化合物。未來在作物改良方面的研究重點(diǎn)主要有以下兩方面:一方面可以通過UGT的轉(zhuǎn)基因來調(diào)控作物的生長發(fā)育過程,這需要進(jìn)一步系統(tǒng)研究某一重要作物中與植物激素代謝平衡機(jī)制有關(guān)的UGT;另一方面可通過調(diào)控作物對(duì)各種內(nèi)外源毒素的解毒以獲得安全性較高的農(nóng)產(chǎn)品,這需要進(jìn)一步對(duì)UGT在植物防御反應(yīng)中的作用進(jìn)行探索和研究。在植物代謝工程方面,可通過UGT來實(shí)現(xiàn)對(duì)植物體內(nèi)糖苷化合物積累的調(diào)控,以獲得符合人們期望的優(yōu)良作物品種。

[1] CAMPBELL J A, DAVIES G J, BULONE V, et al. A classifi cation of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. Biochemical Journal, 1997, 326(3): 929-942.

[2] MACKENZIE P I, OWENS I S, BURCHELL B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence[J]. Pharmacogenetics, 1997, 7(4): 255-269.

[3] VOGT T, JONES P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family[J]. Trends in Plant Sci, 2000, 5(9): 380-386.

[4] JONES P, VOGT T. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers[J]. Planta, 2001, 213(2): 164-174.

[5] BAR-PELED M, LEWINSOHN E, FLUHR R, et al. UDP-rhamnose: fl avanone-7-O-gluciside-2”-O-rhamnosyltransferase[J]. The Journal of Biological Chemistry, 1991, 266(31): 20953-20959.

[6] ISHIKURA N, MATO M. Partial purifi cation and some properties of fl avonol 3-O-glycosyltransferases from seddlings of Vigna mungo, with special reference to the formation of kaempferol 3-O-galactoside and 3-O-glucoside[J]. Plant and Cell Physiology, 1993, 34(2): 329-335.

[7] MARTIN R C, MOK M C, MOK D W S. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris[J]. Plant Physiology, 1999, 120(2): 553-557.

[8] MILLER K D, GUYON V, EVANS J N S, et al. Purifi cation, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida[J]. The Journal of Biological Chemistry, 1999, 274(48): 34011-34019.

[9] JONES P, MESSNER B, NAKAJIMA J I, et al. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2003, 278(45): 43910-43918.

[10] SAWADA S, SUZUKI H, ICHIMAIDA F, et al. UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellisperennis) flowers[J]. The Journal of Biological Chemistry, 2005, 280(2): 899-906.

[11] PAQUETTE S, M?LLER B L, BAK S. On the origin of family 1 plant glycosyltransferases[J]. Phytochemistry, 2003, 62(3): 399-413.

[12] LIM E K, BOWLES D J. A class of plant glycosyltransferases involved in cellular homeostasis[J]. The EMBO Journal, 2004, 23(15): 2915-2922.

[13] BOWLES D, ISAYENKOVA J, LIM E K, et al. Glycosyltransferases: managers of small molecules[J]. Current Opinion in Plant Biology, 2005, 8(3): 254-263.

[14] GACHON C M M, LANGLOIS-MEURINNE M, SAINDRENAN P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis[J]. Trends in Plant Science, 2005, 10(11): 542-549.

[15] LIM E K. Plant glycosyltransferases: their potential as novel biocatalysts[J]. Chemistry: A European Journal, 2005, 11(19): 5487-5494.

[16] LIM E K, BALDAUF S, LI Y, et al. Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis[J]. Glycobiology, 2003, 13(3): 139-145.

[17] LI Y, BALDAUF S, LIM E K, et al. Phylogenetic analysis of the UDP-glycosyltransferasemultigene family of Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2001, 276(6): 4338-4343.

[18] ROSS J, LI Y, LIM E K, et al. Higher plant glycosyltransferases[J]. Genome Biology, 2001, 2(2): 3004.1-3004.6.

[19] COUTINHO P M, DELEURY E, DAVIES G J, et al. An evolving hierarchical family classifi cation for glycosyltransferases[J]. Journal of Molecular Biology, 2003, 328(2): 307-317.

[20] KAPITONOV D, YU R K. Conserved domains of glycosyltransferases[J]. Glycobiology, 1999, 9(10): 961-978.

[21] BOURNE Y, HENRISSAT B. Glycoside hydrolases and glycosyltransferases: families and functional modules[J]. Current Opinion in Structural Biology, 2001, 11(5): 593-600.

[22] HU Y, WALKER S. Remarkable structural similarities between diverse glycosyltransferases[J]. Chemistry & Biology, 2002, 9: 1287-1296.

[23] LAIRSON L L, HENRISSAT B, DAVIES G J, et al. Glycosyltransferases: structures, functions, and mechanism[J]. Annu Rev Biochem, 2008, 77: 521-557.

[24] SAXENA I M, BROWN JR R M, FEVRE M, et al. Multidomain architecture of β-glycosyltransferases: implications for mechanism of action[J]. Journal of Bacteriology, 1995, 177(6): 1419-1424.

[25] ACHNINE L, HUHMAN D V, FARAG M A, et al. Genomics-based selection and functional characterization of triterpeneglycosyltransferases from the model legume Medicago truncatula[J]. The Plant Journal, 2005, 41(6): 875-887.

[26] MODOLO L V, BLOUNT J W, ACHNINE L, et al. A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula[J]. Plant Molecular Biology, 2007, 64(5): 499-518.

[27] WARNECKE D C, BALTRUSCH M, BUCK F, et al. UDP-glucose: sterol glucosyltransferase: cloning and functional expression in Escherichia coli[J]. Plant Molecular Biology, 1997, 35(5): 597-603.

[28] JORASCH P, WARNECKE D C, LINDNER B, et al. Novel processive and nonprocessiveglycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols[J]. European Journal of Biochemistry, 2000, 267(12): 3770-3783.

[29] HUGHES J, HUGHES M. Multiple secondary plant product UDPglucose glucosyltransferase genes expressed in cassava (Manihotes culenta Crantz) cotyledons[J]. DNA Sequence, 1994, 5(1): 41-49.

[30] VOGT T, ZIMMERMANN E, GRIMM R, et al. Are the characteristics of betanidin glucosyltransferase from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases?[J]. Planta, 1997, 203(3): 349-361.

[31] JONES P R, M?LLER B L, H?J P B. The UDP-glucose: p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucosidedhurrin in Sorghum bicolor[J]. The Journal of Biological Chemistry, 1999, 274(50): 35483-35491.

[32] SALEH N A M, FRITSCH H, WITKOP P, et al. UDP-glucose: cyaniding 3-O-glucosyltransferase from cell cultures of Haplopappus gracilis[J]. Planta, 1976, 133(1): 41-45.

[31] SALEH N A M, POULTON J E, GRISEBACH H. UDP-glucose: cyaniding 3-O-glucosyltransferase from red cabbage seedlings[J]. Phytochemistry, 1976, 15(12): 1865-1868.

[33] KAMSTEEG J, van BREDERODE J, van NIGTEVECHT G. Identification, properties, and genetic control of UDP-glucose: cyaniding-3-rhamnosyl-(1→6)-glucoside-5-O-glucosyltransferase isolated from petals of the Red Campion (Silenedioica)[J]. Biochemical Genetics, 1978, 16(11/12): 1059-1071.

[34] K?STER J, BARZ W. UDP-glucose:isoflavone 7-O-glucosyltransferase from roots of Chick Pea (Cicerarietinum L.)[J]. Archives of Biochemistry and Biophysics, 1981, 212(1): 98-104.

[35] JONSSON L M V, AARSMAN M E G, van DIEPEN J, et al. Properties and genetic control of anthocyanin 5-O-glucosyltransferase in fl owers of Petunia hybrida[J]. Planta, 1984, 160(4): 341-347.

[36] PETERSEN M, SEITZ H U. UDP-glucose: cyaniding 3-O-glucosyltransferase in anthocyanin-containin cell cultures from Daucuscarota L.[J]. Journal of Plant Physiology, 1986, 125: 383-390.

[37] SUN Y, HRAZDINA G. Isolation and characterization of a UDP glucose: fl avonol O3-glucosyltransferase from illuminated red cabbage (Brassica oleraceacv red Danish) seedlings[J]. Plant Physiology, 1991, 95(2): 570-576.

[38] CHENG G W, MALENCIK D A, BREEN P J. UDP-glucose: fl avonoid O-glucosyltransferase from strawberry fruit[J]. Phytochemistry, 1994, 35(6): 1435-1439.

[39] DO C B, CORMIER F, NICOLAS Y. Isolation and characterization of a UDP-glucose: cyaniding 3-O-glucosyltransferase from grape cell suspension cultures (Vitis vinifera L.)[J]. Plant Science, 1995, 112(1): 43-51.

[40] OGATA J, TERAMOTO S, YOSHITAMA K. Isolation and characterization of UDP-glucose: cyanidin 3-O-glucosyltransferase from the flower buds of Senecio×hybridus[J]. Journal of Plant Research, 1998, 111(2): 213-216.

[41] OGATA J, SAKAMOTO T, YAMAGUCHI M, et al. Isolation and characterization of anthocyanin 5-O-glucosyltransferase from fl owers of Dahlia variabilis[J]. Journal of Plant Physiology, 2001, 158(6): 709-714.

[42] YABUYA T, YAMAGUCHI M, IMAYAMA T, et al. Anthocyanin 5-O-glucosyltransferase in flowers of Iris ensata[J]. Plant Science, 2002, 162(5): 779-784.

[43] FORD C M, BOSS P K, H?J P B. Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J]. The Journal of Biological Chemistry, 1998, 273(15): 9224-9233.

[44] YAMAZAKI M, GONG Z, FUKUCHI-MIZUTANI M, et al. Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin[J]. The Journal of Biological Chemistry, 1999, 274(11): 7405-7411.

[45] HIROTANI M, KURODA R, SUZUKI H, et al. Cloning and expression of UDP-glucose: fl avonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis[J]. Planta, 2000, 210(6): 1006-1013.

[46] TAGUCHI G, UBUKATA T, HAYASHIDA N, et al. Cloning and characterization of a glucosyltransferase that reacts on 7-hydroxyl group of flavonol and 3-hydroxyl group of coumarin from tobacco cells[J]. Archives of Biochemistry and Biophysics, 2003, 420(1): 95-102.

[47] IMAYAMA T, YOSHIHARA N, FUKUCHI-MIZUTANI M, et al. Isolation and characterization of a cDNA clone of UDP-glucose: anthocyanidin 5-O-glucosyltransferase in Iris hollandica[J]. Plant Science, 2004, 167(6): 1243-1248.

[48] YOSHIHARA N, IMAYAMA T, FUKUCHI-MIZUTANI M, et al. cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Iris hollandica[J]. Plant Science, 2005, 169(3): 496-501.

[49] FUKUCHI-MIZUTANI M, OKUHARA H, FUKUI Y, et al. Biochemical and molecular characterization of a novel UDPglucose: anthocyanin 3’-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian[J]. Plant Physiology, 2003, 132(3): 1652-1663.

[50] MATO M, OZEKI Y, ITOH Y, et al. Isolation and characterization of a cDNA clone of UDP-galactose: fl avonoid 3-O-galactosyltransferase (UF3GaT) expressed in Vigna mungo seedlings[J]. Plant and Cell Physiology, 1998, 39(11): 1145-1155.

[51] JACKSON R G, LIM E K, LI Y, et al. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase[J]. The Journal of Biological Chemistry, 2001, 276(6): 4350-4356.

[52] XU Z J, NAKAJIMA M, SUZUKI Y, et al. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings[J]. Plant Physiology, 2002, 129(3): 1285-1295.

[53] LOUTRE C, DIXON D P, BRAZIER M, et al. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline[J]. The Plant Journal, 2003, 34(4): 485-493.

[54] HOU B, LIM E K, HIGGINS G S, et al. N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2004, 279: 47822-47832.

[55] HALL D, LUCA V D. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca)[J]. The Plant Journal, 2007, 49(4): 579-591.

[56] MEECH R, MACKENZIE P I. Structure and function of uridine diphosphate glucuronosyltransferases[J]. Clinical and Experimental Pharmacology & Physiology, 1997, 24(12): 907-915.

[57] KIKUCHI N, NARIMATSU H. Bioinformatics for comprehensive finding and analysis of glycosyltransferases[J]. Biochimicaet Biophysica Acta, 2006, 1760(4): 578-583.

[58] OFFEN W, MARTINEZ-FLEITES C, YANG M, et al. Structure of a fl avonoid glucosyltransferase reveals the basis for plant natural product modifi cation[J]. The EMBO Journal, 2006, 25(6): 1396-1405.

[59] HRAZDINA G, WAGNER G J, SIEGELMAN H W. Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts[J]. Phytochemistry, 1978, 17(1): 53-56.

[60] OBA K, CONN E E, CANUT H, et al. Subcellular localization of 2-(β-D-glucosyloxy)-cinnamic acids and the related β-glucosidase in leaves of Melilotusalba Desr[J]. Plant Physiology, 1981, 68(6): 1359-1363.

[61] WAGNER G J. Enzymic and protein character of tonoplast from Hippeastrum vacuoles[J]. Plant Physiology, 1981, 68(2): 499-503.

[62] ANHALT S, WEISSENB?CK G. Subcellular localization of luteolin glucuronides and related enzymes in rye mesophyll[J]. Planta, 1992, 187(1): 83-88.

[63] YAZAKI K, INUSHIMA K, KATAOKA M, et al. Intracellular localization of UDPG: p-hydroxybenzoate glucosyltransferase and its reaction product in Lithospermum cell cultures[J]. Phytochemistry, 1995, 38(5): 1127-1130.

[64] MOL J, GROTEWOLD E, KOES R. How genes paint flowers and seeds[J]. Trends in Plant Science, 1998, 3(6): 212-217.

[65] WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology, 2001, 126(2): 485-493.

[66] KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonids: a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science, 2005, 10(5): 236-242.

[67] WINKEL-SHIRLEY B. Evidence for enzyme complexes in the phenylpropanoid and fl avonoid pathways[J]. Physiologia Plantarum, 1999, 107(1): 142-149.

[68] KITAMURA S. The science of fl avonoids[M]. GROTEWOID E, ed. New York: Springer, 2006: 123-141.

[69] J?RGENSEN K, RASMUSSEN V A, MORANT M, et al. Metabolon formation and metabolic chaqnneling in the biosynthesis of plant natural products[J]. Current Opinion in Plant Biology, 2005, 8(3): 280-291.

[70] HRAZDINA G, WAGNER G J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and fl avonoids on membrane associated enzyme complexes[J]. Archives of Biochemistry and Biophysics, 1985, 237(1): 88-100.

[71] ULLMANN P, URY A, RIMMELE P, et al. UDP-glucose sterol β-Dglucosyltransferase, a plasma membrane-bound enzyme of plants: enzymatic properties and lipid dependence[J]. Biochimie, 1993, 75(8): 713-723.

[72] WAGNER G J, HRAZDINA G. Endoplasmic reticulum as asite of phenylpropanoid and fl avonoid metabolism in Hippeastrum[J]. Plant Physiology, 1984, 74(4): 901-906.

[73] ULLMANN P, BOUVIER-NAVé I, BENVENISTE P. Regulation by phospholipids and kinetic studies of plant membrane-bound UDPglucose sterol β-D-glucosyltransferase[J]. Plant Physiology, 1987, 85(1): 51-55.

[74] WARNECKE D C, HEINZ E. Purification of a membrane-bound UDP-glucose: sterol β-D-glucosyltransferase based on its solubility in diethyl ether[J]. Plant Physiology, 1994, 105(4): 1067-1073.

[75] VOGT T, TAYLOR L P. Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides[J]. Plant Physiology, 1995, 108(3): 903-911.

[76] 潘瑞熾. 植物生理學(xué)[M]. 5版. 北京: 高等教育出版社, 2004: 125-141.

[77] HARBORNE J B, WILLIAMS C A. Anthocyanins and other fl avonoids[J]. Natural Product Reports, 1998, 15(6): 631-652.

[78] HARBORNE J B, WILLIAMS C A. Advances in fl avonoid research since 1992[J]. Phytochemistry, 2000, 55(6): 481-504.

[79] HARBORNE J B, WILLIAMS C A. Anthocyanins and other fl avonoids[J]. Natural Product Reports, 2001, 18(3): 310-333.

[80] WILLIAMS C A, GRAYER R J. Anthocyanins and other fl avonoids[J]. Natural Product Reports, 2004, 21(4): 539-573.

[81] KIM H F, KIM B G, KO J H, et al. Molecular cloning, expression, and characterization of a fl avonoid glycosyltransferase from Arabidopsis thaliana[J]. Plant Science, 2006, 170(4): 897-903.

[82] JONES P, MESSNER B, NAKAJIMA J, et al. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2003, 278: 43910-43918.

[83] ONO E, HOMMA Y, HORIKAWA M, et al. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive fl avonol glycosides in grapevines (Vitis vinifera)[J]. The Plant Cell, 2010, 22: 2856-2871.

[84] HALL D, YUAN X X, MURATA J, et al. Molecular cloning and biochemical characterization of the UDP-glucose: flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca)[J]. Phytochemistry, 2012, 74: 90-99.

[85] HALL D, KIM K H, LUCA V D. Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases[J]. Planta, 2011, 234: 1201-1214.

[86] SPARVOLI F, MARTIN C, SCIENZA A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J]. Plant Molecular Biology, 1994, 24: 743-755.

[87] OWENS D K, MCINTOSH C A. Identification, recombinant expression, and biochemical characterizationof a flavonol 3-O-glucosyltransferase clone from Citrus paradisi[J]. Phytochemistry, 2009, 70: 1382-1391.

[88] NAKATSUKA T, SATO K, TAKAHASHI H,et al. Cloning and characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase gene from blue-fl owered gentian[J]. Journal of Experimental Botany, 2008, 59: 1241-1252.

[89] 王軍, 劉闖萍. 葡萄花色苷的生物合成[J]. 植物生理學(xué)通訊, 2008, 44: 363-377.

[90] JáNVáRY L, HOFFMANN T, PFEIFFER J, et al. A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L.[J]. Journal of Agriculture and Food Chemistry, 2009, 57: 3512-3518.

[91] KUROSAWA Y, TAKAHARA H, SHIRAIWA M. UDPglucuronicacid: soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds[J]. Planta, 2002, 215: 620-629.

[92] GRUBB C D, ZIPP B J, LUDWIG-MüLLER J, et al. Arabidopsis glucosyltransferase UGT74B1 functions inglucosinolate biosynthesis and auxin homeostasis[J]. The Plant Journal, 2004, 40: 893-908.

[93] JACKSON R G, KOWALCZYK M, LI Y, et al. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines[J]. The Plant Journal, 2002, 32: 573-583.

[94] SEMBDNER G, ATZORN R, SCHNEIDER G. Plant hormone conjugation[J]. Plant Molecular Biology, 1994, 26: 1459-1481.

[95] WANG J, MA X M, KOJIMA M, et al. N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana[J]. Plant Cell Physiology, 2011, 52(12): 2200-2213.

[96] LIM E K, DOUCET C J, HOU B, et al. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase[J]. Tetrahedron Asymmetry, 2005, 16: 143-147.

[97] PRIEST D M, AMBROSE S J, VAISTIJ F E, et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana[J].The Plant Journal, 2006, 46: 492-502.

[98] COLEMAN J O D, BLAKE-KAJFF M, MAANDDAVIES T G E. Detoxifi cation of xenobiotics by plants: chemical modifi cation and vacuolar compartmentation[J]. Trends in Plant Science, 1997, 2(4): 144-151.

[99] BRAZIER-HICKS M, OFFEN W A, GERSHATER M C, et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 20238-20243.

[100] BRAZIER-HICKS M, EDWARDS R. Functional importance of the family 1 glucosyltransferaseUGT72B1 in the metabolism of xenobiotics in Arabidopsis thaliana[J]. The Plant Journal, 2005, 42: 556-566.

[101] MESSNER B, THULKE O, SCHAFFNER A R. Arabidopsis glucosyltransferases with activities toward both endogenousand xenobiotic substrates[J]. Planta, 2003, 217: 138-146.

[102] POPPENBERGER B, BERTHILLER F, LUCYSHYN D, et al. Detoxifi cation of the Fusarium mycotoxin deoxynivalenol by a UDPglucosyltransferase from Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2003, 278: 47905-47914.

[103] SHAO H, HE X, ACHNINE L, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula[J]. Plant Cell, 2005, 17: 3141-3154.

[104] LI L, MODOLO L V, ESCAMILLA-TREVINO L L, et al. Crystal structure of Medicago truncatula UGT85H2-insights into the structural basis of a multifunctional (iso)fl avonoid glycosyltransferase[J]. Journal of Molecule Biology, 2007, 370: 951-963.

[105] MODOLO L V, LI L, PAN H, et al. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids[J]. Journal of Molecule Biology, 2009, 392: 1292-1302.

猜你喜歡
糖基糖苷基轉(zhuǎn)移酶
歐盟批準(zhǔn)3-巖藻糖基乳糖作為新型食品投放市場
氨基轉(zhuǎn)移酶升高真有這么可怕嗎
缺糖基轉(zhuǎn)鐵蛋白與線粒體同工酶在酒精性肝病中的臨床應(yīng)用
法尼基化修飾與法尼基轉(zhuǎn)移酶抑制劑
DNA甲基轉(zhuǎn)移酶在胚胎停育絨毛組織中的表達(dá)差異及臨床意義
甜葉菊及其糖苷的研究與發(fā)展探索
利用烷基糖苷遷移和擴(kuò)張共軛亞油酸囊泡pH窗口
血漿糖基與代謝綜合征血糖組分關(guān)聯(lián)性研究
固體超強(qiáng)酸催化合成丁基糖苷
糖基環(huán)糊精衍生物的合成及其生物應(yīng)用研究進(jìn)展
翁源县| 桃园县| 武隆县| 景东| 苏尼特左旗| 怀化市| 巴林右旗| 尚志市| 那曲县| 潍坊市| 桓仁| 怀化市| 潼南县| 贵德县| 桦川县| 南康市| 丹棱县| 固阳县| 日照市| 辽源市| 讷河市| 托克托县| 盐城市| 海盐县| 鸡泽县| 巴林左旗| 滦南县| 剑川县| 北流市| 中江县| 永新县| 博客| 景谷| 吉林省| 永顺县| 中西区| 内黄县| 塘沽区| 买车| 开平市| 霍林郭勒市|