侯新華 鄧新春
摘要 在一類m元離散時滯差分方程神經(jīng)網(wǎng)絡(luò)模型中引入了具有明顯實際意義的非線性不連續(xù)信號傳輸函數(shù),并利用離散系統(tǒng)的解半環(huán)分析這一強有力工具,通過引入一個輔助系統(tǒng),證明了該模型的每個解或者是最終周期的或者是無界的這一有趣的動力學性質(zhì)
關(guān)鍵詞 離散神經(jīng)網(wǎng)絡(luò);時滯;最終周期性;周期解
中圖分類號O175.7 文獻標識碼A
1引言
近年來,國際上掀起了一股人工神經(jīng)網(wǎng)絡(luò)的研究熱潮,人工神經(jīng)網(wǎng)絡(luò)獨特的結(jié)構(gòu)和處理信息的方法,使得它們在諸如信號處理、模式識別、優(yōu)化計算等許多領(lǐng)域具有廣泛的應(yīng)用前景在數(shù)學上,通常采用微分方程和差分方程式來描述神經(jīng)網(wǎng)絡(luò)中各個神經(jīng)元的活動狀態(tài),通過對這些網(wǎng)絡(luò)模型的分析來了解其相應(yīng)的動力學狀態(tài)迄今為止,國內(nèi)外人工神經(jīng)網(wǎng)絡(luò)研究工作者已提出很多有應(yīng)用背景的神經(jīng)網(wǎng)絡(luò)模型,如著名的Hopfield模型、細胞神經(jīng)網(wǎng)絡(luò)(CNN)模型、Grossberg神經(jīng)網(wǎng)絡(luò)模型等,建立了許多具備不同信息處理能力的神經(jīng)網(wǎng)絡(luò)模型,但是這些模型的動力學行為至今仍未得到充分的揭示本文將在著名的廣義Hopfield神經(jīng)網(wǎng)絡(luò)模型[1,2]基礎(chǔ)上提出新的神經(jīng)網(wǎng)絡(luò)模型:
解的最終周期行為,其中,模型中的信號傳輸函數(shù)f為
其中k為給定正整數(shù),m(m>0)為給定奇數(shù),σ為給定常數(shù),該系統(tǒng)描述了具興奮反應(yīng)的m個同樣的神經(jīng)元的離散型神經(jīng)網(wǎng)絡(luò)系統(tǒng)的發(fā)展,k為信號傳輸滯量
最近幾年,有大量的文獻是關(guān)于神經(jīng)網(wǎng)絡(luò)動力學方面的研究[1-10],例如:神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性、周期解、混沌等方面特別地,當輸入輸出函數(shù)取一些特殊函數(shù)尤其是不連續(xù)函數(shù)的離散神經(jīng)網(wǎng)絡(luò)的周期性問題也得到了一些研究[8]Yuan[7]和Dai等[9]分別研究了兩類二元離散神經(jīng)網(wǎng)絡(luò)模型的周期性和收斂性:
本文從數(shù)學理論上探討當系統(tǒng)(1)中的信號函數(shù)f為McCullochpitts型不連續(xù)非線性函數(shù)時,該模型解的最終周期行為,并按m為奇數(shù)來給出主要結(jié)果,為這類網(wǎng)絡(luò)模型的應(yīng)用提供了重要的數(shù)學理論基礎(chǔ)
2輔助系統(tǒng)及準備工作
為了研究系統(tǒng)(1)和(2)的有界解的周期性,引入一個輔助系統(tǒng),即在方程(2)中令σ=0,可得到輔助系統(tǒng):
因為(S)是無界的,所以由結(jié)論1-3即可推出定理結(jié)論成立
參考文獻
[1]J J HOPFIELD. Neural networks and physical systems with emergent collective computational abilities[J]. Proc Natl Acad Sci USA, 1982, 79: 2554-2558
[2]J J HOPFIELD. Neurons with graded response have collective computational properties like those of twostate neurons[J]. Proc Natl Acad Sci USA, 1984, 81:3088-3092
[3]S BUSENBERG, K L COOKE. Models of vertically transmitted diseases with sequentialcontinuous dynamics[C]//V LAKSHMIKANTHAN Nonlinear Phenomena in Mathematical Science. New York: Academic Press, 1982, 179-187
[4]K L COOKE, J WIENER. Retarded differential equations with piecewise constant delays[J]. J Math Anal Appl, 1984, 99: 265-297
[5]S M SHAH, J WIENER. Advanced differential equations with piecewise constant argument deviations[J]. Internat J Math Math Sci, 1983, 6: 671-703
[6]J WU. Introduction to neural dynamics and signal transmission delay[M]. Berlin: De Gruyter,2001.
[7]Z H YUAN, L H HUANG, Y CHEN. Convergence and periodicity of solutions for a discretetime network model of two neurons[J]. Math Comput Model, 2002,35: 941-950
[8]T S YI, Z ZHOU. Periodic solutions of difference equations[J]. J Math Anal Appl, 2003, 286: 220-229
[9]B X DAI, L H HUANG, X Z QIAN. Largetime dynamics of discretetime neural networks with McCullochPitts nonlinearity[J]. Electronic J Diff Eqn, 2003, 45:1-8
[10]Y CHEN. Unboundedness and periodicity of a system of delay difference equations[J].Mitt Math Sem Giessen, 2002, 248: 1-19
[11]Y CHEN. All solutions of a class of difference equations are truncated periodic[J].Appl Math Lett, 2002, 15: 975-979
[12]Z J WEI J,L H HUANG, Y M MENG. Unboundedness and periodicity of solutions for a discretetime network model of three neurons[J]. Applied Mathematical Modelling, 2008, 32: 1463-1474