国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

阿爾茨海默病與Aβ及其衍生物的關(guān)系研究進(jìn)展

2013-01-25 12:40王長福王秋紅武立華匡海學(xué)
中國老年學(xué)雜志 2013年9期
關(guān)鍵詞:退行性突變體可溶性

王長福 肖 陽 王秋紅 武立華 匡海學(xué)

(黑龍江中醫(yī)藥大學(xué) 北藥基礎(chǔ)與應(yīng)用研究教育部重點實驗室,黑龍江 哈爾濱 150040)

阿爾茨海默病(AD)神經(jīng)病理學(xué)特征為中樞神經(jīng)紋狀體和新皮質(zhì)產(chǎn)生大量神經(jīng)炎性斑塊(NPs)和神經(jīng)纖維纏結(jié)(NFTs),癡呆是由于大腦患病處神經(jīng)元及突觸死亡所致,NPs為一復(fù)雜的細(xì)胞外結(jié)構(gòu),Aβ纖維蛋白淀粉樣沉積形成核狀,周圍由活性星狀細(xì)胞、神經(jīng)膠質(zhì)細(xì)胞和營養(yǎng)障礙的突觸包繞,而NFTs則聚集在細(xì)胞內(nèi),主要由異常過度的高度磷酸化tau蛋白雙螺旋細(xì)絲組成。AD患者通常表現(xiàn)為腦血管內(nèi)大量Aβ肽呈淀粉樣沉積〔腦血管淀粉樣變性(CVA)〕〔1〕,散發(fā)型AD約占95%,多發(fā)生在65歲以上人群,沒有明確的遺傳病原學(xué),家庭性AD(FAD)約占5%,其病因與特異性基因突變有關(guān),F(xiàn)AD發(fā)病年齡較早,其侵襲性遠(yuǎn)大于散發(fā)型AD,但兩者的神經(jīng)病理學(xué)極為相似,因此,兩者具有共同的細(xì)胞機制,目前AD的診斷除根據(jù)臨床癥狀和尸體解剖腦組織檢查老年斑(SP)和NFTs外仍無法對AD進(jìn)行化驗診斷。AD神經(jīng)元退行性病變的機制仍未能明確,AD病因包含環(huán)境和遺傳兩大因素,其機制是十分復(fù)雜。目前,年齡和載脂蛋白E4(ApoE4)等位基因〔2〕被公認(rèn)為散發(fā)型AD的兩大高危因素,而FAD則是由至少3個不同位點的特異性基因突變所致,分別為淀粉樣前體蛋白(APP)基因、早老素1(PS-1)和早老素2(PS-2),APP 作為 Aβ 肽的前體蛋白〔3~5〕,不僅是FAD特異性因素,同時也是散發(fā)型AD發(fā)生的重要因素之一;而且多數(shù)40周歲以上的唐氏綜合征(DS)患者病理與AD具有相似性,如出現(xiàn)Aβ淀粉樣蛋白沉積〔6〕,遺傳上也存在著直接聯(lián)系〔7〕;NPs和NFTs并非僅存在于AD患者腦內(nèi),也存在于正常的老齡人群的腦內(nèi),但在數(shù)量上明顯少于AD患者。此外,NFTs還常見于額顳葉癡呆、DS及帕金森病,因此,NFTs病理很可能是機體對基因損傷和環(huán)境因素的神經(jīng)性應(yīng)激反應(yīng)。

1 AD的病源學(xué):Aβ及其衍生物

以往研究中,普遍認(rèn)為Aβ肽及其可溶性或非可溶性衍生物為AD的主要致病因子,Aβ肽是一類小分子蛋白,其長度從35 ~43 個氨基酸不等,以 Aβ40和 Aβ42為主〔8,9〕,在聚集條件具備時,Aβ肽鏈形成擴(kuò)展的β片層結(jié)構(gòu),β片層結(jié)構(gòu)通過氫鍵形成反向平行的低聚物,這些Aβ低聚物進(jìn)一步聚集形成淀粉樣纖維并在神經(jīng)纖維網(wǎng)內(nèi)沉積形成NPs或在血管內(nèi)形成CVA,淀粉樣蛋白是β片層纖維蛋白沉積的總稱,這些蛋白能夠與剛果紅結(jié)合并表現(xiàn)出光學(xué)偏振特性〔10〕,因此,淀粉樣蛋白并非指可溶性Aβ肽,更不是非淀粉樣蛋白的低聚物,Aβ肽是由β和γ-分泌酶水解APP所產(chǎn)生的衍生物,β-分泌酶水解APP產(chǎn)生羧基端片段含有99個氨基酸殘基〔11〕,該殘基仍然結(jié)合在膜上,經(jīng)PS/γ-分泌酶復(fù)合物〔12〕進(jìn)一步水解產(chǎn)生Aβ肽,其中包括SP和CVA中的主要成分 Aβ1~40和 Aβ1~42;在非淀粉樣肽源途徑中,α-分泌酶裂解APP而產(chǎn)生可溶性氨基端產(chǎn)物(sAPP),sAPP經(jīng)γ-分泌酶水解產(chǎn)生胞內(nèi)肽,因此該途徑不能產(chǎn)生Aβ肽〔13〕,許多類似APP的細(xì)胞表面蛋白和受體均可被γ-分泌酶水解產(chǎn)生細(xì)胞內(nèi)肽,更重要的是這些細(xì)胞內(nèi)肽可發(fā)揮信號傳導(dǎo)及基因表達(dá)因子的作用〔14〕。

1987 年的一項研究首次發(fā)現(xiàn)CVA沉積可能促使AD的發(fā)生,主要原因在于CVA沉積可損害血腦屏障,同時導(dǎo)致腦血管微出血,使神經(jīng)毒血清產(chǎn)物易進(jìn)入神經(jīng)纖維網(wǎng),從而激發(fā)了神經(jīng)退行性級聯(lián)反應(yīng)、NFTs形成〔1〕,然而后續(xù)研究發(fā)現(xiàn),許多AD患者并沒有腦血管損傷,這說明AD神經(jīng)退行性病變并不受CVA沉積存在與否的影響,Aβ級聯(lián)假說認(rèn)為Aβ以神經(jīng)炎性斑塊的形式沉積下來激發(fā)了神經(jīng)毒性級聯(lián)反應(yīng),繼而導(dǎo)致神經(jīng)退行性病變、NFTs及 AD 的發(fā)生〔15,16〕,在過去 20幾年的研究中,有關(guān)NPs的神經(jīng)毒性機制并未形成一致觀點,Aβ沉積可繼發(fā)神經(jīng)元功能障礙使許多學(xué)者懷疑這類結(jié)構(gòu)是導(dǎo)致AD發(fā)生的主要原因〔17~19〕,但NPs與 AD和神經(jīng)元損傷程度均無顯著相關(guān)性〔20~22〕,所以它并非是導(dǎo)致AD患者神經(jīng)退行性病變的主要原因,而且更重要的原因在于一些正常的老齡人與AD患者的Aβ沉積水平相同〔22〕,實驗研究亦表明轉(zhuǎn)基因動物腦內(nèi)大量產(chǎn)生Aβ沉積并未引起神經(jīng)退行性病變〔23〕,而且一些 APP過表達(dá)的轉(zhuǎn)基因小鼠表現(xiàn)出神經(jīng)突觸和電生理異常并不依賴于Aβ沉積水平〔24〕,而這種異??赡軆H僅是因為外源性 APP過表達(dá)所致,此外,一項臨床研究顯示,成功清除AD患者腦內(nèi)Aβ沉積后,既沒有改善患者的認(rèn)知能力也無法阻止其精神惡化進(jìn)程〔25〕,這說明NPs很可能不是AD神經(jīng)退行性病變認(rèn)知能力下降的根本原因,因此治療或改善AD患者認(rèn)知功能下降不能單純通過清除腦內(nèi)Aβ沉積。

2 AD神經(jīng)退行性病變與Aβ肽及其寡聚體

基于Aβ肽的研究理論認(rèn)為細(xì)胞內(nèi)或細(xì)胞外的可溶性寡聚體為Aβ肽類毒性成分,原因在于Aβ寡聚體體外可干預(yù)神經(jīng)突觸可塑性,體內(nèi)試驗可損傷實驗動物的記憶功能〔26~28〕,但這些模型所得出的結(jié)論是基于過表達(dá)APP的細(xì)胞株或轉(zhuǎn)基因動物,所模擬病理條件并不適于AD,因為AD患者的APP沒有明顯的過表達(dá)〔4〕。另外,過表達(dá)APP的轉(zhuǎn)基因動物模型其行為學(xué)異常也不能完全歸因于Aβ肽類,APP代謝可產(chǎn)生大量衍生物,其中一些其他衍生物同樣具有神經(jīng)毒性〔29〕,值得一提的是,動物腦內(nèi)過表達(dá)蛋白所產(chǎn)生的毒性通常包含其他因素,如過表達(dá)蛋白轉(zhuǎn)運功能異常,因此,目前還不清楚APP轉(zhuǎn)基因模型的行為學(xué)異常是否為Aβ肽單純導(dǎo)致還是APP毒性代謝物的衍生物或過量的外源性APP干預(yù)細(xì)胞通路所致;更重要的是,可溶性Aβ肽類是正常人體血清及腦脊液的成分,最新研究報道甚至認(rèn)為其中一些Aβ肽還具有許多有益的生物學(xué)功能〔30~32〕,而且可溶性Aβ及其寡聚體的水平與AD疾病進(jìn)程也無明顯相關(guān)性,也沒有鑒定出的專屬性的受體介導(dǎo)Aβ寡聚體的毒性效應(yīng),因此,Aβ及其寡聚體激發(fā)AD神經(jīng)退行性病變這一理論的根本缺陷在于其與AD疾病的相關(guān)性缺乏可靠的數(shù)據(jù)支持。

由于可溶性Aβ與AD疾病缺乏相關(guān)性,這使得AD患者腦內(nèi)Aβ肽凝聚并沉積形成淀粉樣蛋白的原因也無法得到清晰的闡述,雖然APP表達(dá)及Aβ產(chǎn)生增加可促進(jìn)淀粉樣蛋白的形成,但這兩個條件卻不是AD患者腦內(nèi)Aβ淀粉樣沉積所必需的,如散發(fā)型AD病例中,腦內(nèi)Aβ淀粉樣沉積時并未伴隨APP表達(dá)及Aβ產(chǎn)生增加,而更為合理的解釋應(yīng)該是神經(jīng)退行性使得大腦無法將Aβ肽保持在可溶狀態(tài)。假設(shè)正常人的神經(jīng)元細(xì)胞可產(chǎn)生某種因子來抑制Aβ肽的凝集并維持其可溶性,AD使神經(jīng)元無法產(chǎn)生這一因子或產(chǎn)生量降低,從而使可溶性Aβ肽凝聚并沉積,因而可溶性Aβ肽的濃度也隨之降低,這一假設(shè)可能性相對較小,但與AD患者腦脊液中可溶性Aβ肽含量降低這一結(jié)論是一致的〔33,34〕,相反,轉(zhuǎn)基因動物模型中 Aβ肽淀粉樣變性僅僅是因為Aβ肽含量過高所致。一項新的研究報告顯示APP的細(xì)胞外代謝產(chǎn)物可激活死亡受體DR6從而引發(fā)神經(jīng)元變性,由此得出結(jié)論為APP-DR6體系可誘導(dǎo)AD神經(jīng)元細(xì)胞死亡〔35〕,但這一結(jié)論僅能說明APP過表達(dá)的AD模型中神經(jīng)元缺失的原因〔23,24,26,36〕,即 DR6 結(jié)合的 APP 片段增加可誘導(dǎo)神經(jīng)元細(xì)胞死亡。

3 FAD突變體與Aβ

現(xiàn)已明確FAD涉及3組不同基因突變,分別為PS-1、PS-2和APP,其中PS-1基因突變居多,PS是γ-分泌酶功能發(fā)揮的核心〔17〕,迄今已發(fā)現(xiàn)FAD中有150種基因突變與PS-1有關(guān),一般來說,PS 突變體可增加神經(jīng)毒性產(chǎn)物 Aβ42的產(chǎn)生〔27,36~38〕,然而,近期研究表明,相當(dāng)一部分FAD的PS-1突變并不能增加Aβ42的產(chǎn)生〔39~41〕,因此,不是所有的 FAD 突變體都能夠促進(jìn)APP向Aβ淀粉樣蛋白轉(zhuǎn)化,而對于PS-1的突變體而言,這一作用也是不確定的;同樣,有關(guān)FAD突變體可升高Aβ42/40的值使其神經(jīng)毒性增加的報道也有待進(jìn)一步驗證,因為許多FAD突變體并不能升高Aβ42/40的值〔40〕,雖然Swedish型FAD的APP突變體使Aβ42和Aβ40的量顯著升高,但并未使Aβ42/40的值發(fā)生明顯改變〔42〕,甚至有些攜帶PS-1突變體的FAD患者體內(nèi)可溶性 Aβ 肽含量及 Aβ42/40的值均無異常變化〔43〕。Aβ42體內(nèi)產(chǎn)生神經(jīng)毒性的濃度通常在pmol/L的濃度范圍,而體外可檢測到Aβ42神經(jīng)毒性的濃度為體內(nèi)產(chǎn)生毒性濃度的1萬倍〔33,43〕,通過對Aβ42游離態(tài)和凝聚態(tài)的體外神經(jīng)毒性實驗顯示低于1 μmol/L濃度的 Aβ42是檢測不到毒性的,相反,低濃度 Aβ42具有促進(jìn)神經(jīng)元細(xì)胞存活、生長及分化的作用〔30~32〕。

綜上表明,F(xiàn)AD突變體與Aβ42的產(chǎn)生沒有相關(guān)性,說明突變體對AD的神經(jīng)退行性病變的影響與 Aβ42無關(guān)〔40〕,F(xiàn)AD突變體導(dǎo)致神經(jīng)退行性病變充分說明了野生型蛋白在神經(jīng)元存活方面發(fā)揮著重要作用,但FAD突變體干擾神經(jīng)元細(xì)胞活動并誘導(dǎo)其死亡的機制并不清楚。FAD的遺傳基因為顯性,這與FAD突變體導(dǎo)致神經(jīng)元毒性的假說是一致的,但因其專屬性很強,不可能與眾多PS-1突變體均有關(guān)聯(lián)。額顳葉癡呆研究發(fā)現(xiàn),progranulin突變體為顯性遺傳,這使得功能蛋白的產(chǎn)生含量相對降低(單倍劑量不足),從而導(dǎo)致神經(jīng)退行性病變〔44〕,然而,與之不同的是FAD中沒有類似突變體能夠降低功能蛋白的含量,合理解釋應(yīng)為FAD突變基因除導(dǎo)致突變等位基因失去活性外,還可能導(dǎo)致野生型等位基因功能喪失,如突變等位基因的蛋白產(chǎn)物能夠與野生型等位基因蛋白產(chǎn)物相互作用,進(jìn)而影響其功能的發(fā)揮,近期的一些研究結(jié)論初步證明了FAD的這種“等位基因干擾”機制,如FAD突變體可抑制PS的生物學(xué)功能,也抑制了PS及APP形成二聚體〔45~47〕,該機制也揭示了FAD神經(jīng)退行性病變顯性遺傳及單倍劑量不足、突變體缺乏的原因。

PS/γ分泌酶系統(tǒng)不僅能夠促進(jìn)APP通過γ裂解形成淀粉樣蛋白,也能促進(jìn)許多Ⅰ型跨膜蛋白的ε裂解,其中包括APP、Notch1 受體、鈣黏著糖蛋白、EphB 受體及 CD44〔14,48〕,ε 裂解發(fā)生在γ裂解位點的下游,ε裂解使可溶性細(xì)胞質(zhì)肽類釋放,包括細(xì)胞內(nèi)底物裂解產(chǎn)生的羧基端片段,到目前為止,已發(fā)現(xiàn)20多種細(xì)胞表面跨膜蛋白和受體通過PS/γ分泌酶系統(tǒng)ε裂解產(chǎn)生可溶性多肽,這些多肽一部分移至細(xì)胞核參與基因表達(dá)的調(diào)控,一部分仍留在細(xì)胞質(zhì)內(nèi)調(diào)控轉(zhuǎn)錄因子的代謝〔14,48〕,總之,除產(chǎn)生Aβ肽外,γ分泌酶系統(tǒng)也在多種信號通路中發(fā)揮重要作用,從而實現(xiàn)對基因表達(dá)的調(diào)控。

研究報道顯示FAD的PS-1突變體使許多細(xì)胞表面蛋白無法進(jìn)行γ分泌酶ε裂解,如APP、Notch1受體、鈣黏著糖蛋白及EphB受體,相應(yīng)也減少了羧基端多肽的產(chǎn)生〔49~51〕,這一結(jié)論支持了FAD突變體可加速神經(jīng)退行性病變這一假說〔52,53〕,然而,除PS外,功能性γ分泌酶復(fù)合物至少包含了三種其他成分,分別為 nicastrin、Aph-1 和 Pen-2〔48〕,因此,F(xiàn)AD 患者中,當(dāng)與這3種成分缺乏時,就很難說FAD所產(chǎn)生的神經(jīng)退行性病變與γ分泌酶的活性有關(guān),一些實驗研究也證實,在PS中,除γ分泌酶的蛋白水解功能外,還具有γ分泌酶非依賴功能,如激活細(xì)胞通路 PI3K/Akt和 MEK/ERK〔54,55〕、調(diào)控糖原合激酶及鈣穩(wěn)態(tài)〔56~58〕,而許多FAD的PS-1突變體還具有干擾γ分泌酶非依賴功能的作用,這充分說明FAD的神經(jīng)退行性病變及tau蛋白的過度磷酸化尚存在其他機制〔55,59,60〕。總之,過去十幾年的研究揭示了PS-1的專屬性生物學(xué)功能,這一功能同時也受到FAD突變體不同程度的抑制作用,如能進(jìn)一步揭示其機制是否為等位基因干擾有關(guān)將非常有意義。

4 FAD與APP

APP為SP和CVA的前體蛋白,與PS同樣與FAD的疾病進(jìn)程密切相關(guān),目前,在APP的基因位點已發(fā)現(xiàn)近20種致病性基因突變,其中一些突變位于APP中Aβ序列的兩端,Aβ初始序列未發(fā)生改變;另外一些突變則發(fā)生在APP殘基692~694的Aβ序列上。后者使Aβ初始序列發(fā)生變化,導(dǎo)致神經(jīng)功能紊亂,但不同于AD,如發(fā)生在APP693上的突變可促進(jìn)Aβ肽聚集形成淀粉樣沉積,但不會導(dǎo)致Aβ產(chǎn)物增加,該致病基因攜帶者導(dǎo)致一種嚴(yán)重的綜合征,即遺傳性腦出血,并伴有Dutch型淀粉樣變性,由于血管內(nèi)淀粉樣蛋白的沉積不斷增多導(dǎo)致反復(fù)腦出血〔61〕,這些患者通常沒有癡呆癥狀,也不產(chǎn)生 NPs和NFTs,因此,這該疾病不屬于AD,而發(fā)生在APP殘基692~694上的基因突變則與AD相關(guān),但通常也不會使Aβ產(chǎn)物增加,也不會使 Aβ42/40的值發(fā)生變化〔62,63〕,而一般認(rèn)為,導(dǎo)致癡呆的APP基因突變發(fā)生在Aβ序列之外同時神經(jīng)毒性產(chǎn)物Aβ增加,因此這一說法與一些研究結(jié)論不符,如London型APP轉(zhuǎn)基因突變Aβ產(chǎn)物量低于Swedish型APP突變,但前者產(chǎn)生Aβ的毒性較強〔64,65〕,總之,這些差異使得導(dǎo)致AD的因素復(fù)雜化,如APP調(diào)節(jié)死亡受體等生物學(xué)功能〔35〕可能對于揭示APP突變基因加速FAD神經(jīng)退行性病變機制更有意義,某些早發(fā)型FAD家族含有一對編碼APP的基因位點,這說明可能APP過表達(dá)量恰好好在50%時產(chǎn)生神經(jīng)毒性〔66〕。有關(guān)AD神經(jīng)毒性機制很可能與細(xì)胞外APP衍生物對細(xì)胞的功能死亡〔35〕及APP的β羧基端片段導(dǎo)致DS和AD的細(xì)胞內(nèi)吞功能障礙有關(guān),但更為明確的機制還有待深入研究〔67〕。

5 小結(jié)

綜上,AD的發(fā)病機制與Aβ無直接或間接的相關(guān)性,目前仍然無法清晰地揭示AD神經(jīng)退行性病變的機制,例如AD累及多種神經(jīng)遞質(zhì)系統(tǒng),但無法解釋為何膽堿能系統(tǒng)的損傷最為嚴(yán)重,也不清楚ApoE、年齡進(jìn)程及FAD突變基因等因素是如何專屬性地?fù)p傷某一神經(jīng)遞質(zhì)系統(tǒng)的,雖然抗氧化和抗炎藥物不能對AD的癡呆進(jìn)程有明顯的改善,但諸如氧化應(yīng)激、炎癥等環(huán)境因素也可能促使AD神經(jīng)元細(xì)胞死亡〔68,69〕,AD發(fā)生時可檢測到相當(dāng)數(shù)量的神經(jīng)元缺失或損傷,神經(jīng)元一旦缺失或損傷是很難恢復(fù)的。而從大多數(shù)散發(fā)型AD病例來看,將發(fā)病原因歸結(jié)為遺傳和環(huán)境因素存在其合理性,F(xiàn)AD與散發(fā)型AD臨床表現(xiàn)及神經(jīng)病理學(xué)特征極為相似,其中后者發(fā)病率高,而目前只有FAD的突變基因是唯一確定的致病因素,這些突變基因為散發(fā)型AD的細(xì)胞及分子機制研究提供了最佳模型,因此,用于研究FAD機制的方法同樣有助于散發(fā)型AD的研究。

1 Glenner GG,Wong CW.Amyloidogenesis in Alzheimer's disease and Down's syndrome.Banbury Report 27:Mol.Neuropath of Aging〔M〕.Cold Spring Harbor,Cold Spring Harbor Press,1987:253-65.

2 Corder EH,Saunders AM,Strittmatter WJ,et al.Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families〔J〕.Science,1993;261:921-3.

3 Goldgaber D,Lerman MI,Mc bride OW,et al.Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease〔J〕.Science,1987;235(4791):877-80.

4 Robakis NK,Ramakrishna N,Wolfe G,et al.Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides〔J〕.Proc Natl Acad Sci USA,1987;84(12):4190-4.

5 Tanzi RE,Gusella JF,Watkins PC,et al.Amyloid beta protein gene:cDNA,mRNA distribution,and genetic linkage near the Alzheimer locus〔J〕.Science,1987;235(4791):880-4.

6 Wisniewski KE,Wisniewski HM,Wen GY,et al.Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome〔J〕.Ann Neurol,1985;17(3):278-82.

7 Robakis NK,Wisniewski HM,Jenkins EC,et al.Chromosome 21q21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic(senile)plaques of people with Alzheimer disease and Down syndrome〔J〕.Lancet,1987;1(8529):384-5.

8 Miller DL,Papayannopoulos IA,Styles J,et al.Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease〔J〕.Arch Biochem Biophys,1993;301(1):41-52.

9 Mori H,Takio K,Ogawara M,et al.Mass spectrometry of purified amyloid beta protein in Alzheimer's disease〔J〕.J Biol Chem,1992;267(24):17082-6.

10 Glenner GG.A retrospective and prospective overview of the investigations on amyloid and amyloidosis-the β fibrilloses〔M〕.In Glenner,Pinho e Costa,F(xiàn)alcao de Freitas A.Amyloid and amyloidosis.EXCERPTA MEDICA,Amsterdam-Oxford-Princeton,1980:3-13.

11 Vassar R,Bennett BD,Babu-Khan S,et al.beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE〔J〕.Science,1999;286(5440):735-41.

12 Wolfe MS,Xia W,Ostaszewski BL,et al.Two transmembrane aspartates in presenilin-one required for presenilin endoproteolysis and gammasecretase activity〔J〕.Nature,1999;398(6727):513-7.

13 Anderson JP,Esch FS,Keim PS,et al.Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells〔J〕.Neurosci Lett,1991;128(1):126-8.

14 Marambaud P,Robakis NK.Genetic and molecular aspects of Alzheimer's disease shed light on new mechanisms of transcriptional regulation〔J〕.Genes Brain Behav,2005;4(3):134-46.

15 Hardy JA,Higgins GA.Alzheimer's disease:the amyloid cascade hypothesis〔J〕.Science,1992;256(5054):184-5.

16 Hardy J,Selkoe DJ.The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics〔J〕.Science,2002;297(5590):353-6.

17 Neve RL,Robakis NK.Alzheimer's disease:a re-examination of the amyloid hypothesis〔J〕.Trends Neurosci,1998;21(1):15-9.

18 Robinson SR,Bishop GM.Abeta as a bioflocculant:implications for the amyloid hypothesis of Alzheimer's disease〔J〕.Neurobiol Aging,2002;23(6):1051-72.

19 Smith MA,Joseph JA,Arson PG.Tracking the culprit in Alzheimer's disease〔J〕.Ann N Y Acad Sci,2000;924:35-8.

20 Arriagada PV,Growdon JH,Hedley-Whyte ET,et al.Neurofibrillary tan-gles but not senile plaques parallel duration and severity of Alzheimer's disease〔J〕.Neurology,1992;42(3 Pt 1):631-9.

21 Bouras C,Kovari E,Herrmann FR,et al.Stereologic analysis of microvascular morphology in the elderly:Alzheimer disease pathology and cognitive status〔J〕.J Neuropathol Exp Neurol,2006;65(3):235-44.

22 Davis DG,Schmitt FA,Wekstein DR,et al.Alzheimer neuropathologic alterations in aged cognitively normal subjects〔J〕.J Neuropathol Exp Neurol 1999;58(4):376-88.

23 Hsia AY,Masliah E,McConlogue L,et al.Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models〔J〕.Proc Natl Acad Sci USA,1999;96(6):3228-33.

24 Mucke L,Masliah E,Yu GQ,et al.High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice:synaptotoxicity without plaque formation〔J〕.J Neurosci,2000;20(11):4050-8.

25 Holmes C,Boche D,Wilkinson D,et al.Long-term effects of Abeta 42 immunisation in Alzheimer's disease:follow-up of a randomised,placebo-controlled phase Ⅰ trial〔J〕.Lancet,2008;372(9634):216-23.

26 Cleary JP,Walsh DM,Hofmeister JJ,et al.Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function〔J〕.Nat Neurosci,2005;8(1):79-84.

27 Klein WL,Krafft GA,F(xiàn)inch CE.Targeting small Abeta oligomers:the solution to an Alzheimer's disease conundrum〔J〕?Trends Neurosci,2001;24(4):219-24.

28 Walsh DM,Klyubin I,Shankar GM,et al.The role of cell-derived oligomers of Abeta in Alzheimer's disease and avenues for therapeutic intervention〔J〕.Biochem Soc Trans,2005;33(Pt5):1087-90.

29 Nalbantoglu J,Tirado-Santiago G,Lahsaini A,et al.Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein〔J〕.Nature,1997;387(6632):500-5.

30 Chen Y,Dong C.Abeta40 promotes neuronal cell fate in neural progenitor cells〔J〕.Cell Death Differ,2009;16(3):386-94.

31 Giuffrida ML,Caraci F,Pignataro B,et al.Beta-amyloid monomers are neuroprotective〔J〕.J Neurosci,2009;29(34):10582-7.

32 Plant LD,Boyle JP,Smith IF,et al.The production of amyloid beta peptide is a critical requirement for the viability of central neurons〔J〕.J Neurosci,2003;23(13):5531-5.

33 Hulstaert F,Blennow K,Ivanoiu A,et al.Improved discrimination of AD patients using beta-amyloid(1-42)and tau levels in CSF〔J〕.Neurology,1999;52(8):1555-62.

34 Mattsson N,Zetterberg H,Hansson O,et al.CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment〔J〕.JAMA,2009;302(4):385-93.

35 Nikolaev A,McLaughlin T,O'Leary DD,et al.APP binds DR6 to trigger axon pruning and neuron death via distinct caspases〔J〕.Nature,2009;457(7232):981-9.

36 Borchelt DR,Thinakaran G,Eckman CB,et al.Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo〔J〕.Neuron,1996;17(5):1005-13.

37 Citron M,Westaway D,Xia W,et al.Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice〔J〕.Nat Med,1997;3(1):67-72.

38 Scheuner D,Eckman C,Jensen M,et al.Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease〔J〕?Nat Med,1996;2(8):864-70.

39 Bentahir M,Nyabi O,Verhamme J,et al.Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms〔J〕.J Neurochem,2006;96(3):732-42.

40 Shioi J,Georgakopoulos A,Mehta P,et al.FAD mutants unable to increase neurotoxic Abeta forty-two suggest that mutation effects on neurodegeneration may be independent of effects on Abeta〔J〕.J Neurochem,2007;101(3):674-81.

41 Walker ES,Martinez M,Brunkan AL,et al.Presenilin 2 familial Alzheimer's disease mutations result in partial loss of function and dramatic changes in Abeta.42/forty ratios〔J〕.J Neurochem,2005;92(2):294-301.

42 Duering M,Grimm MO,Grimm HS,et al.Mean age of onset in familial Alzheimer's disease is determined by amyloid beta 42〔J〕.Neurobiol Aging,2005;26(6):785-8.

43 Batelli S,Albani D,Prato F,et al.Early-onset Alzheimer disease in an I-talian family with presenilin-one double mutation E31 8G and G39 4V〔J〕.Alzheimer Dis Assoc Disord,2008;22(2):184-7.

44 Goedert M,Spillantini MG.Frontotemporal lobar degeneration through loss of progranulin function〔J〕.Brain,2006;129(Pt11):2808-10.

45 Hebert SS,Godin C,Tomiyama T,et al.Dimerization of presenilin-1 in vivo:suggestion of novel regulatory mechanisms leading to higher order complexes〔J〕.Biochem Biophys Res Commun,2003;301(1):119-26.

46 Scheuermann S,Hambsch B,Hesse L,et al.Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer's disease〔J〕.J Biol Chem,2001;276(36):33923-9.

47 Schroeter EH,Ilagan MX,Brunkan AL,et al.A presenilin dimer at the core of the gamma-secretase enzyme:insights from parallel analysis of Notch one and APP proteolysis〔J〕.Proc Natl Acad Sci USA,2003;100(22):13075-80.

48 Kopan R,Ilagan MX.Gamma-secretase:proteasome of the membrane?〔J〕.Nat Rev Mol Cell Biol,2004;5(6):499-504.

49 Georgakopoulos A,Litterst C,Ghersi E,et al.Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling〔J〕.EMBO J,2006;25(6):1242-52.

50 Litterst C,Georgakopoulos A,Shioi J,et al.Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor〔J〕.J Biol Chem,2007;282(22):16155-63.

51 Wiley JC,Hudson M,Kanning KC,et al.Familial Alzheimer's disease mutations inhibit gamma-secretase-mediated liberation of beta-amyloid precursor protein carboxyterminal fragment〔J〕.J Neurochem,2005;94(5):1189-201.

52 Fortini ME.Neurobiology:double trouble for neurons〔J〕.Nature,2003;425(6958):565-6.

53 Robakis NK.An Alzheimer's disease hypothesis based on transcriptional dysregulation〔J〕.Amyloid,2003;10(2):80-5.

54 Baki L,Shioi J,Wen P,et al.PS1 activates PI3K thus inhibiting GSK-3 activity and tau over phosphorylation:effects of FAD mutations〔J〕.EMBO J,2004;23(13):2586-96.

55 Pigino G,Morfini G,Pelsman A,et al.Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport〔J〕.J Neurosci,2003;23(11):4499-508.

56 Tu H,Nelson O,Bezprozvanny A,et al.Presenilins form ER Ca2+leak channels,a function disrupted by familial Alzheimer's disease-linked mutations〔J〕.Cell,2006;126(5):981-93.

57 Dreses-Werringloer U,Lambert JC,Vingtdeux V,et al.A polymorphism in CALHM1 influences Ca2+homeostasis,Abeta levels,and Alzheimer's disease risk〔J〕.Cell,2008;133(7):1149-61.

58 Zhang C,Wu B,Beglopoulos V,et al.Presenilins are essential for regulating neurotransmitter release〔J〕.Nature,2009;460(7255):632-6.

59 Baki L,Neve RL,Shao Z,et al.Wild-type but not FAD mutant presenilin-1 prevents neuronal degeneration by promoting phosphatidylinositol 3-kinase neuroprotective signaling〔J〕.J Neurosci,2008;28(2):483-90.

60 Kang DE,Yoon IS,Repetto E,et al.Presenilins mediate phosphatidylinositol 3-kinase/AKT and ERK activation via select signaling receptors.Selectivity of PS2 in platelet-derived growth factor signaling〔J〕.J Biol Chem,2005;280(36):31537-47.

61 Wisniewski T,Ghiso J,F(xiàn)rangione B.Peptides homologous to the amyloid protein of Alzheimer's disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation〔J〕.Biochem Biophys Res Commun,1991;179(3):1247-54.

62 Brooks WS,Kwok JB,Halliday GM,et al.Hemorrhage is uncommon in new Alzheimer family with Flemish amyloid precursor protein mutation〔J〕.Neurology,2004;63(9):1613-7.

63 Nilsberth C,Westlind-Danielsson A,Eckman CB,et al.The'Arctic'APP mutation(E693G)causes Alzheimer's disease by enhanced Abeta protofibril formation〔J〕.Nat Neurosci,2001;4(9):887-93.

64 Citron M,Oltersdorf T,Haass C,et al.Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production〔J〕.Nature,1992;360(6405):672-4.

65 Suzuki N,Cheung TT,Cai XD,et al.An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor(beta APP717)mutants〔J〕.Science,1994;264(5163):1336-40.

66 Rovelet-Lecrux A,Hannequin D,Raux G,et al.APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy〔J〕.Nat Genet,2006;38(1):24-6.

67 Jiang Y,Mullaney KA,Peterhoff CM,et al.Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition〔J〕.Proc Natl Acad Sci USA,2010;107(4):1630-5.

68 Pappolla MA,Omar RA,Kim KS,et al.Immunohistochemical evidence of oxidative(corrected)stress in Alzheimer's disease〔J〕.Am J Pathol,1992;140(3):621-8.

69 Weggen S,Rogers M,Eriksen J.NSAIDs:small molecules for prevention of Alzheimer's disease or precursors for future drug development〔J〕?Trends Pharmacol Sci,2007;28(10):536-43.

猜你喜歡
退行性突變體可溶性
OLIF和MI-TLIF治療Ⅰ、Ⅱ度單節(jié)段退行性腰椎滑脫患者的效果分析
鹽脅迫對水稻耐鹽突變體sst芽苗期生長的影響
中醫(yī)輔助對退行性骨關(guān)節(jié)病關(guān)節(jié)鏡術(shù)后康復(fù)的治療效果
航天搭載小麥株高突變體研究初探
煙草葉形突變體的形態(tài)特征與關(guān)鍵基因表達(dá)差異研究
基于近紅外光譜技術(shù)的白茶可溶性糖總量快速測定研究
新的控制水稻粒寬基因獲發(fā)現(xiàn)
退行性肩袖撕裂修補特點
水稻OsAAA1蛋白的原核表達(dá)載體構(gòu)建及其可溶性表達(dá)研究
黃酮類化合物在防治神經(jīng)退行性疾病中作用的研究進(jìn)展
来凤县| 蒲江县| 平遥县| 稷山县| 锦屏县| 桑植县| 望江县| 灵寿县| 武宣县| 鄂伦春自治旗| 潞城市| 黄冈市| 图木舒克市| 保山市| 汽车| 广饶县| 仁布县| 肥乡县| 铁岭县| 灌南县| 龙门县| 阳东县| 确山县| 济源市| 嘉荫县| 五峰| 杂多县| 陇西县| 长沙县| 西丰县| 房产| 县级市| 武夷山市| 丰镇市| 邛崃市| 彰武县| 邵阳市| 屯门区| 甘谷县| 库尔勒市| 山丹县|