詹火竻
初中數(shù)學(xué)總復(fù)習(xí)并不是對以前所教的知識進(jìn)行簡單的回憶和再現(xiàn)。最主要的是要通過對知識系統(tǒng)復(fù)習(xí),使每一章節(jié)中的各個知識點聯(lián)系起來,找出其變化規(guī)律、性質(zhì)相似之處及不同點等從而形成完整的知識體系,達(dá)到以點成線、以線成面、以面成體的目的,只有這樣學(xué)生才能把所學(xué)的知識融會貫通。
一、例題講解——善于變化
復(fù)習(xí)課例題的選擇,應(yīng)是最有代表性和最能說明問題的典型習(xí)題。對例題進(jìn)行分析和解答,發(fā)揮例題以點帶面的作用,有意識有目的地在例題的基礎(chǔ)上作系列的變化,達(dá)到能挖掘問題的內(nèi)涵和外延、在變化中鞏固知識、在運動中尋找規(guī)律的目的,實現(xiàn)復(fù)習(xí)的知識從量到質(zhì)的轉(zhuǎn)變。
例如,在復(fù)習(xí)二次函數(shù)的內(nèi)容時,我舉了這樣一個例題:二次函數(shù)的圖像經(jīng)過點(0,0)與(-1,-1),開口向上,且在x軸上截得的線段長為2。求它的解析式。因為二次函數(shù)的圖像拋物線是軸對稱圖形,由題意畫圖后,不難看出(-1,-1)是頂點,所以可用二次函數(shù)的頂點式y(tǒng)=-a(x+m)2+n,再求得它的解析式(解法略)。在數(shù)學(xué)中我對例題作了變化,把題例中的條件“拋物線在x軸上截得的線段2改成4”,求解析式。變化后,由題意畫圖可知(-1,-1)不再是拋物線的頂點,但從圖中看出,圖像除了經(jīng)過已知的兩個點外,還經(jīng)過一點 (-4,0),所以可用y=a(x-x1)(x-x2)的形式求出它的解析式。再對例題進(jìn)行變化,把題目中的“開口向上”這一條件去掉,求解析式。再次變化后,此題可有兩種情況:(i)開口向上;(ii)開口向下。所以有兩個結(jié)論。
由于條件的不斷變化,使學(xué)生不能再套用原題的解題思路,從而改變了學(xué)生機(jī)械的模仿性,使學(xué)生學(xué)會分析問題,尋找解決問題的途徑,達(dá)到了在變化中鞏固知識,在運動中尋找規(guī)律的目的
二、解題思路——善于優(yōu)化
一題多解有利于引導(dǎo)學(xué)生沿著不同的途徑去思考問題,可以優(yōu)化思維,因此要將一題多解作為一種解題的方法去訓(xùn)練學(xué)生。一題多解可以產(chǎn)生多種解題思路,但在量的基礎(chǔ)上還需要考慮質(zhì)的提高,要對多解比較,找出新穎、獨特的最佳解才能成為名副其實的優(yōu)解思路。在數(shù)學(xué)復(fù)習(xí)時,我不僅注意解題的多樣性,還重視引導(dǎo)學(xué)生分析比較各種解題思路和方法,提煉出最佳解法,從而達(dá)到優(yōu)化復(fù)習(xí)過程,優(yōu)化解題思路的目的。如:已知2斤蘋果,1斤桔子,4斤梨共價6元,又知4斤蘋果,2斤梨,2斤桔子共價4元,現(xiàn)買4斤蘋果,2斤桔子,5斤梨應(yīng)付多少錢?(解題略)本題妙在不具體求出每種水果的單價,而是使用整體解題的思路直接求出答案為8元。又如計算(6x+y/2)(3x-y/4),這是一題多項式的乘法運算,本題從表面上看無規(guī)律可找,學(xué)生也習(xí)慣按多項式系數(shù),發(fā)現(xiàn)第一個因式提出公因數(shù)2后,恰能構(gòu)成平方差公式的模型,顯然后一種解題思路優(yōu)于第一種解題的思路。對一些題目若把各因式計算后再相乘,很繁瑣,若能把各因式逆用平方差公式,再計算、約分,可以迅速地求出結(jié)果。
在復(fù)習(xí)的過程中加強(qiáng)對解題思路優(yōu)化的分析和比較,有利于培養(yǎng)學(xué)生良好的數(shù)學(xué)品質(zhì)和思維發(fā)展,能為學(xué)生培養(yǎng)嚴(yán)謹(jǐn)、創(chuàng)新的學(xué)風(fēng)打下良好的基礎(chǔ)。
三、習(xí)題歸類——善于類化
考查同一知識點,可以從不同的角度,采用不同的數(shù)學(xué)模型,作出多種不同的命題,教師在復(fù)習(xí)時要善于引導(dǎo)學(xué)生將習(xí)題歸類,集中精力解決同類問題中的本質(zhì)問題,總結(jié)出解這一類問題的方法和規(guī)律。例如在復(fù)習(xí)應(yīng)用題時,我選下列四個題目作為例題。
題目1:甲乙兩人同時從相距10000米的兩地相對而行,甲騎自行車每分鐘行80米,乙騎摩托車每分鐘行200米,問經(jīng)過幾分鐘,甲乙兩人相遇?
題目2:從東城到西城,汽車需8小時,拖拉機(jī)需12小時,兩車同時從兩地相向而行,幾小時可以相遇?
題目3:一項工程,甲隊單獨做需8天,乙隊單獨做需10天,兩隊合作需幾天完成?
題目4:一池水單開甲管8小時可以注滿,單開乙管12小時可以完成,兩管同時開放,幾小時可以注滿?
上述四道復(fù)習(xí)應(yīng)用題,題目表達(dá)方式不同,有的看似行程問題,有的看似工程問題,但本質(zhì)基本相同,數(shù)量關(guān)系、解答方法基本一樣。通過這樣的歸類訓(xùn)練,學(xué)生便能在平時的學(xué)習(xí)中,注意加強(qiáng)方法的積累和歸納,并能分析異同,把知識從一個角度遷移到另一個角度,最終達(dá)到常規(guī)圖形能熟悉、常規(guī)結(jié)論要記憶、類同方法全套用、獨創(chuàng)解法受啟發(fā)的層次,提高舉一反三、觸類旁通的能力。
責(zé)任編輯 羅峰