国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

顆粒阻尼技術(shù)研究綜述

2013-02-13 06:35呂西林閆維明
振動與沖擊 2013年7期
關(guān)鍵詞:阻尼器阻尼沖擊

魯 正,呂西林,閆維明

(1.同濟(jì)大學(xué) 土木工程防災(zāi)國家重點(diǎn)實(shí)驗室,上海 200092;2.北京工業(yè)大學(xué) 工程抗震與結(jié)構(gòu)診治北京市重點(diǎn)實(shí)驗室,北京 100124)

顆粒阻尼(Particle Damping)技術(shù)利用在振動體中有限封閉空間內(nèi)填充的微小顆粒間摩擦與沖擊作用消耗系統(tǒng)振動能量,具有耐久性好、可靠度高、對溫度變化不敏感(在顆粒金屬熔點(diǎn)以下均可正常使用,鎢粉能承受近2 000℃高溫),易用于惡劣環(huán)境等優(yōu)點(diǎn)。顆粒阻尼器為附加質(zhì)量式被動阻尼器,可增加結(jié)構(gòu)阻尼。該技術(shù)在機(jī)械和航空航天領(lǐng)域應(yīng)用較多,但其減振機(jī)理未被很好解釋。本文對顆粒阻尼技術(shù)的起源、發(fā)展及研究現(xiàn)狀簡要評述,重點(diǎn)探討其在土木工程領(lǐng)域應(yīng)用的發(fā)展趨勢。

1 顆粒阻尼技術(shù)起源及發(fā)展應(yīng)用

顆粒阻尼為Pagat[1]在研究渦輪機(jī)葉片減振問題時發(fā)明的沖擊減振器(Impact Damper)。該單顆粒沖擊阻尼器碰撞時會產(chǎn)生較大噪音與沖擊力,對設(shè)計參數(shù)(如顆?;謴?fù)系數(shù),外界激勵強(qiáng)度等)變化敏感。故此后的研究用許多等質(zhì)量小顆粒代替單一固體質(zhì)量塊,因而產(chǎn)生了顆粒阻尼器。據(jù)單元內(nèi)顆粒數(shù)目的不同,傳統(tǒng)顆粒阻尼器可分四類,即單單元單顆粒沖擊阻尼器 (Impact Damper)[2]、多單元單顆粒沖擊阻尼器(Multi-unit Impact Damper)[3]、單單元多顆粒阻尼器(Particle Damper,或稱非阻塞性顆粒阻尼器,Non-obstructive Particle Damper)[4-5]及多單元多顆粒阻尼器(Multi-unit Particle Damper)[6](圖 1)。此外,有很多顆粒阻尼器變體,如克服方向依賴性的梁式?jīng)_擊阻尼器(Beam-like Impact Damper)[7];用軟質(zhì)包袋將顆粒包裹的“豆包”阻尼器(Bean Bag Impact Damper)[8-9]、用軟質(zhì)材料覆蓋容器壁形成緩沖沖擊阻尼器(Buffered Impact Damper)[10-11];帶活塞的顆粒阻尼器(Piston-based Particle Damper)[12];帶顆粒減振劑的碰撞阻尼器[13]以及顆粒碰撞阻尼動力吸振器[14-15]等。

顆粒阻尼技術(shù)的耗能機(jī)理為顆粒間耗能及顆粒與主體結(jié)構(gòu)間沖擊耗能[16]。利用顆粒間耗能控制振動體振動已成熟應(yīng)用,如將裝滿顆粒的袋子壓在振動體上;將顆粒材料繞在振動體周圍;在金屬切削機(jī)床床身用封砂結(jié)構(gòu),可提高床身阻尼8~11倍[17]等。其減振機(jī)理包括:Kerwin[18]提出顆粒材料消耗系統(tǒng)能量的三條途徑為顆粒間摩擦、顆粒間接觸點(diǎn)處非線性變形及顆粒材料共振;Lenzi[19]認(rèn)為顆粒間干摩擦是阻尼產(chǎn)生的主要機(jī)理;孫進(jìn)才等[20]認(rèn)為阻尼來自于沙子損耗掉結(jié)構(gòu)體輻射出的聲能。沖擊阻尼理論典型代表是以剛性質(zhì)量塊作為沖擊體的單沖擊減振器,即顆粒阻尼器起源。沖擊減振機(jī)理包括:屈維德等[21-22]認(rèn)為沖擊減振機(jī)理是基于非完全彈性碰撞產(chǎn)生的能量損失;Popplewell[9]認(rèn)為沖擊減振主要通過碰撞過程中動量交換實(shí)現(xiàn);張濟(jì)生等[23]認(rèn)為反映沖擊減振本質(zhì)的是沖擊體作用于主系統(tǒng)動反力大小及相位等。

圖1 各種阻尼器Fig.1 Dampers

盡管顆粒阻尼減振的物理本質(zhì)尚無定論,但并不影響其在航空航天及機(jī)械等領(lǐng)域的成功應(yīng)用。如雷達(dá)天線、印刷線路板減振保護(hù);降低燈柱、煙囪及細(xì)高撓性建筑物因風(fēng)激起的振動;抑制繼電器,飛行器及金屬切削機(jī)床結(jié)構(gòu)的自激振動等。Lieber等[2]用沖擊阻尼器控制飛行器振動,考慮每個周期碰撞兩次情形,發(fā)現(xiàn)當(dāng)沖擊質(zhì)量和主體結(jié)構(gòu)相位角相差180°時,減振效果最好。Grubin[24]在假定每個周期對稱碰撞兩次基礎(chǔ)上,得到主體結(jié)構(gòu)振動響應(yīng),發(fā)現(xiàn)其在共振及材料恢復(fù)系數(shù)較大時能得到更多阻尼。Oledzki[25]用其控制輕質(zhì)航天器上長管道振動,采用流變計算模型與試驗結(jié)果吻合良好。Skipor[26]將其用于印刷裝置;Moore 等[27]用于低溫狀態(tài)下工作的火箭引擎渦輪系統(tǒng)高速轉(zhuǎn)子;Sato等[28]用于繪圖儀支撐系統(tǒng);Sims等[29]利用顆粒阻尼器改進(jìn)機(jī)械工件的振動穩(wěn)定性;Gibson等[30-31]將顆粒阻尼器用于空間,發(fā)現(xiàn)系統(tǒng)響應(yīng)衰減率與最小有效振幅是阻尼器設(shè)計的重要參數(shù),采用上千個小顆粒阻尼器使系統(tǒng)成為高度非線性,可在較廣頻率帶上提供大阻尼。Friend等[32-33]均將顆粒阻尼器置于結(jié)構(gòu)位移最大處以得到較大系統(tǒng)阻尼,顆粒可通過非彈性碰撞將動能轉(zhuǎn)化為熱能耗散掉。通過對鋁質(zhì)懸臂梁在自由端附加顆粒阻尼器實(shí)驗得到的阻尼數(shù)值表明,沖擊阻尼具有高度非線性。

國內(nèi)關(guān)于顆粒阻尼技術(shù)的研究集中在航空航天、機(jī)械等領(lǐng)域。李偉等[8,36]研究豆包阻尼器減振特性并用于板結(jié)構(gòu);陳前等[37-38]提出基于碰撞理論的顆粒阻尼計算模型,并應(yīng)用于航空結(jié)構(gòu)及直升機(jī)旋翼槳葉;夏兆旺等[39]研究基于懸臂梁的顆粒阻尼實(shí)驗并應(yīng)用于平板葉片;毛寬民等[40-41]提出能模擬不同形狀微顆粒組合體的橢球狀散體元模型;胡溧等[42]研究顆粒阻尼動態(tài)特性并用于汽車車身;杜妍辰等[43]研究微顆粒阻尼器的建模方法;趙玲等[44]研究非阻塞性微顆粒阻尼柱的阻尼特性;閆維明等[45]對顆粒阻尼技術(shù)做了很有意義介紹;魯正等[46-50]建立起附加顆粒阻尼器結(jié)構(gòu)的數(shù)值計算模型并通過振動臺試驗得以驗證等。

2 顆粒阻尼理論分析與數(shù)值模擬

對顆粒阻尼的理論分析主要以單自由度系統(tǒng)為對象。由于沖擊阻尼器工作時,沖擊塊體與主體結(jié)構(gòu)碰撞引起運(yùn)動量(速度)的突變,使其動力學(xué)行為表現(xiàn)出很強(qiáng)的非線性,因而只能求得單顆粒阻尼器結(jié)構(gòu)在簡單激勵下,在穩(wěn)態(tài)振動時假設(shè)每個周期對稱碰撞兩次情況下的解析解。沖擊阻尼器理論分析最早始于Lieber等[2],其將碰撞視為完全塑性碰撞。Grubin[24]引入碰撞彈性恢復(fù)系數(shù),考慮碰撞時的能量損失,建立起單自由度系統(tǒng)附加沖擊阻尼器在簡諧激勵作用下的理論模型。Masri[51]將該假設(shè)擴(kuò)展到每個周期非對稱碰撞兩次情形。Bapat[52]采用非線性控制方程分析單自由度系統(tǒng)在簡諧激勵作用下每個周期碰撞N次的振動情況。Masri[3,51,53]推導(dǎo)出單單元單顆粒和多單元單顆粒沖擊阻尼器附加在主體結(jié)構(gòu)在周期激勵下穩(wěn)態(tài)振動時的解析解,并分析其運(yùn)動穩(wěn)定性。Bapa等[54]分析庫倫摩擦力影響,繪制了單單元單顆粒沖擊阻尼器受迫振動時反映最佳凈距和相應(yīng)的振幅折減幅度表格。Ema等[56]研究表明沖擊阻尼器為主體結(jié)構(gòu)提供的附加阻尼由質(zhì)量塊與主體結(jié)構(gòu)碰撞產(chǎn)生,且最佳阻尼作用受質(zhì)量比和凈距共同影響。Duncan等[57]用數(shù)值模擬方法研究了豎向沖擊阻尼器在寬頻和多種振幅下的阻尼特性。

針對考慮顆粒之間相互作用的多顆粒阻尼器結(jié)構(gòu)較難求得解析解問題,已研究出簡化方法和數(shù)值方法。Papalou 等[4,58-59]將多顆粒阻尼器簡化等效為等質(zhì)量單顆粒阻尼器。Friend等[33]通過將多顆粒模擬為一個凝聚的質(zhì)量塊,將各種機(jī)理引起的能量耗散打包為“有效恢復(fù)系數(shù)”,該系數(shù)由實(shí)驗擬合得到,從而提出一種解析方法。Liu等[60]在歸納實(shí)驗結(jié)果基礎(chǔ)上,采用等效粘滯阻尼模擬顆粒阻尼器非線性特質(zhì)。Xu等[61]提出阻尼作用與各參數(shù)關(guān)系基于實(shí)驗擬合的顆粒阻尼器設(shè)計經(jīng)驗方法。Wu等[62]將多相流體理論引入顆粒阻尼器分析,提出理論模型。Fang等[63]在文獻(xiàn)[62]基礎(chǔ)上改進(jìn),減少分析的復(fù)雜度和計算量。運(yùn)用于顆粒阻尼模擬方法另如:回歸模型法[64],恢復(fù)力曲面法[65],功率輸入法[66],神經(jīng)網(wǎng)絡(luò)法[67]等。盡管上述簡化模型及實(shí)驗研究取得一定成果,但均基于現(xiàn)象,結(jié)論較難推廣到除該實(shí)驗之外的其他情形。而離散單元法(Discrete Element Method)[6,41,47,68]的引入使顆粒阻尼器分析研究又進(jìn)一步,該方法能考慮顆粒之間及顆粒與容器壁之間的相互作用,能更合理定量分析顆粒阻尼器性能。

離散單元法[69]按時步迭代求解,將離散體劃分為眾多離散單元的集合,據(jù)接觸定律及牛頓第二定律描述其運(yùn)動。該方法認(rèn)為只要時步取值足夠小,在該時步內(nèi),單元擾動只會傳播到與其相鄰的單元,不會傳播到其他更遠(yuǎn)單元。據(jù)此,作用在某一單元上的外力即可通過與其相鄰單元相互作用情況求得,進(jìn)而求得整個離散體的整體運(yùn)動形態(tài)。

圖2(a)為在頂層附加顆粒阻尼器的多自由度結(jié)構(gòu),其控制方程為:

式中:M,C,K分別為質(zhì)量、阻尼、剛度矩陣;F,E,分別為接觸力向量、地面加速度引起的結(jié)構(gòu)質(zhì)量矩陣及地面加速度;Xi為i層位移;Mi,Ci,Ki分別為i層質(zhì)量、阻尼、剛度;Fi為顆粒對i層結(jié)構(gòu)的接觸力。

對顆粒i,某一時刻的控制方程為:

式中:mi,Ii為顆粒質(zhì)量與慣性矩;g為重力加速度向量;Pi,φi為顆粒位置向量與角位移向量;,為顆粒i,j之間的法向接觸力及切向接觸力(若顆粒i與容器壁接觸,則j代表容器壁),接觸力作用在兩顆粒接觸點(diǎn)非顆粒質(zhì)心;切向接觸力產(chǎn)生扭矩Tij,使顆粒產(chǎn)生旋轉(zhuǎn);對半徑為ri的球形顆粒,Tij=rjnij×,其中,nij為顆粒i質(zhì)心指向顆粒j質(zhì)心的單位向量,×表示向量叉積,ki為與顆粒i接觸的顆粒數(shù)目。

圖2 兩種模型Fig 2 Model two

Elperin等[70-71]用各種接觸力模型定量確定法向力與切向力。采用較多、較簡單的有法向為線性接觸力模型及切向為庫倫摩擦力模型。

圖2(b)為顆粒與容器壁法向線性接觸力模型,k2為彈簧剛度,為角頻率,可通過合理選擇ω2((ω2/ωn≥20[72])模擬剛性壁;c2為阻尼系數(shù),ζ2=c2/2mω2為臨界阻尼比,用于模擬非彈性碰撞,故各種恢復(fù)系數(shù)(Coefficient of Restitution,兩物體碰撞后與碰撞前相對速度比值絕對值)可通過調(diào)整ζ2實(shí)現(xiàn)。顆粒之間的法向線性接觸力模型類似,用ω3,c3,ζ3代表顆粒間模擬法向彈簧剛度、阻尼系數(shù)、臨界阻尼比。法向力表示為:

式中:δn,為顆粒i相對j的位移及速度,ti為顆粒與容器壁距離。

采用庫侖摩擦力模型,切向接觸力表示為:

式中:μs為顆粒間或顆粒與容器壁間的摩擦系數(shù),為顆粒i相對顆粒j的切向速度。

應(yīng)用離散單元法模擬附加顆粒阻尼器多自由度體系過程簡述為:① 判斷顆粒之間,顆粒與容器壁之間相對位置,若δn>0,作用在顆粒上的接觸力可通過式(9)、式(10)求得;若δn≤0,無接觸力;② 對作用在一個顆粒上的所有接觸力求和,包括顆粒之間接觸力和顆粒與容器壁接觸力;③ 顆粒的運(yùn)動可通過式 (8)求得;以上過程對所有顆粒順次進(jìn)行;④ 累加所有顆粒與容器壁的接觸力,即得式 (1)力F,對F求解,即得主體結(jié)構(gòu)響應(yīng)。

3 顆粒阻尼試驗研究

各種顆粒阻尼器試驗?zāi)康?,一為驗證計算結(jié)果的正確性,二為研究各種動力荷載下不同阻尼器參數(shù)對系統(tǒng)減振效果影響。Veluswami等[73-74]用三種不同材料做阻尼器內(nèi)部沖擊板涂層,發(fā)現(xiàn)軟質(zhì)材料恢復(fù)系數(shù)較小,共振時提供的附加阻尼也小;Sadek等[75-76]考察重力對沖擊阻尼器影響,發(fā)現(xiàn)阻尼器無重力影響時效果更好,在共振區(qū)域附近,每個周期非對稱碰撞兩次的碰撞形式占主導(dǎo);Cempel等[77]研究顆粒阻尼器的振動阻尼,發(fā)現(xiàn)沖擊顆粒能量耗散不僅依賴于內(nèi)部顆粒碰撞,且與外部碰撞(顆粒與容器壁碰撞)及摩擦相關(guān);Hollkamp等[78]用金屬與陶瓷顆粒作沖擊體,容器振動時能量通過顆粒碰撞耗散;Saeki等[68]研究簡諧激勵下顆粒阻尼器響應(yīng),發(fā)現(xiàn)沖擊體質(zhì)量越大為結(jié)構(gòu)提供的附加阻尼越多,而質(zhì)量較小沖擊體在主體結(jié)構(gòu)振動初始地產(chǎn)生作用更迅速,并定出最佳凈距值。Yang等[81-82]總結(jié)一系列設(shè)計曲線以預(yù)測顆粒阻尼器特性。Li等[83]用一系列實(shí)驗研究單顆粒沖擊阻尼器附加在多自由度體系的性狀,考察沖擊體質(zhì)量、凈距、激勵類型及位置等影響,發(fā)現(xiàn)增加顆粒質(zhì)量不一定能增加主體結(jié)構(gòu)各階模態(tài)阻尼。毛寬民等[84]應(yīng)用三維離散單元法驗證試驗結(jié)果,考察顆粒阻尼器性能,發(fā)現(xiàn)該裝置提供的較大附加阻尼為沖擊阻尼及摩擦阻尼綜合作用,導(dǎo)致主體系統(tǒng)振幅在一定時間內(nèi)呈線性迅速衰減。徐志偉等[85]證實(shí)顆粒阻尼器能量耗散機(jī)理主要與摩擦及碰撞相關(guān),并重點(diǎn)考察縱向應(yīng)變梯度引起的剪切摩擦力對阻尼的貢獻(xiàn)。實(shí)驗表明顆粒阻尼器在較寬頻帶范圍內(nèi)均能提供附加阻尼,用多顆粒作為沖擊體,合理考慮沖擊、摩擦及剪切機(jī)理影響,即能得到最佳附加阻尼。周宏偉等[16]完成了顆粒阻尼應(yīng)用于飛機(jī)蒙皮結(jié)構(gòu)和直升機(jī)槳葉的試驗。魯正等[49-50]完成了三層鋼框架附加顆粒阻尼器的振動臺試驗,考察了不同地震波輸入下的系統(tǒng)減震效果。

4 顆粒阻尼技術(shù)在土木工程中應(yīng)用

土木結(jié)構(gòu)存在各種振動,使結(jié)構(gòu)振動控制體系應(yīng)運(yùn)而生。Yao[86]最早將現(xiàn)代控制理論應(yīng)用于土木結(jié)構(gòu)。Kelly等[87-88]提出用外加耗能裝置耗散結(jié)構(gòu)振動能量設(shè)想。由此,消能減震技術(shù)逐漸得以應(yīng)用,并研制、開發(fā)簡單實(shí)用高效的新型消能減震裝置。應(yīng)用較廣的被動控制裝置有粘彈性阻尼器、摩擦阻尼器、流體阻尼器及調(diào)諧質(zhì)量阻尼器等。然而,粘彈性材料在高溫與低溫環(huán)境下會失效、退化變脆分解;摩擦阻尼器雖能用于某些高溫情形(如渦輪片),但其性能與兩物體切合的緊密程度等因素有關(guān),有效性會因物體表面狀況改變而降低,且在各種動力作用下會發(fā)生材性退化與疲勞效應(yīng);流體阻尼器因滲漏較難用于惡劣環(huán)境(極端溫度);調(diào)諧質(zhì)量阻尼器(Tuned Mass Damper,TMD)只能在共振區(qū)附近較小頻率范圍內(nèi)有效,且對工作環(huán)境變化敏感。因此,廣泛應(yīng)用于機(jī)械領(lǐng)域的高度非線性顆粒阻尼技術(shù)體現(xiàn)出在土木工程應(yīng)用的良好前景和發(fā)展?jié)摿Α?/p>

顆粒阻尼技術(shù)應(yīng)用于土木工程的研究剛起步,實(shí)際工程應(yīng)用較少見。Ogawa等[89]將沖擊阻尼器用于懸索橋橋塔以控制風(fēng)振;Naeim等[90]介紹位于圣地亞哥市中心經(jīng)受2010年智利地震考驗的附加顆粒阻尼器的高層建筑(圖3);Liu等[91]將顆粒阻尼用于層狀蜂窩夾層結(jié)構(gòu)抗沖擊碰撞問題研究,但其試驗對象仍為懸臂結(jié)構(gòu);趙玲等[44]對微顆粒阻尼薄壁柱(邊長25 mm、壁厚0.6 mm正方形薄壁空心柱)的阻尼特性進(jìn)行了初步試驗研究;張向東[92]初步探討了顆粒阻尼器的顆粒材料、布置位置和質(zhì)量比等對建筑結(jié)構(gòu)減振控制效果影響;楊智春[14]對顆粒碰撞阻尼動力吸振器用于5層樓房框架模型的抑振情況進(jìn)行了試驗研究;魯正[93]對不同地震激勵下帶顆粒阻尼器的框架結(jié)構(gòu)進(jìn)行了理論、試驗研究及參數(shù)分析。

圖3 Parque Araucano樓及阻尼器系統(tǒng)Fig.3 The Parque Araucano building and its particle damper system

顆粒阻尼減振頻帶寬,在0~6 000 Hz范圍內(nèi)均有一定減振效果[5,94],因此可考慮用其抑制土木結(jié)構(gòu)地震、風(fēng)振等低頻振動及地鐵、高架交通引起的環(huán)境振動等,且減振性能不隨時間而降低,能有效抑制共振峰值;據(jù)顆粒材料特性,該技術(shù)尤其適用野外極端條件結(jié)構(gòu),如輸電塔振動控制等。此外,主體結(jié)構(gòu)因附加顆粒質(zhì)量,故可降低共振頻率;顆粒布置靈活,可同TMD附加于土木結(jié)構(gòu)外部,也可內(nèi)嵌于構(gòu)件中,且在任意夾層、內(nèi)部空洞均可放置,原結(jié)構(gòu)改動小,不影響結(jié)構(gòu)使用;所用顆粒取材廉價方便,如鋼球、沙子、石子等均可使用。因此,該技術(shù)在土木工程中適用性大大增強(qiáng)[45]。

然而,目前顆粒阻尼理論計算模型較單一,無法針對不同工作狀態(tài)下不同顆粒阻尼進(jìn)行較準(zhǔn)確的內(nèi)部接觸力與耗能情況的定量分析;已有文獻(xiàn)對附加顆粒阻尼器主體結(jié)構(gòu)的研究多集中在單自由度系統(tǒng)或機(jī)械中常用懸臂梁結(jié)構(gòu),對多自由度結(jié)構(gòu)附加顆粒阻尼器的精細(xì)分析尚未開展;由于諸多因素對顆粒阻尼器的減振效果有影響,嘗試尋找最佳參數(shù)或能綜合諸多因素影響的新參數(shù),優(yōu)化顆粒阻尼器工作性能;為增強(qiáng)顆粒阻尼器減振效果而對傳統(tǒng)顆粒阻尼技術(shù)進(jìn)行的改進(jìn)目前尚少;對土木結(jié)構(gòu)使用顆粒阻尼器后在地震及風(fēng)振下的控制效果理論及試驗研究更少;對顆粒阻尼設(shè)計標(biāo)準(zhǔn)化、規(guī)范化,能指導(dǎo)工程應(yīng)用的實(shí)用設(shè)計方法研究基本未見。

5 結(jié)論

由以上討論知,雖對顆粒阻尼進(jìn)行諸多理論,數(shù)值及試驗研究,但主要仍為基礎(chǔ)性研究;利用數(shù)值模擬方法將簡化的基于經(jīng)驗與試驗的模擬轉(zhuǎn)向較精細(xì)的基于三維離散元法的模擬同樣存在缺點(diǎn),如對具體材料屬性參數(shù)取值要求高且計算量隨顆粒數(shù)目的增加而急劇增大等。因此,顆粒阻尼用于土木工程前景與發(fā)展?jié)摿α己茫瑢φ莆疹w粒阻尼本質(zhì),進(jìn)行規(guī)范化設(shè)計與實(shí)例應(yīng)用尚需深入研究、實(shí)踐。

[1]Paget A L.Vibration in steam turbine buckets and damping by impacts[J].Engineering,1937,143:305-307.

[2]Lieber P, Jensen D P. An acceleration damper:development, design and some applications [J].Transactions of the ASME,1945,67(7):523-530.

[3]Masri S F.Analytical and experimental studies of multipleunit impact dampers[J].Journal of the Acoustical Society of America,1969,45(5):1111-1117.

[4]Papalou A,Masri S F.Performance of particle dampers under random excitation[J].Journal of Vibration and Acoustics-Transactions of the Asme,1996,118(4):614-621.

[5]Panossian H V.Structural damping enhancement via nonobstructive particle damping technique[J].Journal of Vibration and Acoustics,1992,114(1):101-105.

[6]Saeki M.Analytical study of multi-particle damping[J].Journal of Sound and Vibration,2005,281(3-5):1133-1144.

[7]Chen L A,Semercigil S E.A beam like damper for attenuating transient vibrations of light strucvtures [J].Journal of Sound and Vibration,1993,164(1):53-65.

[8]李 偉,朱德懋,胡選利,等.豆包阻尼器的減震特性研究[J].航空學(xué)報,1999,20(2):168-170.

LI Wei,ZHU De-mao,HU Xuan-li,et al.Study on the damping characteristics of bean bag damper[J].Journal of Aeronautics,1999,20(2):168-170.

[9]Popplewell N,Semercigil S E.Performance of the bean bag impact damper for a sinusoidal external force[J].Journal of Sound and Vibration,1989,133(2):193-223.

[10]Li K,Darby A.A buffered impact damper for multi-degreeof-freedom structural control[J].Earthquake Engineering &Structural Dynamics,2008,37(13):1491-1510.

[11]段 勇,陳 前.軟內(nèi)壁顆粒阻尼器阻尼特性試驗研究[J].振動工程學(xué)報,2011,24(2):215-220.

DUAN Yong,CHEN Qian.Experimental investigation of damping properties of the particle dampers with soft lining[J].Journal of Vibration Engineering,2011,24(2):215-220.

[12] Shah B M,Pillet D,Bai X M,et al.Construction and characterization of a particle-based thrust damping system[J].Journal of Sound and Vibration,2009,326(3-5):489-502.

[13]杜妍辰,王樹林,朱 巖,等.帶顆粒減振劑碰撞阻尼的減振特性[J].機(jī)械工程學(xué)報,2008,44(7):186-189.

DU Yan-chen,WANG Shu-lin,ZHU Yan,et al.Vibration characteristics of a new fine particle impact damping[J].Chinese Journal of Mechanical Engineering,2008,44(7):186-189.

[14]楊智春,李澤江.顆粒碰撞阻尼動力吸振器的設(shè)計及實(shí)驗研究[J].振動與沖擊,2010,29(6):69-71.

YANG Zhi-chun,LI Ze-jiang.Design and test for a type of particle impact damped dynamic absorber[J].Journal of Vibration and Shock,2010,29(6):69-71.

[15] Semercigil S E,Collette F,Huynh D.Experiments with tuned absorber-impact damper combination[J].Journal of Sound and Vibration,2002,256(1):179-188.

[16]周宏偉.顆粒阻尼及其控制的研究與應(yīng)用[D].南京:南京航空航天大學(xué),2008.

[17]戴德沛.阻尼減振降噪技術(shù)[M].西安:西安交通大學(xué)出版社,1986.

[18] Kerwin E M.Macro-mechanisms of damping in composite structures[A].Internal Friction Damping and Cyclic Plasticity[C].Baltimore,Md:ASTM-STP,1965:125-147.

[19] Lenzi A.The use of damping material in industrial machine[D].England:University of Southampton,Institute of Sound and Vibration Research,1985.

[20] Sun J C,Sun H B.Predictions of total loss factors of structures Part II:loss factors of sand filled structure[J].Journal of Sound and Vibration,1986,104(2):243-257.

[21]屈維德.機(jī)械加工中的振動問題[M].北京:高等教育出版社,1959.

[22]鄧危梧.沖擊減振器的效應(yīng)及其基本參數(shù)的確定[J].機(jī)械工程學(xué)報,1964,12(4):83-94.

DENG Wei-wu.Effects of impact damper and determination of itsparameters[J]. ChineseJournalofMechanical Engineering,1964,12(4):83-94.

[23]張濟(jì)生,何康渝.關(guān)于沖擊減振機(jī)理的討論[A].中國機(jī)械工程學(xué)會機(jī)械動力學(xué)會第四屆學(xué)術(shù)年會論文集[C].天津:天津大學(xué)出版社,1990:316-321.

[24] Grubin C.On the theory of the acceleration damper[J].Journal of Applied Mechanics,1956,23(8):373-378.

[25] Oledzki A.New kind of impact damper-from simulation to real design [J].Mechanism & Machine Theory,1981,16(3):247-253.

[26] Skipor E,Bain L J.Application of impact damping to rotary printing equipment[J].Journal of Mechanical Design,1980,102(2):338-343.

[27] Moore J J,Palazzolo A B,Gadangi R,et al.Forced response analysis and application of impact dampers to rotor-dynamic vibration suppression in a cryogenic environment[J].Journal of Vibration and Acoustics,1995,117(3A):300-310.

[28] Sato T,Takase M,Kaiho N,et al.Vibration reduction of pantograph-support system using an impact damper(influence of curve track)[A].Proceeding of International Conference on Noise & Vibration Engineering,ISMA [C].Leuven,Belgium:2002:1669-1676.

[29]Sims N D,Amarasinghe A,Ridgway K.Particle dampers for workpiece chatter mitigation[J].Manufacturing Engineering Division,ASME,2005,16(1):825-832.

[30] Gibson B W.Usefulness of impact dampers for space applications[R].AFIT/GA/AA/83M-2,147.Wright-Patterson AFB,OH:Air Force Institute of Technoligy,1983.

[31] Torvik P J,Gibson W.Design and effectiveness of impact dampers for space applications[J].Design Engineering Division,ASME,1987,5:65-74.

[32] Friend R D,Kinra V K.Measurement and analysis of particle impact damping[A].Proceedings of SPIE Conference.Passive Damping and Isolation[C].San Jose,CA:SPIE,1999:20-31.

[33] Friend R D,Kinra V K.Particle impacting damping[J].Journal of Sound and Vibration,2000,233(1):93-118.

[34] Marhadi K S,Kinra V K.Particle impact damping:effect of mass ratio,material and shape[J].Journal of Sound and Vibration,2005,283(1):433-448.

[35] Olson S E.An analytical particle damping model[J].Journal of Sound and Vibration,2003,264(5):1155-1166.

[36]李 偉,朱德懋,黃協(xié)清.柔性約束顆粒阻尼于板結(jié)構(gòu)的減振研究[J].噪聲與振動控制,1998,4(1):2-5.

LIWei, ZHU De-mao, HUANG Xie-qing, Vibration reduction effect of bean bag particle damping on plan structure[J].Noise and Vibration Control,1998,4(1):2-5.

[37]王青梅,陳 前.基于碰撞理論的顆粒阻尼計算模型及試驗研究[J].振動、測試與診斷,2007,27(4):300-303.

WANG Qing-mei,CHEN Qian.Computational model based on collision theory and experimental study on particle damping[J].Journal of Vibration,Measurement& Diagnosis,2007,27(4):300-303.

[38]段 勇,陳 前,林 莎.顆粒阻尼對直升機(jī)旋翼槳葉減振效果的試驗[J].航空學(xué)報,2009,30(11):2113-2118.

DUAN Yong, CHEN Qian, LIN Sha. Experimentsof vibration reduction effect of particle damping on helicopter rotor blade[J].Journal of Aeronautics,2009,30(11):2113-2118.

[39]夏兆旺,單穎春,劉獻(xiàn)棟,等.顆粒阻尼應(yīng)用于平板葉片減振試驗[J].振動、測試與診斷,2008,28(3):269-272.

XIA Zhao-wang,SHAN Ying-chun,LIU Xian-dong,et al.Particle damping tests on cast steel plates[J].Journal of Vibration,Measurement & Diagnosis, 2008,28(3):269-272.

[40]毛寬民,師漢民,黃其柏,等.NOPD的橢球狀散體元建模[J].工程力學(xué),2000,17(6):65-71.

MAO Kuan-min,SHI Han-min, HUANG Qi-bai,et al.Three dimensional ellipsoidal element DEM model of NOPD[J].Engineering Mechanics,2000,17(6):65-71.

[41]Mao K M,Wang M Y,Xu Z W,et al.DEM simulation of particle damping[J].Powder Technology,2004,142(2-3):154-165.

[42] Hu L,Huang Q B,Liu Z X.A non-obstructive particle damping model of DEM [J].International Journal of Mechanics and Materials in Design,2008,4(1):45-51.

[43] Du Y C, WangS L. Energydissipation in normal elastoplastic impact between two spheres[J].Journal of Applied Mechanics,2009,76(6):061010-061017.

[44]趙 玲,劉 平,盧媛媛.非阻塞性微顆粒阻尼柱阻尼特性的實(shí)驗研究[J].振動與沖擊,2009,28(8):1-5.

ZHAO Ling, LIU Ping, LU Yuan-yuan. Experimental investigation on damping characteristics of NOPD columns[J].Journal of Vibration and Shock,2009,28(8):1-5.

[45]閆維明,黃韻文,何浩祥,等.顆粒阻尼技術(shù)及其在土木工程中的應(yīng)用展望[J].世界地震工程,2010,26(4):18-24.

YAN Wei-ming,HUANG Yun-wen,HE Hao-xiang,et al.Particle damping technology and its application prospect in civil engineering[J].World Earthquake Engineering,2010,26(4):18-24.

[46] Lu Z,Lu X L,Masri S F.Studies of the performance of particle dampers under dynamic loads[J].Journal of Sound and Vibration,2010,329(26):5415-5433.

[47] Lu Z,Masri S F,Lu X L.Parametric studies of the performance of particle dampers under harmonic excitation[J]. SturcturalControland Health Monitoring, 2011,18(1):79-98.

[48] Lu Z,Masri S F,Lu X L.Studies of the performance of particle dampers attached to a two-degree-of-freedom system under random excitation [J].Journal of Vibration and Control,2011,17(10):1454-1471.

[49] Lu Z,Lu X L,Lu W S,et al.Experimental studies of the effects of buffered particle dampers attached to a multidegree-of-freedom system under dynamic loads[J].Journal of Sound and Vibration,2012,331(9):2007-2022.

[50]Lu Z,Lu X L,Lu W S,et al.Shaking table test of the effects of multi-unit particle dampers attached to an MDOF system under earthquake excitation[J].Earthquake Engineering &Structural Dynamics,2012,41(5):987-1000.

[51] Masri S F.General motion of impact dampers[J].The Journal of the Acoustical Society of America,1970,47(1B):229-237.

[52] Bapat C N.Periodic motion of an impact oscillator[J].Journal of Sound and Vibration,1998,209(1):43-60.

[53] Masri S F.Effectiveness of two-particle impact dampers[J].Journal of the Acoustical Society of America,1967,41(6):1553-1554.

[54] Bapat C N,Sankar S.Multiunit impact damper-reexamined[J].Journal of Sound and Vibration,1985,103(4):457-469.

[55] Bapat C N,Sankar S.Single unit impact damper in free and forced vibration[J].Journal of Sound and Vibration,1985,99(1):85-94.

[56] Ema S,Marui E.Fundamental study on impact dampers[J]. International Journal of Machine Tools and Manufacture,1994,34(3):407-421.

[57]Duncan M R,Wassgren C R,Krousgrill C M.The damping performance of a signle particle impact damper[J].Journal of Sound and Vibration,2005,286(1-2):123-144.

[58] Papalou A,Masri S F.Response of impact dampers with granular materials under random excitation[J].Earthquake Engineering & StructuralDynamics,1996,25(3):253-267.

[59] Papalou A,Masri S F.An experimental investigation of particle dampers under harmonic excitation[J].Journal of Vibration and Control,1998,4(4):361-379.

[60] Liu W,Tomlinson G R,Rongong J A.The dynamic characterisation of disk geometry particle dampers[J].Journal of Sound and Vibration,2005,280(3-5):849-861.

[61]Xu Z W,Chan K W,Liao W H.An empirical method for particle damping design [J].Shock and Vibration,2004,11(5-6):647-664.

[62] Wu C J,Liao W H,Wang M Y.Modeling of granular particle damping using multiphase flow theory of gas-particle[J].Journal of Vibration and Acoustics,2004,126(2):196-201.

[63] Fang X,Tang J.Granular damping in forced vibration:qualitative and quantitative analyses[J].Journal of Vibration and Acoustics,2006,128(4):489-500.

[64]胡 溧,黃其柏,許智生.顆粒阻尼的回歸分析研究[J].中國機(jī)械工程,2008,19(23):2834-2837.

HU Li,HUANG Qi-bai,XU Zhi-sheng.Regression analysis of particle damping[J].Chinese Mechanical Engineering,2008,19(23):2834-2837.

[65]蔣 華,陳 前.恢復(fù)力曲面法在顆粒阻尼器研究中的應(yīng)用[J].振動、測試與診斷,2007,27(3):228-231.

JIANG Hua,CHEN Qian.Application of resoting force superface method to particle damping research[J].Journal of Vibration,Measurement& Diagnosis,2007,27(3):228-231.

[66]劉雁梅,黃協(xié)清,陳天寧.非阻塞性顆粒阻尼加筋板振動功率流的研究[J].西安交通大學(xué)學(xué)報,2001,35(1):61-65.

LIU Yan-mei,HUANG Xie-qing,CHEN Tian-ning.Study on power flow of a stiffened plate with non-obstructive particle damping[J].Journal of Xi'an Jiaotong University,2001,35(1):61-65.

[67]Tanrikulu A H.Application of ANN techniques for estimating modal damping of impact-damped flexible beams [J].Advancesin EngineeringSoftware, 2009, 40(10):986-990.

[68] Saeki M.Impact damping with granular materials in a horizontally vibrating system [J].Journal of Sound and Vibration,2002,251(1):153-161.

[69]Cundall A P A,Strack O D L.A distinct numerical model for granular assemblies [J].Geotechnique,1979,29(1):47-65.

[70] Elperin T,Golshtein E.Comparison of different models for tangential forces using the particle dynamics method [J].Physica A:Statistical and Theoretical Physics,1997,242(3-4):332-340.

[71]Renzo A D,Maio F P D.Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J].Chemical Engineering Science,2004,59(3):525-541.

[72] Masri S F.Steady-state response of a multidegree system with an impact damper[J].Journal of Applied Mechanics-Transactions of the Asme,1973,40(1):127-132.

[73]Veluswami M A,Crossley F R E.Multiple impacts of a ball between two plates,part 1:some experimental observations[J].Journal of Engineering for Industry,ASME,1975,97(3):820-827.

[74] Veluswami M A,Crossley F R E,Horvay G.Multiple impacts of a ball between two plates,part 2:mathematical modeling[J].Journal of Engineering for Industry,ASME,1975,97(3):835-838.

[75] Sadek M M,Mills B.Effect of gravity on the performance of an impact damper,part 1:steady-state motion [J].Journal of Mechanical Engineering Science,1970,12(4):268-277.

[76]Sadek M M,Williams C J H,Mills B.Effect of gravity on the performance of an impact damper,part 2:stability of vibrational modes[J].Journal of Mechanical Engineering Science,1970,12(4):278-287.

[77]Cempel C,Lotz G.Efficiency of vibrational energy dissipation by moving shot [J].Journal of Structural Engineering,1993,119(9):2642-2652.

[78] Hollkamp J J,Gordon R W.Experiments with particle damping[A].Smart Structures and Materials 1998:Passive Damping and Isolation[C].San Diego:SPIE,1998:2-12.

[79] Yokomichi I,Araki Y,Jinnouchi Y,et al.Impact damper with granular materials for multibody system[J].Journal of Pressure Vessel Technology,1996,118(1):95-103.

[80] Yokomichi I,Muramatsu H,Araki Y.On shot impact dampers applied to self-excited vibrations[J].International Journal of Acoustics and Vibration,2001,6(4):193-199.

[81] Yang M Y.Development of master design curves for particle impactdampers[D]. PA:The Pennsylvania State University,Department of Mechanical Engineering,2003.

[82] Yang M Y,Lesieutre G A,Hambric S A,et al.Development of a design curve for particle impact dampers[J].Noise Control Engineering Journal,2005,53(1):5-13.

[83] Li K,Darby A P.Experiments on the effect of an impact damper on a multiple-degree-of-freedom system[J].Journal of Vibration and Control,2006,12(5):445-464.

[84] Mao K M,Wang M Y,Xu Z W,et al.Simulation and characterization of particle damping in transient vibrations[J].Journal of Vibration and Acoustics,ASME,2004,126(2):202-211.

[85]Xu Z W,Wang M Y,Chen T N.Particle damping for passive vibration suppression:numerical modelling and experimental investigation[J].Journal of Sound and Vibration,2005,279(3-5):1097-1120.

[86] Yao J T P.Concept of structural control[J].Journal of the Structural Division,ASCE,1972,98(7):1567-1574.

[87] Kelly J M,Skinner R L,Heine A J.Mechanics of energy absorption in special devices for use in earthquake-resistant structures[J].Bulletin of New Zealand National Society for Earthquake Engineering,1972,5(3):63-88.

[88] Skinner R I,Kelly J M,Heine A J.Hysteretic dampers for earthquake-resistant structures[J].Earthquake Engineering& Structural Dynamics,1974,3(3):287-296.

[89] Ogawa K,Ide T,Saitou T.Application of impact mass damper to a cable-stayed bridge pylon[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,72(1-3):301-312.

[90]Naeim F,Lew M,Carpenter L D,et al.Performance of tall buildings in santiago,chile during the 27 february 2010 offshore maule,chile earthquake[J].The Structural Design of Tall and Special Buildings,2011,20(1):1-16.

[91] Liu A Q,Wang B,Choo Y S,et al.The effective design of bean bag as a vibroimpact damper[J].Shock and Vibration,2000,7(8):343-354.

[92]張向東.高架路交通誘發(fā)振動與建筑物減振控制方法研究[D].北京:北京工業(yè)大學(xué),2009.

[93]魯 正.顆粒阻尼器的仿真模擬和性能分析[D].上海:同濟(jì)大學(xué),2011.

[94] Panossian H V,Bice D L.Low frequency applications of nonobstructive particle damping[A].61St shock and vibration symposium[C].Pasadena,CA:1990.

猜你喜歡
阻尼器阻尼沖擊
適用于木結(jié)構(gòu)加固的黏彈性阻尼器擬靜力試驗研究*
砌體墻上安裝摩擦型阻尼器施工技術(shù)探討
復(fù)合耗能阻尼器研究進(jìn)展
可噴涂阻尼材料在汽車涂裝中的應(yīng)用
關(guān)于具有阻尼項的擴(kuò)散方程
具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
阻尼連接塔結(jié)構(gòu)的動力響應(yīng)分析
奧迪Q5換擋沖擊
奧迪A8L換擋沖擊
一汽奔騰CA7165AT4尊貴型車換擋沖擊