姚 越,孟 佳,姜禮紅,張一娜
?
Akt/FoxO傳導(dǎo)通路調(diào)節(jié)細(xì)胞凋亡作用的研究進(jìn)展
姚 越,孟 佳,姜禮紅,張一娜*
(哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院老年病科,哈爾濱 150086)
FoxO轉(zhuǎn)錄因子是PKB/Akt的下游靶點(diǎn)。Akt調(diào)節(jié)細(xì)胞生存和增殖。Akt磷酸化FoxO抑制FoxO的轉(zhuǎn)錄功能,促進(jìn)細(xì)胞生存、生長和增殖。在癌癥中FoxO在不同的細(xì)胞信號通路中發(fā)揮重要作用。FoxO通過兩個(gè)途徑抑制凋亡信號,促進(jìn)細(xì)胞生長,其包括線粒體靶點(diǎn)蛋白Bcl12家族的多種前凋亡成員的表達(dá)、死亡受體配體如Fas配體和腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)的表達(dá),或是增加各種細(xì)胞周期蛋白依賴性激酶抑制蛋白的水平。本文主要概括了Akt/FoxO調(diào)節(jié)細(xì)胞生長和生存的機(jī)制,以期為抗癌治療提供新的可能。
FoxO;Akt;細(xì)胞凋亡
腫瘤從本質(zhì)上說是一種基因病,各種致癌因素引起DNA損害,從而激活原癌基因、滅活抑癌基因及凋亡調(diào)節(jié)基因、改變DNA修復(fù)基因,繼而引起表達(dá)水平的異常,使靶細(xì)胞發(fā)生轉(zhuǎn)化。FoxO通過兩個(gè)途徑抑制凋亡信號,促進(jìn)細(xì)胞生長,參與腫瘤的發(fā)生和發(fā)展,抑制腫瘤活性導(dǎo)致腫瘤細(xì)胞凋亡,這可能成為腫瘤治療的靶點(diǎn)。
Akt是相對分子質(zhì)量為57×103的絲氨酸-酪氨酸激酶,由第二信使磷脂酰肌醇3-激酶(phosphoinositide-3 kinase,PI3K)活化調(diào)節(jié),它包括Akt1、Akt2和Akt3等3個(gè)亞型,這3個(gè)同工酶在不同的位置編碼。Akt1在多組織中廣泛表達(dá),Akt2主要在胰島素敏感的組織中表達(dá),在其他組織中低表達(dá),Akt3僅在腦組織和睪丸組織中表達(dá)。Akt這3個(gè)亞型的組織表達(dá)特異性表明,它們在不同的器官或組織的生理功能維持和疾病發(fā)生過程中可能起到重要作用。Akt激酶通過多種途徑在細(xì)胞加工過程中起到重要作用。Akt通過作用于靶點(diǎn)細(xì)胞周期蛋白依賴性激酶抑制蛋白(cell dependent kinase inhibitors,CDKIs)p21和p27直接調(diào)節(jié)細(xì)胞周期和增殖,通過調(diào)節(jié)細(xì)胞周期蛋白D1和p53間接調(diào)節(jié)細(xì)胞周期和增殖。
Forkhead轉(zhuǎn)錄因子家族是2000年正式統(tǒng)一命名的轉(zhuǎn)錄因子家族,目前分為19個(gè)亞家族FoxA~FoxS。Forkhead家族的共同特征是具有1個(gè)高保守的DNA片段Fox域。FoxO轉(zhuǎn)錄因子是Forkhead轉(zhuǎn)錄因子家族中的1個(gè)亞群,從蠕蟲到人均有表達(dá)。在哺乳動(dòng)物細(xì)胞中由4個(gè)基因編碼組成,分別是FoxO1(FKHR),F(xiàn)oxO3(FKHRL1),F(xiàn)oxO4(Afx)和FoxO6[1]。FoxO蛋白質(zhì)通過后轉(zhuǎn)錄修飾發(fā)揮作用,如絲氨酸或蘇氨酸以及賴氨酸殘基的磷酸化和乙?;取oxO轉(zhuǎn)錄因子穿梭于細(xì)胞核內(nèi)外,調(diào)節(jié)細(xì)胞分化、增殖、細(xì)胞周期、新陳代謝、應(yīng)激和腫瘤抑制途徑。
FoxOs轉(zhuǎn)錄因子是PKB/Akt的下游靶點(diǎn),Akt磷酸化FoxOs抑制FoxOs的轉(zhuǎn)錄功能。Akt磷酸化FoxOs的絲氨酸/蘇氨酸殘基,磷酸化的FoxOs與DNA的親和力下降,與伴侶蛋白14-3-3蛋白結(jié)合的親和力增加,并從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì),細(xì)胞質(zhì)中的14-3-3蛋白與FoxOs結(jié)合,阻止FoxOs逆轉(zhuǎn)運(yùn)至細(xì)胞核內(nèi),從而抑制FoxOs轉(zhuǎn)錄活性[2,3]。當(dāng)Akt活性降低時(shí),F(xiàn)oxO發(fā)生去磷酸化,F(xiàn)oxO進(jìn)入細(xì)胞核內(nèi),轉(zhuǎn)錄活性被激活,并結(jié)合靶基因?qū)?yīng)的DNA靶向序列,行使它的轉(zhuǎn)錄功能。Akt調(diào)節(jié)細(xì)胞生存包括直接抑制(磷酸化)前凋亡信號,如Bad和FoxOs。目前研究表明KSR1連接增強(qiáng)子(connector enhancer of KSR 1,CNK1)和Akt相互作用,通過激活A(yù)kt/FoxO信號通路促進(jìn)細(xì)胞增殖[4]。
細(xì)胞周期是指從細(xì)胞分裂結(jié)束開始,到下一次細(xì)胞分裂結(jié)束為止的過程。細(xì)胞周期蛋白(cyclin,CYC)、細(xì)胞周期蛋白依賴性激酶(cyclin dependent kinases,CDKs)、CDKIs3種分子相互作用調(diào)節(jié)細(xì)胞周期。抑制CDKs活性的物質(zhì)可以抑制腫瘤細(xì)胞惡性生長。FoxOs調(diào)節(jié)多種細(xì)胞周期抑制基因CDKI p27KIP1,促進(jìn)細(xì)胞周期停滯在G1/S邊界。致癌信號通過Akt磷酸化FoxOs,阻礙干擾p27KIP1基因轉(zhuǎn)錄的核轉(zhuǎn)運(yùn)功能,促進(jìn)細(xì)胞增殖。FoxOs可以上調(diào)CDKIs的INK4家族如p15和p19。INK4家族特異性地結(jié)合D-CDK4/6復(fù)合物,導(dǎo)致D-CDK4/6復(fù)合物不被激活,使細(xì)胞周期停滯[5]。FoxO另一個(gè)靶點(diǎn)基因是CDKI p21WAF1/CIP1。FoxO3a抑制急性髓系白血病細(xì)胞增殖,一部分是通過激活Fas配體(Fas ligands,F(xiàn)asL)和p21WAF1/CIP1基因轉(zhuǎn)錄,而IKK維持FoxO3a在細(xì)胞質(zhì)中的活性,這樣在急性髓系白血病細(xì)胞的增殖中FoxO3a失活/核移除起到重要作用[6]。在乳腺癌細(xì)胞上保守Sam68的抗增殖作用與CDKI p21WAF1/CIP1的上調(diào)有關(guān),提高FoxOs的轉(zhuǎn)錄活性減弱Akt/GSK-3β信號[7]。在腦疾病中,CDK1的激活與成熟神經(jīng)元的凋亡相關(guān)。CDK1使FoxO1的Ser249位點(diǎn)磷酸化阻斷了FoxO1與14-3-3蛋白的結(jié)合,F(xiàn)oxO1在神經(jīng)元胞核聚集誘導(dǎo)了易感凋亡基因Bim的表達(dá),最終導(dǎo)致神經(jīng)元的凋亡[8]。FoxO引起細(xì)胞周期阻滯可以為已損傷的DNA修復(fù)和細(xì)胞修復(fù)提供時(shí)間。
p53是一個(gè)重要的抑癌基因,F(xiàn)oxO和p53的調(diào)節(jié)功能和方式有很多相似之處,兩者都能被磷酸化及乙酰化。FoxO和p53通過多重機(jī)制引起凋亡,但主要是上調(diào)前凋亡蛋白BH3-only蛋白。事實(shí)上FoxOs許多靶點(diǎn)包括p21WAF1/CIP1,GADD45,WIP1和PA26也通過p53調(diào)節(jié)[9]。由于營養(yǎng)素缺失,F(xiàn)oxO解除p53依賴性Sirt1基因的抑制,上調(diào)Sirt1表達(dá)。Sirt1基因的阻拮可能通過FoxO和p53蛋白相互作用而調(diào)節(jié),而不依賴Sirt1啟動(dòng)子上FoxO結(jié)合位點(diǎn)的存在[10]。這些都暗示FoxO和p53有相似作用,至少通過重疊調(diào)節(jié)靶基因的方式抑制腫瘤形成。目前研究發(fā)現(xiàn),在小鼠的肺腺癌和人的非小細(xì)胞肺癌中,致癌物使FoxO3被刪除,這證明FoxO3的缺失與非小細(xì)胞肺癌形成的機(jī)制相關(guān)[11]。吸煙者肺腺癌中幾乎有24.2%的FoxO3純合子或等位基因缺失[12]。以上均說明FoxOs作為腫瘤抑制因子可能是治療的靶點(diǎn)。
Bcl-2家族蛋白是細(xì)胞凋亡的特征性調(diào)節(jié)者,并在BH(Bcl-2同源體)基礎(chǔ)上分為3個(gè)亞型。促凋亡蛋白BH3-only蛋白包括BIK,ECL-1,Bim,BMF,NOXA,BID,BAD,BNIP3,PUMA和Beclin-1。用蛋白酶抑制劑治療減少了通過修復(fù)正常的FoxO3a表達(dá)的BCR-ABL-誘導(dǎo)白血病的負(fù)擔(dān),延長BCR-ABL轉(zhuǎn)導(dǎo)小鼠的生存率[13]。紫朱草素(alkannin)新型衍生物(SYUNZ-16)誘導(dǎo)凋亡與外源性FoxO蛋白在核內(nèi)積聚增加有關(guān),在肝癌細(xì)胞中上調(diào)Bim和TRADD的mRNA表達(dá)[14]。PUMA通過阻拮作用和致敏作用強(qiáng)效調(diào)節(jié)線粒體外膜的通透性,它們都依賴PUMA結(jié)合抗凋亡蛋白Bcl-2[15]。細(xì)胞因子或生長因子缺失時(shí)FoxO3a上調(diào)PUMA的轉(zhuǎn)錄,這表明在細(xì)胞凋亡和應(yīng)激反應(yīng)調(diào)節(jié)中FoxO介導(dǎo)PUMA轉(zhuǎn)錄可能起到重要作用[16]。
FoxO增加凋亡因子如FasL和腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(tumor necrosis factor related apoptosis inducing ligand,TRAIL)的轉(zhuǎn)錄直接調(diào)節(jié)外在凋亡途徑。TRAIL是腫瘤壞死因子(tumor necrosis factor,TNF)超家族中的一員,與TNF和FasL不同的是TRAIL能誘導(dǎo)多種腫瘤細(xì)胞與轉(zhuǎn)化細(xì)胞發(fā)生凋亡而對正常細(xì)胞無誘導(dǎo)凋亡作用。TRAIL的選擇性誘導(dǎo)腫瘤細(xì)胞凋亡的特性使其具有良好的臨床應(yīng)用前景,在腫瘤領(lǐng)域里得到深入的研究。肝星形細(xì)胞TRAIL的暴露導(dǎo)致FoxO1和FoxO3a的去磷酸化和核內(nèi)聚集。LX-2細(xì)胞中FoxOs活化促進(jìn)TRAIL誘導(dǎo)凋亡[17]。在難治性急性淋巴細(xì)胞白血病中,F(xiàn)oxO3通過TRAIL引起細(xì)胞的凋亡,腫瘤抑制因子p16INK4A可以抑制急性淋巴細(xì)胞白血病細(xì)胞內(nèi)源性FoxO3的表達(dá),表明這兩種腫瘤抑制蛋白共同作用來抑制兒童白血病的發(fā)生[18]。
在惡性腫瘤中PTEN是最常見的突變腫瘤抑制基因之一,它通常在人染色體10q23上因純合子缺失而發(fā)生突變。PTEN通過催化使PIP3轉(zhuǎn)化為PIP2,抑制PI3K-Akt-FoxO通路,從而抑制細(xì)胞生長和增殖。對缺乏PTEN的造血系統(tǒng)的分析表明,條件性去除PTEN驅(qū)動(dòng)器通過PI3K/Akt的過度活化退出靜止期,導(dǎo)致正常造血干細(xì)胞衰竭,從而在同一時(shí)間導(dǎo)致白血病[19]。PTEN是PI3K/Akt通路重要的負(fù)性調(diào)控器。由于PTEN是FoxO靶點(diǎn)基因,F(xiàn)oxOs增加PTEN轉(zhuǎn)錄確實(shí)增強(qiáng)FoxO的腫瘤抑制的生物學(xué)功能。因此,恢復(fù)FoxO核表達(dá)和及其的靶基因可能為針對性癌癥治療提供了一個(gè)重要的方法。
由于其他腫瘤抑制因子如p53或PTEN無法通過遺傳或外在條件改變它們的功能,因此再活化FoxOs腫瘤抑制基因可能成為值得關(guān)注的抗癌策略。有兩個(gè)重要的方法為修復(fù)FoxO活性提供了廣泛的可能性:(1)FoxO和調(diào)節(jié)器重新活化;(2)針對PI3K-Akt-mTOR通路修復(fù)FoxO活性。
Akt磷酸化FoxOs有3個(gè)重要的調(diào)控點(diǎn)(FoxO3序列的Thr32,Ser253和Ser315),一種可能是FoxOs上3個(gè)特征性Akt磷酸化位點(diǎn)發(fā)生突變,使FoxOs不再進(jìn)行磷酸化而在細(xì)胞核內(nèi)聚集,在PTEN失活的細(xì)胞中使FoxO再活化。事實(shí)上,過表達(dá)的FoxO1或FoxO3a的3個(gè)突變體通過誘導(dǎo)細(xì)胞周期停滯在G1期使腺病毒介導(dǎo)的基因轉(zhuǎn)移,抑制細(xì)胞周期增殖,促進(jìn)細(xì)胞凋亡。Lam等[20]發(fā)現(xiàn)在MCF-7和MDA-MB-231乳腺癌細(xì)胞中,經(jīng)過蒺藜科植物提取物處理的乳腺癌細(xì)胞,F(xiàn)oxO3a表達(dá)升高,出現(xiàn)細(xì)胞周期停滯和細(xì)胞死亡。進(jìn)一步分析表明,甲基硒酸在前列腺癌細(xì)胞中抗癌作用的關(guān)鍵是FoxO1基因激活[21]。Shou等[22]發(fā)現(xiàn)在鼻咽癌組織中FoxO3a表達(dá)減低,并與其臨床分期、淋巴結(jié)轉(zhuǎn)移和遠(yuǎn)處轉(zhuǎn)移明顯相關(guān),F(xiàn)oxO3a低表達(dá)者與高表達(dá)者相比預(yù)后明顯不良。通過不同的方法恢復(fù)FoxO活性對癌癥的治療和預(yù)防是有益的。
PI3K-Akt-mROT信號通路在腫瘤發(fā)生過程中起核心作用。PTEN是PI3K/Akt通路的關(guān)鍵拮抗劑。很多惡性腫瘤中PTEN缺失,這不僅與腫瘤的發(fā)展也與抗腫瘤藥物的臨床耐藥有關(guān)。作用于單一類型PI3K,抑制多個(gè)PI3K亞型或是抑制其他PIK家族成員的抑制劑已通過臨床前期研究,進(jìn)入了Ⅰ期和Ⅱ期臨床試驗(yàn)[23]。PI3K抑制劑的臨床益處是有限的。迄今止,盡管已經(jīng)有幾個(gè)因子(如MK-2206,RX-0201,PBI-05204和GSK2141795)進(jìn)行不同階段的臨床試驗(yàn)[24],但已研究的幾種類型Akt抑制劑因其高毒性或在體內(nèi)的低生物利用率及穩(wěn)定性,應(yīng)用也很局限。Akt抑制劑所具有的嚴(yán)重副作用可能是因?yàn)锳kt在很多細(xì)胞進(jìn)程中起到重要作用。PI3K-Akt-mROT信號通路研究最多的靶點(diǎn)是mTOR信號,臨床上有西羅莫司(雷帕霉素,sirolimns,Rapamycin)、西羅莫司脂化物替西羅莫司(temsirolimus)、依維莫司(everolimus)和地福莫司[42-(二甲基亞膦酰)雷帕霉素,deforolimus]靶向作用于mTOR[25]。在雌激素受體(estrogen receptor,ER)陽性的乳腺癌患者中,聯(lián)合應(yīng)用依維莫司和來曲唑(letrozole)的緩解率(68%)高于單獨(dú)應(yīng)用來曲唑的緩解率(59%)[26]。以上說明腫瘤特異性信號轉(zhuǎn)導(dǎo)通路的分子靶向治療是一種有前途的新型有效抗癌方案。
綜上所述,F(xiàn)oxO轉(zhuǎn)錄因子是調(diào)節(jié)細(xì)胞生長的重要物質(zhì)。激活PI3K途徑使FoxO磷酸化,從細(xì)胞核轉(zhuǎn)移至細(xì)胞質(zhì)聚集,抑制其轉(zhuǎn)錄功能。FoxO生長抑制功能涉及細(xì)胞周期抑制劑、內(nèi)在及外在細(xì)胞凋亡誘導(dǎo)劑以及與腫瘤抑制因子p53的相互作用,因此修復(fù)FoxO活性是很好的防癌策略。Akt磷酸化促進(jìn)FoxO核轉(zhuǎn)移和降解,PI3K/Akt通路的藥物學(xué)靶點(diǎn)促進(jìn)FoxOs在細(xì)胞核聚集,這可能成為炎癥相關(guān)性疾病包括癌癥的治療靶點(diǎn)。
[1] Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism[J]. Oncogene, 2008, 27(16): 2320?2336.
[2] Fabre S, Lang V, Bismuth G. PI3-kinase and the control of T cell growth and proliferation by FoxOs[J]. Bull Cancer, 2006, 93(5): E36?E38.
[3] Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation[J]. Biochem J, 2004, 380(Pt 2): 297?309.
[4] Fritz RD, Varga Z, Radziwill G. CNK1 is a novel Akt interaction partner that promotes cell proliferation through the Akt-FoxO signalling axis[J]. Oncogene, 2010, 29(24): 3575?3582.
[5] W?sierska-G?dek J, Maurer M, Zulehner N,. Whether to target single or multiple CDKs for therapy? That is the question[J]. J Cell Physiol, 2011, 226(2): 341?349.
[6] Chapuis N, Park S, Leotoing L,. IκB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia[J]. Blood, 2010, 116(20): 4240?4250.
[7] Song L, Wang L, Li Y,. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells[J]. J Pathol, 2010, 222(3): 227?237.
[8] Yuan Z, Becker EB, Merlo P,. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons[J]. Science, 2008, 319(5870): 1665?1668.
[9] Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis[J]. Oncogene, 2008, 27(16): 2312?2319.
[10] Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway[J]. Science, 2004, 306(5704): 2105?2108.
[11] Blake DC Jr, Mikse OR, Freeman WM,. FOXO3a elicits a pro-apoptotic transcription program and cellular response to human lung carcinogen nicotine-derived nitrosaminoketone (NNK)[J]. Lung Cancer, 2010, 67(1): 37?47.
[12] Mikse OR, Blake DC Jr, Jones NR,. FOXO3 encodes a carcinogen-activated transcription factor frequently deleted in early-stage lung adenocarcinoma[J]. Cancer Res, 2010, 70(15): 6205?6215.
[13] Jagani Z, Song K, Kutok JL,. Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors[J]. Cancer Res, 2009, 69(16): 6546?6555.
[14] Deng R, Tang J, Xie BF,. SYUNZ-16, a newly synthesized alkannin derivative, induces tumor cells apoptosis and suppresses tumor growth through inhibition of PKB/AKT kinase activity and blockade of AKT/FOXO signal pathway[J]. Int J Cancer, 2010, 127(1): 220?229.
[15] Chipuk JE, Green DR. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis[J]. Cell Cycle, 2009, 8(17): 2692?2696.
[16] Chiacchiera F, Simone C. The AMPK-FoxO3A axis as a target for cancer treatment[J]. Cell Cycle, 2010, 9(6): 1091?1096.
[17] Park SJ, Sohn HY, Yoon J,. Down-regulation of FoxO-dependent c-FLIP expression mediates TRAIL-induced apoptosis in activated hepatic stellate cells[J]. Cell Signal, 2009, 21(10): 1495?1503.
[18] Ausserlechner MJ, Salvador C, Deutschmann A,. Therapy-resistant acute lymphoblastic leukemia (ALL) cells inactivate FOXO3 to escape apoptosis induction by TRAIL and Noxa[J]. Oncotarget, 2013, 4(7): 995?1007.
[19] Ito K, Bernardi R, Pandolfi PP. A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell[J]. Curr Opin Genet Dev, 2009, 19(1): 51?59.
[20] Lam M, Carmichael AR, Griffiths HR. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cellsFOXO3a and p53 expression[J]. PLoS One, 2012, 7(6): e40152.
[21] Zhang H, Fang J, Yao D,. Activation of FOXO1 is critical for the anticancer effect of methylseleninic acid in prostate cancer cells[J]. Prostate, 2010, 70(12): 1265?1273.
[22] Shou Z, Lin L, Liang J,. Expression and prognosis of FOXO3a and HIF-1α in nasopharyngeal carcinoma[J]. J Cancer Res Clin Oncol, 2012, 138(4): 585?593.
[23] Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy[J]. Mol Cancer Ther, 2009, 8(1): 1?9.
[24] Pal SK, Reckamp K, Yu H,. Akt inhibitors in clinical development for the treatment of cancer[J]. Expert Opin Investig Drugs, 2010, 19(11): 1355?1366.
[25] Konings IR, Verweij J, Wiemer EA,. The applicability of mTOR inhibition in solid tumors[J]. Curr Cancer Drug Targets, 2009, 9(3): 439?450.
[26] Di Cosimo S, Baselga J. Targeted therapies in breast cancer: where are we now[J]? Eur J Cancer, 2008, 44(18): 2781?2790.
(編輯: 張青山)
Role of Akt/FoxO pathway in regulation of cell apoptosis
YAO Yue, MENG Jia, JIANG Li-Hong, ZHANG Yi-Na*
(Department of Geriatrics, the Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China)
The transcription factor FoxO is a downstream target of PKB/Akt that regulates cell survival and proliferation. Phosphorylation of FoxO by Akt inhibits its own transcriptional function and thus promotes cell survival, growth and proliferation. Substantial evidence showed that FoxO plays vital roles in diverse cellular signaling pathways that are implicated in cancer. There are two means by which FoxO inhibited cell apoptosis and promoted cell growth. One means is to regulate the expression of members of mitochondrial Bcl12 family, Fas ligands and tumor necrosis factor related apoptosis inducing ligand (TRAIL). The other is to enhance the level of cyclin-dependent kinase inhibitors. In this paper, we reviewed the underlying mechanisms of the involvement of Akt/FoxO in the regulation of cell survival and growth in order to provide new options for anti-tumor therapy.
FoxO; Akt; apoptosis
(1252Z019).
R329.25
A
10.3724/SP.J.1264.2013.00241
2013?06?10;
2013?08?22
黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目(1252Z019)
張一娜, E-mail: yinazhlu@163.com