張愛琴,龐秋穎,閻秀峰
(東北林業(yè)大學(xué)鹽堿地生物資源環(huán)境研究中心,東北油田鹽堿植被恢復(fù)與重建教育部重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150040)
堿蓬屬(Suaeda)植物屬于重要的鹽生植物資源,全球約100余種,分布于世界各地的海濱、荒漠、湖邊及鹽堿土地區(qū)[1]。我國(guó)有堿蓬屬植物20種及1個(gè)變種,大部分分布于新疆及青海、寧夏、甘肅等西部地區(qū)以及內(nèi)蒙古、河北、山東、黑龍江、吉林等北方省份,比較特殊的南方堿蓬(S.australis)分布于廣東、廣西、福建、臺(tái)灣、江蘇的海灘沙地、紅樹林邊緣等處,而西藏角果堿蓬(S.corniculata var.olufsenii)作為1個(gè)變種僅分布于西藏[2]。近年來的研究表明,堿蓬屬植物不僅在鹽漬土壤的生物修復(fù)方面發(fā)揮著重要作用[3],而且具有多種應(yīng)用價(jià)值。例如,幼嫩莖葉用于蔬菜,種子用于榨取食用油,植株用于生產(chǎn)食用色素、膳食纖維、飼料蛋白、工業(yè)鉀鹽等。另外,堿蓬屬植物還具有清熱、降糖、降壓等保健作用以及抗氧化、抗腫瘤等藥用功效[4]。
堿蓬屬植物無泌鹽結(jié)構(gòu),葉片肉質(zhì)化程度高,通過稀釋的方式使吸收到體內(nèi)的鹽分不致發(fā)生毒害,從而體現(xiàn)出較高的耐鹽性[5]。對(duì)鹽分的高度適應(yīng)性決定了堿蓬屬植物的生態(tài)分布、在植被和生態(tài)系統(tǒng)中的作用以及它們的應(yīng)用價(jià)值,同時(shí)也吸引研究者對(duì)它們的耐鹽性特別是耐鹽機(jī)理開展了不懈的探究。
自20世紀(jì)70年代起,英國(guó)著名鹽生植物學(xué)家Timothy J.Flowers開始對(duì)堿蓬屬植物耐鹽性進(jìn)行研究[6]。Flowers實(shí)驗(yàn)室以海濱堿蓬(S.maritima)為實(shí)驗(yàn)材料,研究了NaCl脅迫下體內(nèi)離子分布和運(yùn)輸、蛋白合成、滲透調(diào)節(jié)物質(zhì)合成等鹽脅迫應(yīng)答生理機(jī)制[7-10]。同時(shí),國(guó)外研究者也陸續(xù)對(duì) S.depressa[11]、S.monoica[12]、S.macrocarpa[13]、S.australis[14]、S.japonica[15]、S.fruticosa[16]、S.nudiflora[17]、S.altissima[18-20]、S.splendens[21]、S.eltonica[22]和 S.aralocaspica[22]等其他堿蓬屬植物展開了耐鹽性研究,內(nèi)容涉及葉片結(jié)構(gòu)、光合特性、水分和離子平衡、抗氧化系統(tǒng)和滲透調(diào)節(jié)。近年則有鹽誘導(dǎo)基因的分離檢測(cè)和蛋白質(zhì)組學(xué)研究工作,以期在分子水平上解析堿蓬屬植物的耐鹽機(jī)制。有研究者構(gòu)建了NaCl誘導(dǎo)下海濱堿蓬[23]和S.asparagoides[24]的cDNA文庫,分別檢測(cè)出17和80個(gè)鹽誘導(dǎo)或與耐鹽途徑相關(guān)的基因。Askari等則對(duì)S.aegyptiaca[25]葉片進(jìn)行了差異蛋白質(zhì)組分析,分離檢測(cè)出涉及氧化應(yīng)激和多種代謝途徑的27個(gè)耐鹽相關(guān)蛋白。
國(guó)內(nèi)學(xué)者對(duì)堿蓬屬植物鹽適應(yīng)性的研究工作始于20世紀(jì)90年代,涉及該屬植物中的鹽地堿蓬(S.salsa,又名翅堿蓬 S.heteroptera)[26-28]、遼寧堿蓬(S.liaotungensis)[29-30]、灰綠堿蓬(又名堿蓬,S.glauca)[31-32]、囊果堿蓬(S.physophora)[33]、角果堿蓬(又名角堿蓬,S.corniculata)[34]、星花堿蓬(S.stellatifolia)[35]、小葉堿蓬(S.microphylla)[35]和 S.turkestanica[36],但多數(shù)工作圍繞鹽地堿蓬展開。較多的工作觀察了鹽脅迫處理(室內(nèi)實(shí)驗(yàn))或鹽堿土生長(zhǎng)(野外實(shí)驗(yàn))鹽地堿蓬的生理反應(yīng),如葉片光合放氧速率和PSII反應(yīng)中心光化學(xué)效率[37-38]、抗氧化酶(APX、CAT、GR、GST、SOD)活性[26,39]等。對(duì)耐鹽機(jī)理的分析則涉及到甜菜堿、脯氨酸、可溶性糖等的滲透調(diào)節(jié)作用[40-41],Na+、Cl-、K+的選擇性吸收[28,42]和離子區(qū)域化作用以及 Na+/H+反向運(yùn)輸體和兩種產(chǎn)H+泵即H+-ATPase和H+-PPase的作用等[43-46]。在分子水平上,山東師范大學(xué)張慧教授實(shí)驗(yàn)室構(gòu)建了鹽地堿蓬高濃度鹽誘導(dǎo)的cDNA文庫,篩選出28個(gè)可能與植物耐鹽性相關(guān)的基因[47],在此基礎(chǔ)上研究者們已經(jīng)克隆了 INPS、P5CS、BADH、CMO、NHX1、TypA1、CAX1、sAPX 等耐鹽相關(guān)基因,并導(dǎo)入擬南芥、水稻、番茄等甜土植物中且顯著提高了轉(zhuǎn)基因植株的耐鹽能力[48-50]。
綜觀國(guó)內(nèi)外的研究工作,人們已經(jīng)對(duì)20種堿蓬屬植物進(jìn)行了觀察和鹽脅迫實(shí)驗(yàn),研究了不同器官或組織的生理生化特征及其對(duì)鹽脅迫的反應(yīng),并基于這些研究分析了鹽脅迫的應(yīng)答機(jī)制。這些研究表明,促進(jìn)葉片肉質(zhì)化、對(duì)細(xì)胞內(nèi)離子進(jìn)行區(qū)域化、合成滲透調(diào)節(jié)物質(zhì)和增強(qiáng)抗氧化系統(tǒng)能力是堿蓬屬植物響應(yīng)和適應(yīng)鹽脅迫的重要方式和途徑。下面從這幾個(gè)方面對(duì)堿蓬屬植物的耐鹽機(jī)理研究加以介紹。
葉片肉質(zhì)化是堿蓬屬植物適應(yīng)鹽漬環(huán)境的一種重要方式,具體表現(xiàn)為薄壁細(xì)胞組織大量增生、細(xì)胞數(shù)目增多、體積增大,從而可以吸收和貯存大量水分,使單位體積組織內(nèi)含水量增加,進(jìn)而稀釋植物從環(huán)境吸收的鹽分,維持植物的正常生理活動(dòng)。
Shomer-Ilan等在1975年對(duì)S.monoica進(jìn)行了葉片解剖學(xué)結(jié)構(gòu)分析,首次觀察了S.monoica葉片的肉質(zhì)化結(jié)構(gòu),數(shù)層薄壁細(xì)胞構(gòu)成的儲(chǔ)水組織圍繞在維管束周圍,葉片呈半圓狀肉質(zhì)化[51]。隨后人們?cè)趯?duì)堿蓬屬植物的研究中,發(fā)現(xiàn)鹽處理可增加葉片的肉質(zhì)化程度,Story和Wyn Jones[12]、Eshel[52]分別以葉片濕重與干重之比和葉片直徑為指標(biāo)描述了鹽處理對(duì) S.monoica和 S.aegyptiaca肉質(zhì)化程度的促進(jìn)作用,后人對(duì) S.fruticosa[53]、鹽地堿蓬[54]和囊果堿蓬[58]等植物的鹽脅迫實(shí)驗(yàn),也都證實(shí)堿蓬屬植物能夠通過增強(qiáng)肉質(zhì)化程度的方式來稀釋鹽分,從而減少鹽離子對(duì)自身的毒害作用。綦翠華等[59]用不同的鈉鹽及氯化物鹽做處理實(shí)驗(yàn),認(rèn)為NaCl處理促進(jìn)鹽地堿蓬肉質(zhì)化是Na+和Cl-兩種離子作用的結(jié)果,而Na+起主導(dǎo)作用。劉彧等[57]對(duì)黃河三角洲內(nèi)地重鹽堿地和海邊潮間帶兩種生境下的鹽地堿蓬的觀察結(jié)果表明,葉片中Na+、Cl-的積累也是自然生境下鹽地堿蓬肉質(zhì)化的主要誘導(dǎo)因素,同樣也是Na+起主導(dǎo)作用。至于Na+和Cl-如何促進(jìn)堿蓬屬植物的肉質(zhì)化目前并不清楚,有學(xué)者推斷Na+通過膜上與鈉泵有關(guān)的ATP酶,促進(jìn)ATP合成,從而促使細(xì)胞伸長(zhǎng),而氯化物引起堿蓬屬植物葉片肉質(zhì)化的原因可能與氯離子造成植物細(xì)胞原生質(zhì)膨脹有關(guān)[58-59]。
迄今為止,人們還不清楚鹽脅迫誘導(dǎo)堿蓬屬植物葉片肉質(zhì)化的分子機(jī)制。Askari等[25]基于對(duì)NaCl處理的S.aegyptiaca的葉片差異蛋白質(zhì)組分析認(rèn)為,一種肌動(dòng)蛋白結(jié)合蛋白Profilin可能與S.aegyptiaca的葉片肉質(zhì)化有關(guān),推測(cè)Profilin與同時(shí)上調(diào)表達(dá)的脯氨酸豐富蛋白共同參與S.aegyptiaca在鹽脅迫下細(xì)胞內(nèi)微絲的活動(dòng),配合細(xì)胞吸水膨脹進(jìn)而增加葉片肉質(zhì)化。另外,水通道蛋白(AQPs)也可能參與調(diào)控葉片肉質(zhì)化。AQPs通過介導(dǎo)根吸水量的增加參與植物響應(yīng)逆境脅迫過程,AQPs表達(dá)量的上調(diào)增加了膜的通透性,介導(dǎo)鹽地堿蓬根部水吸收量增加,形態(tài)表現(xiàn)為細(xì)胞膨脹,葉片肉質(zhì)化程度增加,從而在植物通過儲(chǔ)存水分度過逆境的過程中起到重要作用[54]。
鹽分過多會(huì)導(dǎo)致植物細(xì)胞內(nèi)離子紊亂,不僅破壞了Na+和Cl-的均衡,而且也影響了K+、Ca2+等其他離子在細(xì)胞內(nèi)的分布和作用,過多的Na+和Cl-還會(huì)產(chǎn)生諸多毒害作用。在鹽脅迫下建立新的離子平衡對(duì)于植物適應(yīng)鹽脅迫、維持正常生命活動(dòng)具有重要意義。將進(jìn)入體內(nèi)的鹽分在器官、組織、細(xì)胞水平進(jìn)行區(qū)域化,是鹽生植物適應(yīng)鹽脅迫的重要方式,與拒鹽、排鹽具有相似功效。堿蓬屬植物無鹽腺等泌鹽結(jié)構(gòu),但能夠通過將鹽離子運(yùn)送到液泡中進(jìn)行區(qū)域化的方式應(yīng)對(duì)鹽脅迫[5]。通過這種方式,一方面降低了細(xì)胞質(zhì)中的鹽濃度,使胞內(nèi)正常的代謝活動(dòng)順利進(jìn)行,另一方面增加了液泡內(nèi)的離子濃度,保證了植物細(xì)胞的正常吸水,從而使脅迫得以緩和。
人們利用 X-衍射顯微分析技術(shù)對(duì) S.monoica[60]、海濱堿蓬[61-62]、S.fruticosa[53]、鹽地堿蓬[44,63]等植物進(jìn)行了鹽脅迫后Na+的定位分析,發(fā)現(xiàn)它們將從環(huán)境中吸收的大部分Na+隔離在液泡中,以維持細(xì)胞內(nèi)正常的離子平衡。深入的分析表明,堿蓬屬植物離子區(qū)域化是由液泡膜Na+/H+逆向轉(zhuǎn)運(yùn)蛋白將Na+隔離在液泡中產(chǎn)生的[64-65]。Na+/H+逆向轉(zhuǎn)運(yùn)蛋白以及與其功能相關(guān)的液泡型H+-ATPase、H+-PPase在一定濃度鹽處理后的鹽地堿蓬中活性增加,蛋白表達(dá)量上調(diào)[43-44,66],表明三者在隔離過量Na+過程中承擔(dān)著重要的角色。
滲透調(diào)節(jié)能力是植物耐鹽的基本特征之一。耐鹽植物能夠通過積累無機(jī)離子和合成有機(jī)小分子滲透調(diào)節(jié)物質(zhì)來應(yīng)對(duì)高濃度鹽引起的滲透脅迫。鹽脅迫下,參與植物滲透調(diào)節(jié)的無機(jī)離子主要是Na+、K+、Mg2+、Ca2+以及等。目前的研究顯示這一無機(jī)陰離子在堿蓬屬植物的滲透調(diào)節(jié)中作用突出。在NaCl脅迫下,鹽地堿蓬[28]、囊果堿蓬[33]和灰綠堿蓬[31]的葉片中均觀察到有大量的積累能夠有效降低植物在鹽脅迫下的細(xì)胞水勢(shì),促進(jìn)細(xì)胞吸水。除外,K+、Mg2+、Ca2+等陽離子含量及 Na+/K+在堿蓬屬植物受到鹽脅迫后也發(fā)生了變化,鹽地堿蓬[43]、海濱堿蓬[67]、S.fruticosa[53]和 S.australis[14]等在鹽脅迫下體內(nèi)K+含量降低,Na+/K+比例在鹽處理后的灰綠堿蓬[31]和海濱堿蓬[67]中顯著升高,這與許多植物通過在體內(nèi)保持高K+、低Na+水平來維持鹽脅迫下的滲透平衡不相一致?;揖G堿蓬在鹽脅迫下,體內(nèi)Ca2+和Mg2+含量隨處理濃度增加而上升[31],而在S.fruticosa[53]中卻呈相反趨勢(shì)。目前這些陽離子參與維持鹽脅迫下堿蓬屬植物滲透平衡的調(diào)節(jié)機(jī)制還不清楚。
鹽脅迫下合成可溶性有機(jī)小分子物質(zhì)充當(dāng)滲透調(diào)節(jié)劑也是植物應(yīng)對(duì)滲透脅迫的重要調(diào)節(jié)方式。堿蓬屬植物中受鹽脅迫誘導(dǎo)合成的滲透調(diào)節(jié)物質(zhì)主要有脯氨酸、甜菜堿、有機(jī)酸類和一些可溶性糖。脯氨酸作為一種相容滲透劑不僅可以維持胞質(zhì)的水分狀況,還是一種使胞內(nèi)大分子物質(zhì)免受鹽離子毒害的保護(hù)劑,鹽地堿蓬[28,68]、海濱堿蓬[67]、囊果堿蓬[33]和灰綠堿蓬[31]等堿蓬屬植物在高鹽脅迫下體內(nèi)的脯氨酸含量均顯著升高。甜菜堿在鹽脅迫下除參與滲透調(diào)節(jié)外,對(duì)三羧酸循環(huán)的主要酶和末端氧化關(guān)鍵酶也有保護(hù)作用,已經(jīng)觀察到鹽脅迫誘導(dǎo)甜菜堿在海濱堿蓬[69-70]、鹽地堿蓬[40]、S.fruticosa[71]、灰綠堿蓬[31]、S.aralocaspica[22]和Suaeda eltonica[22]等堿蓬屬植物的葉片中大量積累。甜菜堿的生物合成主要由膽堿單加氧酶(CMO)和甜菜堿醛脫氫酶(BADH)催化的源自膽堿的兩次氧化反應(yīng),人們觀察到CMO基因在NaCl脅迫下的鹽地堿蓬中表達(dá)明顯上調(diào)[72],并且在鹽處理下 S.aegyptiaca[25]、S.aralocaspica[22]和 Suaeda eltonica[22]中 CMO 蛋白表達(dá)量也上調(diào)。另有實(shí)驗(yàn)表明BADH基因表達(dá)量在鹽脅迫下的海濱堿蓬[67]和鹽地堿蓬[72]中顯著上調(diào)。此外,可溶性糖和有機(jī)酸類物質(zhì)在堿蓬屬植物對(duì)抗?jié)B透脅迫過程中也發(fā)揮了一定的作用,海濱堿蓬[73]、鹽地堿蓬[41]和灰綠堿蓬[31]中可溶性糖含量表現(xiàn)為受鹽脅迫誘導(dǎo)增加,草酸和蘋果酸等有機(jī)酸類物質(zhì)的含量在NaCl處理下的灰綠堿蓬[31]和鹽地堿蓬[72]中也有顯著增加。
鹽脅迫下,植物體內(nèi)包括光合電子傳遞和呼吸電子傳遞等在內(nèi)的多條代謝途徑會(huì)在細(xì)胞內(nèi)積累過量的活性氧類物質(zhì)(ROS),包括單線態(tài)氧、超氧陰離子、過氧化氫、羥自由基等。這些活性氧類物質(zhì)啟動(dòng)膜脂中不飽和脂肪酸的過氧化,從而對(duì)膜脂、膜蛋白及核酸等結(jié)構(gòu)和功能分子造成氧化損傷。植物抗氧化系統(tǒng)通常分為酶促防御系統(tǒng)和非酶促防御系統(tǒng),前者主要有超氧化物歧化酶(SOD)、抗壞血酸過氧化物酶(APX)、谷胱甘肽過氧化物酶(GPX)、過氧化物還原酶(PrxR)和過氧化氫酶(CAT),而后者主要包括抗壞血酸和谷胱甘肽等。堿蓬屬植物也是通過這兩類系統(tǒng)對(duì)抗由鹽脅迫引起的氧化脅迫,主要通過超氧化物歧化作用、過氧化氫酶途徑(CAT pathway)、過氧化物還原酶/硫氧還蛋白途徑(PrxR/TRx pathway)和谷胱甘肽過氧化物酶途徑(GPX pathway)及抗壞血酸-谷胱甘肽循環(huán)(GSH-AsA cycle)使活性氧類物質(zhì)的產(chǎn)生與清除保持平衡。
SOD催化部分超氧陰離子發(fā)生歧化作用轉(zhuǎn)化為H2O2,H2O2在CAT、APX和GPX等抗氧化酶的催化下轉(zhuǎn)化為 H2O。星花堿蓬[35]、小葉堿蓬[35]、鹽地堿蓬[39,74]和海濱堿蓬[75]等堿蓬屬植物在 NaCl處理下均觀察到SOD活性增加,并且明顯表現(xiàn)出隨鹽處理濃度提高而增加的鹽誘導(dǎo)趨勢(shì)。
過氧化氫酶途徑是指在過氧化物酶體中H2O2直接被CAT催化還原生成H2O和O2,該途徑能夠有效清除細(xì)胞內(nèi)過量的H2O2。鹽地堿蓬[26,72]和海濱堿蓬[23,75]在鹽處理下其體內(nèi)的CAT活性均被誘導(dǎo)增強(qiáng)。
過氧化物還原酶/硫氧還蛋白途徑是植物細(xì)胞內(nèi)抗氧化防御系統(tǒng)的中心環(huán)節(jié),可利用硫氧還蛋白可逆的雙硫鍵和硫醇變化的特性將其作為氧化還原的載體,為PrxR清除H2O2提供電子。S.aegyptiaca中PrxR蛋白在150 mmol/L NaCl處理下表達(dá)量顯著上調(diào)[25]。
在谷胱甘肽過氧化物酶途徑中,GPX可催化GSH與H2O2結(jié)合,生成H2O和GSSH,隨后由GR將GSSH還原為GSH,為下一輪H2O2的清除提供電子供體。鹽地堿蓬[72]和S.fruticosa[76]在鹽處理下葉片內(nèi)GPX活性增加,在S.aegyptiaca的鹽脅迫蛋白質(zhì)組研究中,葉片GPX蛋白表達(dá)明顯上調(diào)[25]。
抗壞血酸-谷胱甘肽循環(huán)發(fā)生在線粒體、葉綠體基質(zhì)和細(xì)胞質(zhì)中,循環(huán)中的AsA和GSH可抑制脂質(zhì)過氧化并且具有清除自由基的作用。GSH作為抗氧化劑可直接清除ROS。AsA是超氧陰離子和羥自由基的有效清除劑,同時(shí)也是單線態(tài)氧的猝滅劑,它可以清除膜脂過氧化過程中產(chǎn)生的多聚不飽和脂肪酸(PUFA)自由基,進(jìn)而保護(hù)細(xì)胞中各酶類不受氧化損傷。鹽地堿蓬在200 mmol/L NaCl的處理下,葉片中AsA和GSH的含量增加同時(shí)H2O2含量下降[26]。
GSH-AsA循環(huán)主要由GPX和APX兩種酶催化,APX利用AsA作為電子供體將H2O2還原為H2O,同時(shí)AsA被氧化為單脫氫抗壞血酸(MDA),MDA由單脫氫抗壞血酸還原酶(MDHAR)催化還原再生成AsA。此外,MDA還能夠以NAD(P)H為質(zhì)子供體轉(zhuǎn)變?yōu)槊摎淇箟难?DHA),DHA在脫氫抗壞血酸還原酶(DHAR)的催化下與還原型谷胱甘肽(GSH)作用生成AsA,并伴隨著氧化型GSH即GSSH的產(chǎn)生,GSSH又可通過谷胱甘肽還原酶(GR)的作用發(fā)生還原反應(yīng)再生成GSH,完成GSH-AsA循環(huán)。在150 mmol/L NaCl處理的S.aegyptiaca的葉片蛋白質(zhì)組中,MDHAR和APX的表達(dá)量均表現(xiàn)為明顯上調(diào)[25]。鹽地堿蓬在200 mmol/L NaCl處理7d后,伴隨著H2O2含量的減少和膜脂過氧化水平的降低,無論是葉綠體基質(zhì)中的APX、GR還是類囊體結(jié)合的APX、GR,活性均顯著增加[26]。
除上述抗氧化途徑外,Wang等[49]在400 mmol/L NaCl處理的鹽地堿蓬中發(fā)現(xiàn)了細(xì)胞清除ROS的新成員,一種葉綠體特異基因SsTypA1負(fù)責(zé)編碼的TypA/BipA型GTP酶。這種GTP酶隨鹽處理時(shí)間增加表現(xiàn)出明顯的鹽誘導(dǎo)性,同時(shí)觀察到H2O2含量有明顯下降趨勢(shì)。在氧化脅迫下轉(zhuǎn)SsTypA1基因的煙草伴隨著H2O2含量的下降煙草氧化應(yīng)激的耐受性明顯增強(qiáng),驗(yàn)證了這種GTP酶在清除ROS過程中的作用。
迄今為止針對(duì)堿蓬屬植物已經(jīng)開展了大量研究并積累了眾多有益的認(rèn)知,為揭示堿蓬屬植物的耐鹽機(jī)制奠定了基礎(chǔ),同時(shí)也為全面認(rèn)識(shí)真鹽生植物的鹽耐受性提供了重要線索。但現(xiàn)有的工作仍有一定的局限性,在某些方面有所忽視或重視不夠。例如,(1)基本上集中于地上部分而對(duì)地下部分的反應(yīng)關(guān)注較少。事實(shí)上,根是植物水分與營(yíng)養(yǎng)吸收、運(yùn)輸?shù)闹匾鞴?,也是脅迫應(yīng)答的首要部位。(2)多是對(duì)少數(shù)生物學(xué)指標(biāo)或生理學(xué)現(xiàn)象的單獨(dú)觀察而少于對(duì)生理代謝過程的整體、綜合分析。事實(shí)上,植物對(duì)鹽堿環(huán)境的響應(yīng)與適應(yīng)是生理代謝上的復(fù)雜反應(yīng),存在著一系列信號(hào)途徑協(xié)同調(diào)控下的多種生理機(jī)制。(3)多為針對(duì)某種堿蓬的獨(dú)立分析而少于對(duì)近緣種的比較研究。事實(shí)上,堿蓬屬的一些種形態(tài)相近而生境趨異,比較它們的鹽適應(yīng)性差異機(jī)制具有重要意義。(4)基本上局限于中性鹽(NaCl)而對(duì)堿性鹽(Na2CO3或NaHCO3)涉及較少。事實(shí)上,堿蓬屬植物分布的區(qū)域也包括以堿性鹽為主的東北松嫩鹽堿草地。
顯然,目前的認(rèn)識(shí)距離系統(tǒng)地闡明堿蓬屬植物的耐鹽機(jī)制尚有較大的差距。借鑒模式植物擬南芥和鹽生模式植物鹽芥的研究歷程和現(xiàn)狀,結(jié)合現(xiàn)代生物學(xué)特別是研究手段的發(fā)展趨勢(shì),至少應(yīng)該在以下幾個(gè)方面加強(qiáng)研究,以利于全面而深入地認(rèn)知堿蓬屬植物的耐鹽機(jī)理。(1)全面了解堿蓬屬植物感知并傳遞鹽脅迫信號(hào)的胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng),深入認(rèn)識(shí)堿蓬屬植物響應(yīng)和適應(yīng)鹽脅迫的信號(hào)網(wǎng)絡(luò)和調(diào)控機(jī)制。目前僅查到一篇文獻(xiàn)涉及G蛋白偶聯(lián)受體和Ca2+/鈣調(diào)蛋白介導(dǎo)的信號(hào)途徑[77],這顯然遠(yuǎn)遠(yuǎn)不夠。(2)深入研究堿蓬屬植物中由鹽脅迫引起的次生脅迫如滲透脅迫和氧化脅迫,結(jié)合分析受脅迫誘導(dǎo)的轉(zhuǎn)錄調(diào)控和能量代謝途徑明確滲透調(diào)節(jié)機(jī)制和抗氧化機(jī)制。(3)基于系統(tǒng)生物學(xué)研究思路,采用基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)等高通量分析技術(shù)研究堿蓬屬植物在鹽脅迫下多個(gè)水平上生物分子的差異表達(dá),探索該屬植物由復(fù)雜信號(hào)網(wǎng)絡(luò)調(diào)控響應(yīng)鹽脅迫的特殊生理特征和特異代謝途徑,從整體上揭示其耐鹽性機(jī)制。
[1] Zhao K F,Li F Z.Halophytes in China.Beijing:Science Press,1999:17-91.
[2] Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita.Flora Reipublicae Popularis Sinicae Vol.25(2).Beijing:Science Press,1979:115-135.
[3] Zhang X J,F(xiàn)an S J,Li F Z.Development and utilization of Suaede salsa in China.Chinese Wild Plant Resources,2003,22(2):1-3.
[4] Ding H R,Hong L Z,Yang Z Q,Wang M W,Wang K,Zhu X M.Progress of study on halophyte Suaeda salsa.Acta Agriculturae Jiangxi,2008,20(8):35-37.
[5] Flowers T J,Colmer T D.Salinity tolerance in halophytes.New Phytologist,2008,179(4):945-963.
[6] Flowers T J.Salt tolerance in Suaeda maritima(L.)Dum.The effect of sodium chloride on growth respiration and soluble enzymes in a comparative study with Pisum sativum L.Journal of Experimental Botany,1972,23(2):310-321.
[7] Yeo A R,F(xiàn)lowers T J.Ion transport in Suaeda maritima:its relation to growth and implications for the pathway of radial transport of ions across the root.Journal of Experimental Botany,1986,37(2):143-159.
[8] Maathuis F J M,F(xiàn)lowers T J,Yeo A R.Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima(L.)Dum.and its relation to tonoplast permeability.Journal of Experimental Botany,1992,43(9):1219-1223.
[9] Wang S M,Zhang J L,F(xiàn)lowers T J.Low-affinity Na+uptake in the halophyte Suaeda maritima.Plant Physiology,2007,145(2):559-571.
[10] Wetson A M,F(xiàn)lowers T J.The effect of saline hypoxia on growth and ion uptake in Suaeda maritima.Functional Plant Biology,2010,37(7):646-655.
[11] Williams M D,Ungar I A.The effect of environmental parameters on the germination,growth,and development of Suaeda depressa(Pursh)Wats.American Journal of Botany,1972,59(9):912-918.
[12] Storey R,Wyn Jones R G.Responses of Atriplex spongiosa and Suaeda monoica to salinity.Plant Physiology,1979,63(1):156-162.
[13] Larher F,Jolivet Y,Briens M,Goas M.Osmoregulation in higher plant halophytes:Organic nitrogen accumulation in glycine betaine and proline during the growth of Aster tripolium and Suaeda macrocarpa under saline conditions.Plant Science Letters,1982,24(2):201-210.
[14] Robinson S P,Downton W J S.Potassium,sodium and chloride ion concentrations in leaves and isolated chloroplasts of the halophyte Sueda australis R.Br.Australian Journal of Plant Physiology,1985,12(5):471-479.
[15] Yokoishi T,Tanimoto S.Seed germination of the halophyte Suaeda japonica under salt stress.Journal of Plant Research,1994,107:385-388.
[16] Khan M A,Ungar I A.Germination of salt tolerant shrub Suaeda fruticosa from Pakistan:Salinity and temperature responses.Seed Science and Technology,1998,26(3):657-667.
[17] Cherian S,Reddy M P.Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq.Biologia plantarum,2003,46(2):193-198.
[18] Kurkova E B,Myasoedov N A,Kotov A A,Kotova L M,Lun'kov R V,Shamsutdinov N Z,Balnokin Y V.Specific structure of root cells of the salt-accumulating halophyte Suaeda altissima L.Doklady Biological Sciences,2002,387:573-576.
[19] Balnokin Y V,Kurkova E B,Myasoedov N A,Lun'kov R V,Shamsutdinov N Z,Egorova E A,Bukhov N G.Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt-water balance by extremely high concentrations of NaCl.Russian Journal of Plant Physiology,2004,51(6):815-821.
[20] Lun'kov R V,Andreev I M,Myasoedov N A,Khailova G F,Kurkova E B,Balnokin Y V.Functional identification of H+-ATPase and Na+/H+antiporter in the plasma membrane isolated from the root cells of salt-accumulating halophyte Suaeda altissima.Russian Journal of Plant Physiology,2005,52(5):635-644.
[21] Redondo-Gómez S,Mateos-Naranjo E,Cambrollé J,Luque T,Enrique Figueroa M,Davy A J.Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.Annals of Botany,2008,102(1):103-112.
[22] Park J,Okita T W,Edwards G E.Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica(Chenopodiaceae).Plant Science,2009,176(5):616-626.
[23] Sahu B B,Shaw B P.Isolation,identification and expression analysis of salt-induced genes in Suaeda maritima,a natural halophyte,using PCR-based suppression subtractive hybridization.BMC Plant Biology,2009,9:69.
[24] Ayarpadikannan S,Chung E S,Cho C W,So H A,Kim S O,Jeon J M,Kwak M H,Lee S W,Lee J H.Exploration for the salt stress tolerance genes from a salt-treated halophyte,Suaeda asparagoides.Plant Cell Reports,2012,31(1):35-48.
[25] Askari H,Edqvist J,Hajheidari M,Kafi M,Salekdeh G H.Effects of salinity levels on proteome of Suaeda aegyptiaca leaves.Proteomics,2006,6(8):2542-2554.
[26] Pang C H,Zhang S J,Gong Z Z,Wang B S.NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa.Physiologia Plantarum,2005,125(4):490-499.
[27] Han N,Shao Q,Lu C M,Wang B S.The leaf tonoplast V-H+-ATPase activity of a C3halophyte Suaeda salsa is enhanced by salt stress in a Cadependent mode.Journal of Plant Physiology,2005,162(3):267-274.
[28] Zhang H Y,Zhao K F.Effects of salt and water stresses on osmotic adjustment of Suaeda salsa seedlings.Acta Botanica Sinica,1998,40(1):56-61.
[29] Zhang Y,Yin H,Li D,Zhu W W,Li Q L.Functional analysis of BADH gene promoter from Suaeda liaotungensis K.Plant Cell Reports,2008,27(3):585-592.
[30] Li Q L,Gao X R,Yu X H,Wang X Z,An L J.Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco.Biotechnology Letters,2003,25(17):1431-1436.
[31] Yang C W,Shi D C,Wang D L.Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkaliresistant halophyte Suaeda glauca(Bge.).Plant Growth Regulation,2008,56(2):179-190.
[32] Li W Q,Liu X J,Zhao K F,Liu H L.Growth,development and ions distribution of three halophytes under salt stress.Chinese Journal of Eco-Agriculture,2006,14(2):49-52.
[33] Song J,F(xiàn)eng G,Tian C Y,Zhang F S.Osmotic adjustment traits of Suaeda physophora,Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions.Plant Science,2006,170(1):113-119.
[34] Wei L,Pang Q Y,Zhang A Q,Guo J,Yan X F.Effects of salt and alkali stresses on photosynthetic characteristics of Suaeda corniculata seedlings.Journal of Northeast Forestry University,2012,40(1):32-35.
[35] Sun L,Xiao L,Yan P,Chen J X.Studies on the activity and isozyme of superoxide dismutase in chenopodiacea soline species.Journal of Shihezi University(Natural Science),2004,22(6):500-503.
[36] Wang Y Q,He J Z,Zhao X L,Zhang H Y,Deng F,Jia X Y,Liu C.Comparison of salt-tolerance and drought-tolerance of two desert plants(Karelinia caspica and Suaeda turkestanica Litw.)in Tarim.Genomics and Applied Biology,2009,28(6):1128-1134.
[37] Lu C M,Qiu N W,Wang B S,Zhang J H.Salinity treatment shows no effects on photosystem II photochemistry,but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa.Journal of Experimental Botany,2003,54(383):851-860.
[38] Shi G W,Song J,Gao B,Yang Q,F(xiàn)an H,Wang B S,Zhao K F.The comparation on seedling emergence and salt tolerance of Suaeda Salsa L.from different habitats.Acta Ecologica Sinica,2009,29(1):138-143.
[39] Wang B S,Lüttge U,Ratajczak R.Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3halophyte Suaeda salsa L.Journal of Plant Physiology,2004,161(3):285-293.
[40] Liu J Y,Yi Y J,Zhao K F.Effects of salinity on ion contents,betaine level and betaine-aldehyde dehydrogenase activity in seepweed(Suaeda Salsa)seedlings.Acta Botanica Sinica,1994,36(8):622-626.
[41] Chen M,Qiu N W,Ding S H,Yang H B,Zhang Q F,Wang B S.Effect of NaCl treatment on growth,solutes accumulation of cellular level and whole level of Suaeda Salsa L.Shandong Science,2001,14(2):21-27.
[42] Song J,Chen M,F(xiàn)eng G,Jia Y H,Wang B S,Zhang F S.Effect of salinity on growth,ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa.Plant and Soil,2009,314(1/2):133-141.
[43] Wang B S,Lüttge U,Ratajczak R.Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa.Journal of Experimental Botany,2001,52(365):2355-2365.
[44] Qiu N W,Chen M,Guo J R,Bao H Y,Ma X L,Wang B S.Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+antiporter as a response to NaCl treatment in a C3halophyte Suaeda salsa.Plant Science,2007,172(6):1218-1225.
[45] Chen M,Song J,Wang B S.NaCl increases the activity of the plasma membrane H+-ATPase in C3halophyte Suaeda salsa callus.Acta Physiologiae Plantarum,2010,32(1):27-36.
[46] Yang M F,Song J,Wang B S.Organ-specific responses of vacuolar H+-ATPase in the shoots and roots of C3halophyte Suaeda salsa to NaCl.Journal of Integrative Plant Biology,2010,52(3):308-314.
[47] Zhang L,Ma X L,Zhang Q,Ma C L,Wang P P,Sun Y F,Zhao Y X,Zhang H.Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library.Gene,2001,267(2):193-200.
[48] Chen G Q,Wang P.Research on Advancement of salt tolerant genes in Suaeda salsa.Biotechnology Bulletin,2008,(5):18-21.
[49] Wang F,Zhong N Q,Gao P,Wang G L,Wang H Y,Xia G X.SsTypA1,a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa,plays a role in oxidative stress tolerance.Plant,Cell& Environment,2008,31(7):982-994.
[50] Han N,Shao Q,Bao H Y,Wang B S.Cloning and characterization of a Ca2+/H+antiporter from halophyte Suaeda salsa L.Plant Molecular Biology Reporter,2011,29(2):449-457.
[51] Shomer-Ilan A,Beer S,Waisel Y.Suaeda monoica,a C4plant without typical bundle sheaths.Plant Physiology,1975,56(5):676-679.
[52] Eshel A.Response of Suaeda aegyptiaca to KCl,NaCl and Na2SO4treatments.Physiologia Plantarum,1985,64(3):308-315.
[53] Khan M A,Ungar I A,Showalter A M.The effect of salinity on the growth,water status,and ion content of a leaf succulent perennial halophyte,Suaeda fruticosa(L.)Forssk.Journal of Arid Environments,2000,45(1):73-84.
[54] Qi C H,Chen M,Song J,Wang B S.Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa,under salinity.Plant Science,2009,176(2):200-205.
[55] Lu X F.Analysis of Salt-tolerance in Suaeda physophora seedlings under NaCl solution[D].Urumqi:Xinjiang Agricultural University,2009.
[56] Qi C H,Han N,Wang B S.Effect of different salt treatments on succulence of Suaeda salsa seedlings.Chinese Bulletin of Botany.2005,22(2):175-182.
[57] Liu Y,Ding T L,Wang B S.Study on the leaf succulence of Suaeda Salsa under differently natural saline environments.Journal of Shandong Normal University(Natural Science),2006,21(2):102-104.
[58] Jennings D H.Halophytes,succulence and sodium in plants-a uinified theory.New Phytologist,1968,67(4):899-911.
[59] Wang J L,Ding T L,Wang B S.Succulent plant and their adaptations to drought and saline environment.Journal of Shandong Normal University(Natural Science),2005,20(4):74-75.
[60] Waisel Y,Eshel A.Localization of ions in the mesophyll cells of the succulent halophyte Suaeda monoica Forssk.by X-ray microanalysis.Experientia,1971,27(2):230-232.
[61] Harvey D M R,Hall J L,F(xiàn)lowers T J,Kent B.Quantitative ion localization within Suaeda maritima leaf mesophyll cells.Planta,1981,151(6):555-560.
[62] Hajibagheri M A,F(xiàn)lowers T J.X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima(L.)Dum.Planta,1989,177(1):131-134.
[63] Zhao K F,F(xiàn)an H,Zhou S,Song J.Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe daigremontiana under iso-osmotic salt and water stress.Plant Science,2003,165(4):837-844.
[64] Tester M,Davenport R.Na+tolerance and Na+transport in higher plants.Annals of Botany,2003,91(5):503-527.
[65] Munns R,Tester M.Mechanisms of salinity tolerance.Annual Review of Plant Biology,2008,59:651-681.
[66] Li P H,Wang Z L,Zhang H,Wang B S.Cloning and expression analysis of the B subunit of V-H+-ATPase in leaves of halophyte Suaeda salsa under salt stress.Acta Botanica Sinica,2004,46(1):93-99.
[67] Moghaieb R E A,Saneoka H,F(xiàn)ujita K.Effect of salinity on osmotic adjustment,glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants,Salicornia europaea and Suaeda maritima.Plant Science,2004,166(5):1345-1349.
[68] Duan D Y,Liu X J,Li C Z,Qiao H L.The effects of nitrogen on the growth and solutes of halophyte Suaeda salsa seedlings under the stress of NaCl.Acta Pratacul Turae Sinica,2005,14(1):63-68.
[69] Hall J L,Harvey D M R,F(xiàn)lowers T J.Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima.Planta,1978,140(1):59-62.
[70] Gorham J,Wyn Jones R G.Solute distribution in Suaeda maritima.Planta,1983,157(4):344-349.
[71] Khan M A,Ungar I A,Showalter A M,Dewald H D.NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan.Physiologia Plantarum,1998,102(4):487-492.
[72] Wu H F,Liu X L,You L P,Zhang L B,Zhou D,F(xiàn)eng J H,Zhao J M,Yu J B.Effects of salinity on metabolic profiles,gene expressions,and antioxidant enzymes in halophyte Suaeda salsa.Journal of Plant Growth Regulation,2012,31(3):332-341.
[73] Flowers T J,Hall J L.Salt tolerance in the halophyte Suaeda maritima(L)Dum.:the influence of the salinity of the culture solution on the content of various organic compounds.Annals of Botany,1978,42(5):1057-1063.
[74] Guan B,Yu J B,Wang X H,F(xiàn)u Y Q,Kan X Y,Lin Q X,Han G X,Lu Z H.Physiological responses of halophyte Suaeda salsa to water table and salt stresses in coastal wetland of Yellow River Delta.Clean-Soil,Air,Water,2011,39(12):1029-1035.
[75] Mallik S,Nayak M,Sahu B B,Panigrahi A K,Shaw B P.Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants.Biologia Plantarum,2011,55(1):191-195.
[76] Hameed A,Hussain T,Gulzar S,Aziz I,Gul B,Khan M A.Salt tolerance of a cash crop halophyte Suaeda fruticosa:biochemical responses to salt and exogenous chemical treatments.Acta Physiologiae Plantarum,2012,34(6):2331-2340.
[77] Li W,Zhang C Y,Lu Q T,Wen X G,Lu C M.The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.Journal of Plant Physiology,2011,168(15):1743-1752.
參考文獻(xiàn):
[1] 趙可夫,李法曾.中國(guó)鹽生植物.北京:科學(xué)出版社,1999:17-91.
[2] 中國(guó)科學(xué)院中國(guó)植物志編輯委員會(huì).中國(guó)植物志(第25卷第二分冊(cè)).北京:科學(xué)出版社,1979:115-135.
[3] 張學(xué)杰,樊守金,李法曾.中國(guó)堿蓬資源的開發(fā)利用研究狀況.中國(guó)野生植物資源,2003,22(2):1-3.
[28] 張海燕,趙可夫.鹽分和水分脅迫對(duì)鹽地堿蓬幼苗滲透調(diào)節(jié)效應(yīng)的研究.植物學(xué)報(bào),1998,40(1):56-61.
[32] 李偉強(qiáng),劉小京,趙可夫,劉海亮.NaCl脅迫下3種鹽生植物生長(zhǎng)發(fā)育及離子在不同器官分布特性研究.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2006,14(2):49-52.
[34] 魏磊,龐秋穎,張愛琴,國(guó)靜,閻秀峰.鹽堿脅迫對(duì)角果堿蓬幼苗光合特性的影響.東北林業(yè)大學(xué)學(xué)報(bào),2012,40(1):32-35.
[35] 孫黎,肖璐,閻平,陳季恂.藜科12種鹽生植物SOD活性及其同工酶的初步研究.石河子大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,22(6):500-503.
[36] 王彥芹,賀江舟,趙小亮,張海燕,鄧芳,賈曉宇,劉陳.塔里木盆地荒漠植物花花柴和堿蓬耐鹽、耐旱性比較.基因組學(xué)與應(yīng)用生物學(xué),2009,28(6):1128-1134.
[38] 史功偉,宋杰,高奔,楊青,范海,王寶山,趙可夫.不同生境鹽地堿蓬出苗及幼苗抗鹽性比較.生態(tài)學(xué)報(bào),2009,29(1):138-143.
[40] 劉家堯,衣艷君,趙可夫.鹽分對(duì)堿蓬幼苗離子含量、甜菜堿水平和BADH活性的效應(yīng).植物學(xué)報(bào),1994,36(8):622-626.
[41] 陳敏,邱念偉,丁順華,楊洪兵,張秋芳,王寶山.NaCl處理對(duì)鹽地堿蓬整株及細(xì)胞水平的生長(zhǎng)、溶質(zhì)積累的影響.山東科學(xué),2001,14(2):21-27.
[48] 陳國(guó)強(qiáng),王萍.鹽地堿蓬耐鹽相關(guān)基因克隆研究進(jìn)展.生物技術(shù)通報(bào),2008,(5):18-21.
[55] 呂湘芳.鹽分(NaCl)脅迫下囊果堿蓬幼苗耐鹽能力變化研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2009.
[56] 綦翠華,韓寧,王寶山.不同鹽處理對(duì)鹽地堿蓬幼苗肉質(zhì)化的影響.植物學(xué)通報(bào),2005,22(2):175-182.
[57] 劉彧,丁同樓,王寶山.不同自然鹽漬生境下鹽地堿蓬葉片肉質(zhì)化研究.山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,21(2):102-104.
[59] 王家利,丁同樓,王寶山.肉質(zhì)植物及其對(duì)鹽漬和干旱環(huán)境的適應(yīng).山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,20(4):74-75.
[66] 李平華,王增蘭,張慧,王寶山.鹽地堿蓬葉片液泡膜H+-ATPase B亞基的克隆及鹽脅迫下表達(dá)分析.植物學(xué)報(bào),2004,46(1):93-99.