何慶國 何傳江
摘要 研究了常利率下基于對偶復合泊松模型帶閾值的分紅策略,給出了公司在破產(chǎn)時累積紅利期望現(xiàn)值函數(shù)的兩個積分微分方程,分情況討論了收益服從指數(shù)分布時的顯示表達式,以及服從一般分布時的拉普拉斯變換表達式.
關鍵詞 對偶模型;常利率;閾值分紅;Laplace 變換
中圖分類號O211.6 文獻標識碼A
1引言
Symbol`@@ 風險理論是精算數(shù)學研究的核心內(nèi)容,它在金融與保險領域中一直備受人們的關注.對經(jīng)典的連續(xù)時間復合Poisson風險模型下的最優(yōu)分紅問題有大量研究[1-3].而隨著金融、公司業(yè)務和保險業(yè)務的發(fā)展,經(jīng)典風險模型的對偶模型越來越受到重視[4-7].近幾年來,對偶模型的研究在文獻中大量出現(xiàn).例如,Avanzi等[4]利用積分-微分方程的方法研究了基于對偶模型在常值分紅策略下公司在破產(chǎn)時的累積紅利期望現(xiàn)值,并給出了當收益服從指數(shù)分布時其顯示表達式.Andrew等[7]在文獻[4]的基礎上研究了基于對偶模型帶閾值的最優(yōu)分紅策略.
2基本模型及假設
根據(jù)經(jīng)典的連續(xù)時間復合Poisson風險模型,得到它的對偶模型的基本形式為
2.2收益服從指數(shù)分布時的顯示解
3積分微分方程
3.1方程的導出
本節(jié)中,給出V(u;b)滿足的兩個積分-微分方程,即初始盈余u低于紅利邊界b
4結論
本文是在對偶模型的基礎上引入了常數(shù)利率并采用閾值的分紅策略對模型進行研究,得帶了公司在破產(chǎn)時累積紅利期望現(xiàn)值函數(shù)的兩個積分-微分方程,并在此微分方程的基礎上分情況討論了收益服從指數(shù)分布時累積紅利期望現(xiàn)值函數(shù)的顯示表達式,以及服從一般分布時的拉普拉斯變換表達式.在經(jīng)典的風險模型中通常借助折現(xiàn)罰金函數(shù)來研究問題,而在對偶模型中也可建立相應的函數(shù)以及與經(jīng)典模型對應的其他情形有待于進一步研究.
參考文獻
[1]H U GERBER, E S W SHIU. On optimal dividend strategies in the compound Poisson model[J]. North American Actuarial Journal, 2006, 10(2):76-93.
[2]N WAN. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion[J]. Insurance:Mathematics and Economics,2007,40(3):509-523.
[3]熊雙平. 索賠次數(shù)為復合PoissonGeometric過程的常利率風險模型的罰金函數(shù)[J].經(jīng)濟數(shù)學,2008,25(2): 136-142.
[4]B AVANZI, H U GERBER, E S W SHIU. Optimal dividend in the dual model[J]. Insurance: Mathematics and Economics, 2007,41(3): 111 -123.
[5]Albrecher HANSJORG, Badescu ANDREI, Landriault DAVID. On the dual risk model with tax payments[J]. Insurance: Mathematics and Economics, 2008,42(3):1086-1094.
[6]Hans U GERBERU, Nathaniel SMITH. Optimal dividends with incomplete information in the dual model[J]. Insurance:Mathematics and Economics,2008,43(2):227-233.
[7]C Y Ng ANDREW. On a dual model with a dividend threshold[J]. Insurance:Mathematics and Economics,2009,44(2):315-324.
[8]S GAO,Z M LIU. The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy[J]. Journal of Computational and Applied Mathematics, 2010,233(9): 2181-2188.
[9]Y FANG, R WU. Optimal dividends in the Brownian motion risk model with interest[J]. Journal of Computational and Applied Mathematics, 2009, 229(1):145-151.
[10]L J ALTER Confluent hypergeometric founction[M]. London: Cambridge University Press, 1960.