周晨光,朱 毅,羅云波
(中國農(nóng)業(yè)大學(xué)食品科學(xué)與營養(yǎng)工程學(xué)院,北京100083)
蘿卜硫素(1-異硫氰酸-4-甲磺酰基丁烷,sulforaphane,SFN)作為一種異硫氰酸鹽,是由十字花科植物特有的次級代謝產(chǎn)物——硫甙葡萄糖苷(glucosinlates,Glu)經(jīng)體內(nèi)黑芥子苷酶(myrosinase enzyme)酶解所得[1]。近年來,其顯著的抗氧化性[2]、消炎作用[3]以及抗癌活性[4-6]受到了眾多研究者的關(guān)注。目前,有關(guān)SFN抑制Ⅰ相代謝酶活性、誘導(dǎo)Ⅱ相代謝酶表達[8-10]、阻止DNA加合物的形成[4,11]、抑制癌細胞中促進生長的信號通路[12-13]引發(fā)癌細胞的細胞周期阻滯及誘導(dǎo)癌細胞凋亡[14-16]等顯著的腫瘤防治機制已得到了較為深入的研究,SFN也因此被認為是蔬菜中目前所發(fā)現(xiàn)的抗癌效果最顯著的活性物質(zhì)之一[17],這使得富含SFN的十字花科蔬菜如甘藍、西蘭花、油菜、蘿卜等受到了越來越多的消費者的認可與喜愛[18]。但同時,由于SFN自身較差的穩(wěn)定性[19],導(dǎo)致十字花科蔬菜在不同的生長環(huán)境、儲藏條件、加工方法下,蔬菜中SFN含量變化產(chǎn)生較大的差異,從而直接影響到十字花科蔬菜抑癌防癌的功效[20]。鑒于此,本文對十字花科蔬菜在不同生長環(huán)境、加工條件及貯藏環(huán)境下SFN含量變化趨勢進行了闡述,旨在為提高十字花科蔬菜的營養(yǎng)價值提供參考。
圖2 硫甙葡萄糖苷結(jié)構(gòu)[27]Fig.2 Structure of glucosinolates
硫甙葡萄糖苷(glucosinlates,以下簡稱硫苷,結(jié)構(gòu)見圖2)作為十字花科植物在生長過程中的次生代謝產(chǎn)物,廣泛存在于植物的根、莖、葉和種子當中[21],目前所發(fā)現(xiàn)已達120余種[18]。硫苷的主要結(jié)構(gòu)是由β-D-硫葡萄糖基、磺酸肟基團以及一個來源于氨基酸的側(cè)鏈R組成。依據(jù)其R側(cè)鏈的不同分為脂肪族、芳香族和吲哚族三大類[22]。當植株受到諸如咀嚼、切割、研磨等而引起組織破壞時,原本存在于組織液泡中的黑芥子苷酶便得以釋放[23],并與一類脂肪族硫苷——Glucoraphanin相結(jié)合[24],生成葡萄糖(glucose)、蘿卜硫素(sulforaphane)以及蘿卜硫素腈(sulforaphane nitrile)[20,25-26],Glucoraphanin的轉(zhuǎn)化過程見圖3。
研究發(fā)現(xiàn),西蘭花在自然生長狀態(tài)下,伴隨著呼吸速率的加快、莖葉的生長,在種子萌發(fā)的最初18h內(nèi)SFN含量從3.5mg/g下降到0.75mg/g,而在接下來的40h內(nèi)SF累積量迅速增加并在第40h達到峰值(3.38mg/g),隨后在第60h又降低至0.93mg/g[28]。該結(jié)果與W illiams等[29]所得數(shù)據(jù)相似,即SFN含量在西蘭花種子萌芽最初2d內(nèi)呈下降趨勢,隨后逐漸升高,在生長至第4d時再次下降并維持在一個較低水平。類似結(jié)論在蘿卜、花椰菜、卷心菜等其他十字花科植物中也得到了驗證[30]。針對該實驗結(jié)果,初步推斷是與植物體內(nèi)硫苷的分解代謝、黑芥子酶酶活變化相關(guān)[29]。Martinez等[31]在測定了多個品種的西蘭花和蘿卜從種子到芽苗階段體內(nèi)SFN含量后指出,從種子到7d芽苗的生長階段內(nèi),SFN含量在西蘭花和蘿卜中總體呈下降趨勢,且不同品種間差異較大。
一般來說,光照對于植物的生長和發(fā)育具有重要意義,光照條件的變化能夠顯著影響植物的生長特性。Pérez等[32]研究發(fā)現(xiàn),光照條件能夠顯著影響西蘭花苗中SFN的含量,與16h光照/8h黑暗條件下生長的西蘭花苗相比,在完全無光條件下生長7d的西蘭花苗中SFN相對含量減少33%。該結(jié)論與Rosa等[33]的實驗結(jié)果相悖,其認為不同光照條件對于卷心菜幼苗的根和莖葉中SFN含量幾乎毫無影響。據(jù)初步推斷,以上兩種截然不同的結(jié)論可能與實驗所選取的蔬菜品種差異有直接關(guān)系。除此之外,鮮有文獻描述關(guān)于光照條件與十字花科植物幼苗中SFN含量之間的聯(lián)系,因此,有關(guān)光照與十字花科蔬菜SFN的積累量之間的聯(lián)系有待進一步的深入研究。
氮、硫元素作為植物生長過程中不可或缺的營養(yǎng)元素,對十字花科植物中SFN的合成與代謝具有較大的影響。Zhao等[34]測定了油菜中硫苷在N、S兩種元素作用下的含量變化情況后得出結(jié)論,N元素通過參與色氨酸的合成來顯著提高芳香族硫苷的含量,而S元素則通過參與蛋氨酸的合成來影響脂肪組和吲哚族硫苷的生成量。然而,Aires等[35]以西蘭花苗為實驗材料進行實驗后發(fā)現(xiàn),肥料中添加的N和S元素不僅無法提高西蘭花苗中硫苷含量,相反抑制了SFN的前體——Glucoraphanin的合成,從而間接影響幼苗中SFN的累積量,因此建議避免在西蘭花幼苗階段施用富含N、S的肥料。Gerendás等[36]則對甘藍施用不同比例的N、S元素后發(fā)現(xiàn),肥料中兩種元素的增加與SFN的積累無正相關(guān)性,且隨著施用肥料中N/S的比例從2∶1增加到50∶1的過程中,SFN的含量從100μmol/kg急劇下降至10μmol/kg左右,損失率接近90%。
鑒于低濃度蔗糖溶液能夠促進模式植株擬南芥中抗壞血酸、花青素等活性物質(zhì)含量的積累[37-38],Guo等[39]向生長中的西蘭花苗定期噴灑不同濃度的蔗糖溶液后發(fā)現(xiàn),88mmol/L濃度的蔗糖溶液能夠顯著提高西蘭花苗中SFN、抗壞血酸以及花青素的含量,初步推斷是因為蔗糖在上述化合物合成過程中起到了信號轉(zhuǎn)導(dǎo)、提高自身滲透壓的緣故[40]。
Yuan等[41]在種植蘿卜苗的培養(yǎng)基中添加了不同濃度的NaCl后發(fā)現(xiàn),10mmol/L與50mmol/L的NaCl溶液能夠顯著降低蘿卜苗中SFN的含量,而當蘿卜苗受到100mmol/L的NaCl溶液處理后,5d和7d的蘿卜苗中SFN含量分別升高了50%和128%,但同時,該濃度的NaCl溶液抑制蘿卜種子萌發(fā)率也高達35%。依據(jù)Zapata等[42]相類似的實驗結(jié)果推論,較高濃度的鹽脅迫能夠通過誘導(dǎo)西蘭花中相關(guān)基因調(diào)控硫甙葡萄糖苷的表達量,從而提高SFN含量的增加。
十字花科類的蔬菜在加工過程中,其硫甙葡萄糖苷-黑芥子苷酶系統(tǒng)即遭到改變,從而導(dǎo)致硫甙葡萄糖苷的次級代謝產(chǎn)物的種類以及含量產(chǎn)生了較大變化[43]。這些變化主要受加工方式、持續(xù)時間以及蔬菜品種的影響[44]。
Lambrix等[45]通過研究模式植株擬南芥發(fā)現(xiàn),植物體內(nèi)的表皮特異硫蛋白(epithiospecifier protein,ESP)能夠抑制SFN的生成,并促使SFN的前體硫苷Glucoraphanin轉(zhuǎn)變?yōu)椴痪哂锌拱┗钚缘奶}卜硫素腈(sulforaphane nitrile)。研究人員以西蘭花為材料,研究了加工過程中ESP與SFN兩者含量的關(guān)系后也得出同樣結(jié)論,即蔬菜在加工烹飪過程中,ESP能夠誘導(dǎo)蘿卜硫素腈含量的積累,且這一過程以消耗大量SFN為代價[46]。在此基礎(chǔ)上,Matusheski等[47]對西蘭花苗加工烹飪后發(fā)現(xiàn),若將加工溫度控制在40~70℃范圍內(nèi),則能有效抑制蔬菜中ESP的活性,大大降低了誘導(dǎo)蘿卜硫素腈生成的幾率,同時從另一方面也促進了SFN生成量的增加。
Kato等[48]在對日本石川區(qū)當?shù)匾环N名為nakajimana的十字花科蔬菜進行研究后得出結(jié)論,任何熱加工方式都會對蔬菜中SFN含量造成不同程度的影響,將烹飪溫度盡可能地控制在50~65℃則可以在抑制ESP活性的同時,在一定程度上避免黑芥子苷酶失活,從而能降低SFN含量的損失。若想在最大程度上攝取蔬菜中的SFN,則應(yīng)盡量避免蒸煮等熱加工方式。Wang等[49]對比了微波、煮沸、熱蒸汽三種熱加工方式及作用時間對西蘭花中SFN含量的影響,結(jié)果發(fā)現(xiàn),與未經(jīng)處理的西蘭花相比,微波與煮沸兩種加工方式無論作用時間的長短(0~3m in),均極大降低了SFN的含量,且最高損失量達85%,其主要原因可能是這兩種加熱方式在很大程度上鈍化了黑芥子苷酶的活性,而相比之下,利用熱蒸汽對西蘭花進行處理并將加熱時間控制在1~3m in則能較好地保存SFN的完整性。該結(jié)論與Jones等[50]得到的實驗數(shù)據(jù)相一致,其通過測定在熱蒸汽、煮沸、微波三種加熱方式下西蘭花苗中的溫度變化后發(fā)現(xiàn),煮沸和微波兩種加熱方式的傳熱速率遠大于蒸汽加熱,這兩種加工方式在短時間內(nèi)促使西蘭花苗中的黑芥子苷酶遭到破壞,從而抑制了西蘭花苗中SFN的生成,而蒸汽加熱方式則相對溫和,避免了黑芥子苷酶在短時間內(nèi)失活,提高了SFN的積累量。
超高壓加工技術(shù)(high hydrostatic pressure,HHP)作為一種新型非熱加工技術(shù),在保持食物天然成分的完整性、延長食品保藏期以及節(jié)約能源、減少污染等方面具有不可比擬的優(yōu)勢。Koo等[51]以卷心菜為對象進行研究后證實,在60℃或更高溫度的加工條件下,ESP活性的確能受到有效抑制,但促進SFN生成的黑芥子苷酶在此溫度下也會遭到一定程度的破壞,而當采用超高壓加工技術(shù)后發(fā)現(xiàn),30℃、400Mpa的加工條件能在明顯抑制卷心菜中ESP活性,同時也較完整的保留黑芥子苷酶的活性,從而進一步提高了SFN生成量。Van等[52]分別在不同溫度、處理時間和壓力值條件下對西蘭花進行加工,隨后測定了蔬菜中硫苷Glucoraphanin生成SFN的轉(zhuǎn)化率,結(jié)果發(fā)現(xiàn),當加熱溫度為20℃時,在0~500MPa范圍內(nèi)SFN生成量與壓力值的大小成正比例關(guān)系且在500MPa、35min達到了最大轉(zhuǎn)化率72%,而當加熱溫度上升至40℃和60℃時,SFN的轉(zhuǎn)化率均有不同程度的下降,且15m in的處理時間后SFN生成率高于30m in的處理時間。而當加熱溫度升高至100℃時,無論作用時間長短,蔬菜中均無SFN檢出。
然而,超高壓非熱加工技術(shù)并非適用于所有種類的十字花科蔬菜。Ghawi等[25]利用超高壓加工技術(shù)處理卷心菜后發(fā)現(xiàn),在35~55℃、100~400MPa條件下,卷心菜中的黑芥子苷酶對高壓表現(xiàn)出的敏感性顯著高于其他十字花科蔬菜。在高壓情況下,卷心菜中的黑芥子苷酶極易失活,從而致使蔬菜中硫苷Glucoraphanin無法被酶解催化生成SFN,大大降低了卷心菜的營養(yǎng)價值。
一般來說,控制溫度是保藏蔬菜自身品質(zhì)、延長貨架期最基本、最常用的手段之一。Galgano等[53]在6℃、相對濕度95%的貯藏條件下測定了西蘭花中SFN的穩(wěn)定性,結(jié)果發(fā)現(xiàn),SFN損失量在7、21、35d時分別為16%、29%和39%。而當貯藏溫度降低至-18℃時,在貯存至第35d和60d時西蘭花中SFN損失量分別為15%和39%。由此看出,低溫貯藏更有利于延緩蔬菜中SFN的流失。但是,貯藏溫度也非越低越好,依據(jù)Song等[54]的實驗結(jié)論,-85℃的超低溫條件能夠引起花椰菜中SFN的迅速流失,在貯存7d后花椰菜中SFN減少量即高達33%,其主要原因由于過低溫度破壞了植物的部分細胞結(jié)構(gòu),從而影響到了硫苷水解生成異硫氰酸鹽的過程。
大量實驗證明,在一定溫度范圍內(nèi),相對濕度(RH)對于蔬菜中SFN的含量也具有一定的影響。在較低的RH(60%)下,20℃、貯存5d的西蘭花中SFN損失率高達80%[55],而較高的RH(98%~100%)則能夠更好地維持蔬菜組織中細胞膜的通透性,保證了西蘭花中諸如SFN等活性物質(zhì)的穩(wěn)定性[56]。但是,當貯藏溫度降低到4℃時,在60%和100%RH條件下SFN損失量均顯著降低且并無明顯差異[57]。由此發(fā)現(xiàn),在冷藏條件下(<4℃)RH的高低對于西蘭花中SFN的損失影響較小,而當貯藏溫度在常溫(10~20℃)的范圍內(nèi)時,保持較高的RH值則能很好地防止SFN的流失。
目前,氣調(diào)貯藏(Controlled atmosphere,CA)通過采用低溫、低氧和較高的二氧化碳濃度的手段,能夠明顯降低果蔬呼吸作用、減緩后熟衰老過程,因而被認為是保持果蔬品質(zhì)和延長貯藏壽命最有效的貯藏方式。Schouten等[58]在1.5%~21%O2濃度、0~15%CO2濃度以及5~18℃的條件下對西蘭花進行了氣調(diào)貯藏的條件優(yōu)化組合,結(jié)果發(fā)現(xiàn),在5℃、1.5%的O2濃度以及6%的CO2濃度下,13d后西蘭花中SFN的含量較同溫度下未經(jīng)氣調(diào)控制的樣品高75%。氣調(diào)貯藏的優(yōu)越性在花椰菜、甘藍等蔬菜中也得到了類似的驗證[59]。以上結(jié)果充分顯示了氣調(diào)貯藏對于果蔬中SFN的積極影響。
1-MCP(1-甲基環(huán)丙烯)作為一種常用的乙烯受體抑制劑,具有安全無毒、低量高效的優(yōu)點,它能阻斷果蔬內(nèi)源乙烯與受體的結(jié)合、抑制組織器官的呼吸作用,達到保質(zhì)保鮮的目的[60-61]。相關(guān)研究人員通過利用10μL/L濃度的1-MCP對芥藍熏蒸24h后發(fā)現(xiàn),經(jīng)1-MCP處理后的芥藍,在20℃下貯藏7d后SFN減少量為39.5%,遠小于未經(jīng)處理的89.3%[60]。在本實驗中,雖然1-MCP在常溫下顯示出對于減緩蔬菜中SFN含量流失具有較明顯的效果,但其未能就低溫貯藏條件下1-MCP的作用效果進行進一步探究。
低濃度乙醇作為另一種常見的果蔬保鮮劑,在果蔬貯藏中也得到了廣泛的應(yīng)用。由于采后的西蘭花在室溫條件下極易腐敗變質(zhì),Xu等[62]為提高西蘭花的貯藏品質(zhì),采用了不同濃度乙醇溶液進行熏蒸處理,結(jié)果發(fā)現(xiàn),500μL/L的乙醇溶液不僅能夠大幅度延長西蘭花的貨架期、減緩葉綠素降解,同時顯著減少了在4d的貯藏期內(nèi)SFN的損失,其主要作用機理為通過降低西蘭花在貯藏過程中的呼吸強度來減少SFN前體硫苷在貯藏過程中的自降解。
隨著人們生活水平的提高,具有食療功效的食品受到越來越多消費者的青睞。十字花科蔬菜富含抑癌抗癌效果顯著的蘿卜硫素,在藥食領(lǐng)域具有廣闊的應(yīng)用前景。然而,由于蘿卜硫素自身的不穩(wěn)定性,使得十字花科蔬菜中的蘿卜硫素在加工和貯藏過程中極易遭到破壞,從而降低了商品價值。因此,對于十字花科蔬菜而言,如何在生長、加工以及貯藏過程中提高蘿卜硫素含量、防止其遭到破壞的技術(shù)研究就顯得極為關(guān)鍵。目前國內(nèi)外研究人員針對如何減少蘿卜硫素損失的加工和貯藏方法進行了大量研究,發(fā)現(xiàn)采用諸如超高壓非熱加工、氣調(diào)貯藏以及保鮮劑處理等手段均能較好的減少蔬菜中蘿卜硫素的損失。然而,有關(guān)如何在蔬菜生長過程中促進蘿卜硫素前體硫苷含量增加,從而提高蔬菜中蘿卜硫素積累量的相關(guān)研究甚少,因此可以考慮在分子水平上,通過改造調(diào)控硫苷以及相關(guān)酶表達量的基因,優(yōu)化和選育出抑癌抗癌效果更加顯著的蔬菜新品種。
[1]Matusheski N V,Wallig M A,Juvik JA,et al.Preparative HPLCmethod for the purification ofsulforaphaneand sulforaphane nitrile from Brassica oleracea[J].Journal of Agricultural and Food Chemistry,2001,49(4):1867-1872.
[2]Chen H,Wu J,Zhang J,et al.Protective effects of the antioxidant sulforaphane on behavioral changes and neurotoxicity in mice after the administration of methamphetamine[J].Psychopharmacology,2012,222(1):37-45.
[3]Guo S,Qiu P,Xu G,et al.Synergistic Anti-inflammatory Effects of Nobiletin and Sulforaphane in Lipopolysaccharide-Stimulated RAW 264.7 Cells[J].Journal of Agricultural and Food Chemistry,2012,60(9):2157-2164.
[4]Kensler T,Egner P,Agyeman A,etal.Keap1-Nrf2 Signaling:A Target for Cancer Prevention by Sulforaphane[M].Springer Berlin/Heidelberg,2012:1-15.
[5]Herr I,Rausch V.Stem Cells and Cancer Stem Cells[M].Netherlands:Springer,2012:27-32.
[6]沈蓮清,蘇光耀,王奎武.西蘭花種子中硫苷酶解產(chǎn)物蘿卜硫素的提純與抗腫瘤的體外實驗研究[J].中國食品學(xué)報,2008,8(5):15-21.
[7]Liang H,Lai B,Yuan Q.Sulforaphane Induces Cell-Cycle Arrest and Apoptosis in Cultured Human Lung Adenocarcinoma LTEP-A2 Cells and Retards Growth of LTEP-A2 Xenografts in Vivo[J].Journal of Natural Products,2008,71(11):1911-1914.
[8]Myzak M C,Dashwood RH.Chemoprotection by sulforaphane:Keep one eye beyond Keap1[J].Cancer Letters,2006,233(2):208-218.
[9]Wagner A E,Ernst I,Iori R,et al.Sulforaphane but not ascorbigen,indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture[J].Experimental Dermatology,2010,19(2):137-144.
[10]Wang H,Khor T O,Yang Q,et al.Pharmacokinetics and Pharmacodynamics of Phase II Drug Metabolizing/Antioxidant Enzymes Gene Response by Anticancer Agent Sulforaphane in Rat Lymphocytes[J].Molecular Pharmaceutics,2012,9(10):2819-2827.
[11]Fiala JL A,Egner P A,Wiriyachan N,et al.Sulforaphane-Mediated Reduction of Aflatoxin B1-N7-Guanine in Rat Liver DNA:Impacts of Strain and Sex[J].Toxicological Sciences,2011,121(1):57-62.
[12]Hahm E-R,Singh S V.Sulforaphane Inhibits Constitutive and Interleukin-6-Induced Activation of Signal Transducer and Activator of Transcription 3 in Prostate Cancer Cells[J].Cancer Prevention Research,2010,3(4):484-494.
[13]Hutzen B,WillisW,Jones S,et al.Dietary agent,benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborateswith sulforaphane in the growth suppression of PANC-1 cancer cells[M].BioMed Central,2009.
[14]Clarke J D,Hsu A,Yu Z,et al.Differential effects of sulforaphane on histone deacetylases,cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells[J].Molecular Nutrition&Food Research,2011,55(7):999-1009.
[15]Jiang H,Shang X,Wu H,et al.Combination Treatmentwith Resveratrol and Sulforaphane Induces Apoptosis in Human U251 Glioma Cells[J].Neurochemical Research,2010,35(1):152-161.
[16]Moon D-O,Kim M-O,Kang S-H,et al.Sulforaphane suppresses TNF-α-mediated activation of NF-κB and induces apoptosis through activation of reactive oxygen speciesdependent caspase-3[J].Cancer Letters,2009,274(1):132-142.
[17]Gamet-Payrastre L,Li P,Lumeau S,et al.Sulforaphane,a Naturally Occurring Isothiocyanate,Induces Cell Cycle Arrest and Apoptosis in HT29 Human Colon Cancer Cells[J].Cancer Research,2000,60(5):1426-1433.
[18]Fahey JW,Zalcmann A T,Talalay P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J].Phytochemistry,2001,56(1):5-51.
[19]Jin Y,Wang M,Rosen R T,et al.Thermal Degradation of Sulforaphane in Aqueous Solution[J].Journal of Agricultural and Food Chemistry,1999,47(8):3121-3123.
[20]王會霞,李晨,薛峰,等.加工處理方式對沖菜中硫代葡萄糖苷的影響[J].食品科學(xué),2011,32(7):168-172.
[21]Fahey JW,Wehage SL,Holtzclaw W D,et al.Protection of Humans by Plant Glucosinolates:Efficiency of Conversion of Glucosinolates to Isothiocyanatesby theGastrointestinalMicroflora [J].Cancer Prevention Research,2012,5(4):603-611.
[22]Wittstock U,Halkier B A.Glucosinolate research in the Arabidopsisera[J].Trends in Plant Science,2002,7(6):263-270.
[23]Scholl C,Eshelman B D,Barnes D M,et al.Raphasatin Is a More Potent Inducer of the Detoxification Enzymes Than Its Degradation Products[J].Journal of Food Science,2011,76(3):504-511.
[24]O’Hare T J,Wong L S,F(xiàn)orce L E,et al.Glucosinolate composition and anti-cancer potential of daikon and radish sprouts[C].International Horticultural Congress&Exhibition,2006,8:77-78.
[25]Ghawi SK,Methven L,Rastall R A,et al.Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage:A kinetic study[J].Food Chemistry,2012,131(4):1240-1247.
[26]楊瑛潔,李淑燕,胡國偉,等.硫代葡萄糖苷的降解途徑及其產(chǎn)物的研究進展[J].西北植物學(xué)報,2011,31(7):1490-1496.
[27]Elfakir C,Dreux M.Simultaneous analysis of intact and desulfated glucosinolates with a porous graphitized carbon column[J].Journal of Chromatography A,1996,727(1):71-82.
[28]Gu Y,Guo Q,Zhang L,et al.Physiological and biochemical metabolism of germinating broccoli seeds and sprouts[J].Journal of Agricultural and Food Chemistry,2012,60(1):209-213.
[29]Williams D J,Critchley C,Pun S,et al.Epithiospecifier protein activity in broccoli:The link between terminal alkenyl glucosinolates and sulphoraphane nitrile[J].Phytochemistry,2008,69(16):2765-2773.
[30]West L G,Meyer K A,Balch B A,et al.Glucoraphanin and 4-Hydroxyglucobrassicin Contents in Seeds of 59 Cultivars of Broccoli,Raab,Kohlrabi,Radish,Cauliflower,Brussels Sprouts,Kale,and Cabbage[J].Journalof Agriculturaland Food Chemistry,2004,52(4):916-926.
[31]Martinez-Villaluenga C,Pe?as E,Ciska E,et al.Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds[J].Food Chemistry,2010,120(3):710-716.
[32]Pérez-Balibrea S,Moreno D A,García-Viguera C.Influence of light on health-promoting phytochemicals of broccoli sprouts [J].Journal of the Science of Food and Agriculture,2008,88(5):904-910.
[33]Rosa E A S,Rodrigues P M F.The effect of light and temperature on glucosinolate concentration in the leaves and roots of cabbage seedlings[J].Journal of the Science of Food and Agriculture,1998,78(2):208-212.
[34]Zhao F,Evans E J,Bilsborrow P E,et al.Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed(brassica napus l)[J].Journal of the Science of Food and Agriculture,1994,64(3):295-304.
[35]Aires A,Rosa E,Carvalho R.Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts(Brassica oleracea var.italica)[J].Journal of the Science of Food and Agriculture,2006,86(10):1512-1516.
[36]Gerendaás JS,Breuning S,Stahl T,et al.Isothiocyanate Concentration in Kohlrabi(Brassica oleracea L.Var.gongylodes)Plants As Influenced by Sulfur and Nitrogen Supply[J].Journal of Agricultural and Food Chemistry,2008,56(18):8334-8342.
[37]Solfanelli C,Poggi A,Loreti E,et al.Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis [J].Plant Physiology,2006,140(2):637-646.
[38]Nishikawa F,Kato M,Hyodo H,et al.Ascorbatemetabolism in harvested broccoli[J].Journal of Experimental Botany,2003,54:2439-2448.
[39]Guo R,Yuan G,Wang Q.Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts[J].Scientia Horticulturae,2011,128(3):159-165.
[40]胡克玲,朱祝軍.噴施蔗糖和葡萄糖對小白菜硫代葡萄糖苷含量的影響[J].核農(nóng)學(xué)報,2010,24(4):840-845.
[41]Yuan G,Wang X,Guo R,etal.Effectofsaltstresson phenolic compounds,glucosinolates,myrosinase and antioxidant activity in radish sprouts[J].Food Chemistry,2010,121(4):1014-1019.
[42]Zapata P J,Serrano M A,Pretel M T,et al.Polyamines and ethylene changes during germination of different plant species under salinity[J].Plant Science,2004,167(4):781-788.
[43]Dekker M,Verkerk R,Jongen W M F.Predictivemodelling of health aspects in the food production chain:a case study on glucosinolates in cabbage[J].Trends in Food Science& Technology,2000,11(4-5):174-181.
[44]Oerlemans K,Barrett D M,Suades C B,et al.Thermal degradation of glucosinolates in red cabbage[J].Food Chemistry,2006,95(1):19-29.
[45]Lambrix V,Reichelt M,Mitchell-Olds T,et al.The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitrilesand Influences Trichoplusia niHerbivory [J].The Plant Cell Online,2001,13(12):2793-2807.
[46]Williams D J,Critchley C,Pun S,et al.Epithiospecifier protein activity in broccoli:The link between terminal alkenyl glucosinolatesand sulphoraphane nitrile[J].Phytochemistry,2008,69(16):2765-2773.
[47]Matusheski N V,Juvik JA,Jeffery E H.Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli[J].Phytochemistry,2004,65(9):1273-1281.
[48]Kato M,Imayoshi Y,Iwabuchi H,et al.Kinetic changes in glucosinolate-derived volatiles by heat-treatmentandmyrosinase activity in nakajimana(Brassica rapa L.cv.nakajimana)[J].Journal of Agricultural and Food Chemistry,2011,59(20):11034-11039.
[49]Wang G C,F(xiàn)arnham M,Jeffery E H.Impact of Thermal Processing on Sulforaphane Yield from Broccoli(Brassica oleracea L.ssp italica)[J].Journal of Agricultural and Food Chemistry,2012,60(27):6743-6748.
[50]Jones R B,F(xiàn)risina C L,Winkler S,et al.Cooking method significantly effects glucosinolate content and sulforaphaneproduction in broccoli florets[J].Food Chemistry,2010,123(2):237-242.
[51]Koo S Y,Cha K H,Song D G,et al.Amplification of sulforaphane content in red cabbage by pressure and temperature treatments[J].Journal of Applied Biological Chemistry,2011,54(2):183-187.
[52]Van Eylen D,Bellostas N,Strobel BW,et al.Influence of pressure/temperature treatments on glucosinolate conversion in broccoli(Brassica oleraceae L.cv Italica)heads[J].Food Chemistry,2009,112(3):646-653.
[53]Galgano F,F(xiàn)avati F,Caruso M,et al.The Influence of Processing and Preservation on the Retention of Health-Promoting Compounds in Broccoli[J].Journal of Food Science,2007,72(2):S130-S135.
[54]Song L,Thornalley P J.Effect of storage,processing and cooking on glucosinolate content of Brassica vegetables[J].Food and Chemical Toxicology,2007,45(2):216-224.
[55]Rodrigues A S,Rosa E A S.Effectof post-harvest treatments on the levelofglucosinolates in broccoli[J].Journal of the Science of Food and Agriculture,1999,79(7):1028-1032.
[56]Lutz JM,Hardenburg R E,Wright R C.The commercial storage of fruits,vegetables,and florist and nursery stocks[M].Washington:USDeptof Agriculture,1968.
[57]Rangkadilok N,Tomkins B,Nicolas M E,etal.The Effect of Post-Harvest and Packaging Treatments on Glucoraphanin Concentration in Broccoli(Brassica oleracea var.italica)[J].Journal of Agricultural and Food Chemistry,2002,50(25):7386-7391.
[58]Schouten R E,Zhang X,Verkerk R,et al.Modelling the level of the major glucosinolates in broccoli as affected by controlled atmosphere and temperature[J].Postharvest Biology and Technology,2009,53(1-2):1-10.
[59]Cies'lik E,Leszczyńska T,F(xiàn)ilipiak-Florkiewicz A,et al.Effects of some technological processes on glucosinolate contents in cruciferous vegetables[J].Food Chemistry,2007,105(3):976-981.
[60]Golding JB,Shearer D,Wyllie SG,et al.Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit[J].Postharvest Biology and Technology,1998,14(1):87-98.
[61]Bo Sun,Huizhuan Yan,Na Liu JW,等.1-MCP處理對芥藍采后品質(zhì)、抗氧化物及芥子油甙含量的影響[J].保鮮與加工,2012,12(2):55.
[62]Xu F,Chen X,Jin P,et al.Effect of ethanol treatment on quality and antioxidant activity in postharvest broccoli florets[J].European Food Research and Technology,2012,235:1-8.