劉 鴻,鄭 理,楊洪軍,楊 維,鄭勇林
(1.成都大學(xué)電子信息工程學(xué)院,四川成都 610106;2.成都工業(yè)學(xué)院機(jī)電工程系,四川成都 611730)
砷化鎵光導(dǎo)開(kāi)關(guān)中流注自發(fā)輻射實(shí)驗(yàn)的理論分析
劉 鴻1,鄭 理2,楊洪軍1,楊 維1,鄭勇林1
(1.成都大學(xué)電子信息工程學(xué)院,四川成都 610106;2.成都工業(yè)學(xué)院機(jī)電工程系,四川成都 611730)
分析了高增益砷化鎵光導(dǎo)開(kāi)關(guān)中流注(即電流絲)一端不同輻射波長(zhǎng)的自發(fā)輻射實(shí)驗(yàn)現(xiàn)象,導(dǎo)出了不同輻射波長(zhǎng)的輻射復(fù)合系數(shù)之間的關(guān)系,拓展了電流絲的自發(fā)輻射隨電流絲電流變化的數(shù)學(xué)模型.計(jì)算結(jié)果表明,絲電流相同時(shí)流注自發(fā)輻射的其他峰值強(qiáng)度略小于890 nm自發(fā)輻射強(qiáng)度.
砷化鎵光導(dǎo)開(kāi)關(guān);電流絲;輻射復(fù)合系數(shù);輻射強(qiáng)度
光導(dǎo)開(kāi)關(guān)(Photoconductive Semiconductor Switch,PCSS)較之常規(guī)的脈沖產(chǎn)生器件具有獨(dú)特的優(yōu)勢(shì),高增益砷化鎵光導(dǎo)開(kāi)關(guān)的物理機(jī)理對(duì)于光導(dǎo)器件的性能設(shè)計(jì)和工程應(yīng)用具有重要意義[1-15],研究高增益砷化鎵光導(dǎo)開(kāi)關(guān)的物理機(jī)理,必須研究流注,即電流絲,在其頂部的輻射效應(yīng).在前期工作中,本課題組已經(jīng)導(dǎo)出了砷化鎵光導(dǎo)開(kāi)關(guān)流注頂部的單色光(890 nm)自發(fā)輻射公式[16].但砷化鎵材料對(duì)890 nm輻射波長(zhǎng)的吸收系數(shù)較小,吸收長(zhǎng)度≥50μm,此意味著890 nm輻射波長(zhǎng)的光致電離效應(yīng)有限.由于砷化鎵材料對(duì)輻射波長(zhǎng)較小的自發(fā)輻射的吸收系數(shù)較大,因此有必要進(jìn)一步研究輻射波長(zhǎng)λ<890 nm的自發(fā)輻射強(qiáng)度.
本研究導(dǎo)出了不同輻射波長(zhǎng)的輻射復(fù)合系數(shù)之間的關(guān)系,拓展了流注自發(fā)輻射隨絲電流變化的數(shù)學(xué)模型,計(jì)算了輻射波長(zhǎng)λ<890 nm的另外3個(gè)自發(fā)輻射峰值強(qiáng)度以及典型的輻射波長(zhǎng)λ=875 nm的自發(fā)輻射強(qiáng)度.研究發(fā)現(xiàn),輻射波長(zhǎng)λ<890 nm的自發(fā)輻射強(qiáng)度在光致電離效應(yīng)中具有重要的意義.
高增益砷化鎵光導(dǎo)開(kāi)關(guān)中流注自發(fā)輻射的實(shí)驗(yàn)研究表明[5]:在半絕緣砷化鎵光導(dǎo)開(kāi)關(guān)中,流注頂部的自發(fā)輻射的相對(duì)發(fā)光強(qiáng)度 Iλ(任意單位)隨輻射波長(zhǎng)λ的不同而變化,大約從輻射波長(zhǎng)876 nm至890 nm的15 nm波長(zhǎng)間隔之間存在4個(gè)相對(duì)發(fā)光強(qiáng)度峰值,并隨波長(zhǎng)增加依序一個(gè)比一個(gè)較高,輻射波長(zhǎng)大約為890 nm的輻射強(qiáng)度峰值最大,另外3個(gè)輻射強(qiáng)度峰值對(duì)應(yīng)的輻射波長(zhǎng)分別大約為,λ=885 nm,λ=881 nm和λ=876 nm.上述4個(gè)輻射強(qiáng)度峰值以及輻射波長(zhǎng)λ=875 nm的輻射強(qiáng)度之間的比值[5]大約為,
[16]中的公式(2)和(3)可以得到從流注發(fā)出的波長(zhǎng)為λ的光子在單位時(shí)間通過(guò)單位面積進(jìn)入緊鄰流注頂部的區(qū)域內(nèi)的光子數(shù)為,
式中,ΔNλT為流注頂部發(fā)出的波長(zhǎng)為λ的光子在單位時(shí)間內(nèi)進(jìn)入緊鄰流注頂部區(qū)域內(nèi)的光子數(shù),Stip為圓柱形流注頂部的面積,R為半絕緣砷化鎵材料的反射率,ST為流注的表面積,ηλ為輻射波長(zhǎng)λ的復(fù)合輻射系數(shù),n為流注內(nèi)的平均載流子密度,τh為空穴的復(fù)合時(shí)間,VT為流注的體積,ΔNλ為流注區(qū)域單位時(shí)間輻射復(fù)合產(chǎn)生的波長(zhǎng)為λ的光子數(shù).
設(shè)輻射波長(zhǎng)λ的輻射強(qiáng)度為Iλ,則由以光子數(shù)計(jì)算的光強(qiáng)度的基本公式寫為,
式中,h為普朗克常數(shù),c為光速.
設(shè)輻射波長(zhǎng)λl的輻射強(qiáng)度為Iλ1、光子數(shù)為ΔNλ1,輻射波長(zhǎng)λ2的輻射強(qiáng)度為 Iλ2,光子數(shù)為ΔNλ2,則由式(3)得,
考慮輻射波長(zhǎng)λ的光子的輻射復(fù)合系數(shù)ηλ為流柱區(qū)域單位時(shí)間輻射復(fù)合產(chǎn)生的波長(zhǎng)為λ的光子數(shù)ΔNλ與單位時(shí)間電子—空穴對(duì)復(fù)合總數(shù)ΔNR的比率[16],
則式(4)右邊分子分母同除以ΔNR變?yōu)椋?/p>
由此得到不同輻射波長(zhǎng)的輻射復(fù)合系數(shù)之間的關(guān)系,
目前,通過(guò)實(shí)驗(yàn)已能夠測(cè)量某一輻射波長(zhǎng)及其相應(yīng)的輻射強(qiáng)度.已知輻射波長(zhǎng)λ=890 nm的輻射復(fù)合系數(shù)η890≈0.13[16],則由式(1)和(7)可以分別算得另外4個(gè)輻射波長(zhǎng)對(duì)應(yīng)的復(fù)合輻射系數(shù):η885≈0.1269,η881≈0.1217,η876≈0.1163,η875≈0.1054.
由此,可將參考文獻(xiàn)[16]的公式(7)改寫為,
式中,PλT是在緊鄰流注頂部區(qū)域內(nèi)測(cè)量的輻射波長(zhǎng)為λ的輻射功率,e為電子的電量,u為載流子漂移速度,Strans為圓柱形流注的橫切面積,I為電流絲電流,Ith為流注頂部產(chǎn)生輻射的絲電流閾值,Pλ0是對(duì)應(yīng)于絲電流閾值Ith時(shí)流注頂部輻射波長(zhǎng)為λ的輻射功率,一般情況 Pλ 0=0.
在式(8)中分別代入不同波長(zhǎng)及其相應(yīng)的輻射復(fù)合系數(shù),就可以計(jì)算出各輻射波長(zhǎng)的輻射強(qiáng)度隨絲電流的變化規(guī)律.為了便于與報(bào)道的計(jì)算結(jié)果進(jìn)行比較[16],式(8)中各參數(shù)取值分別為:R=0.3,τh=100 ps,h=6.625×10-34J?s,c=3×108m?s-1,e=1.6×10-19C,u=ud=107cm/s(取 u等于GaAs中電子的高場(chǎng)飽和漂移速度ud),StipT=Stip=Strans,VT=628 000μm3(考慮流注為圓柱體,取2r0=40μm,L=0.5 mm),ST=65 312μm2,Ith=5A,P0=0.計(jì)算結(jié)果如圖1所示.
圖1 理論計(jì)算1 ns的最大光輸出能量隨絲電流的變化關(guān)系曲線圖
由圖1可知,對(duì)于同一絲電流I,5條輻射強(qiáng)度圖線從上往下分別對(duì)應(yīng)λ=890 nm、λ=885 nm、λ=881 nm、λ=876 nm和λ=875 nm;輻射波長(zhǎng)λ=885 nm的輻射強(qiáng)度圖線緊靠著λ=890 nm的輻射強(qiáng)度圖線,難以分辨;輻射波長(zhǎng)λ=875 nm的輻射強(qiáng)度圖線在最下面,偏離λ=890 nm的輻射強(qiáng)度圖線的距離隨絲電流增加而增大.
高增益砷化鎵光導(dǎo)開(kāi)關(guān)中電流絲的自發(fā)輻射具有重要理論意義.分析高增益砷化鎵光導(dǎo)開(kāi)關(guān)的物理機(jī)理,必須研究流注的自發(fā)輻射規(guī)律.本工作進(jìn)一步研究了輻射波長(zhǎng)λ<890 nm、特別是典型的輻射波長(zhǎng)λ=875 nm的自發(fā)輻射強(qiáng)度問(wèn)題,此為進(jìn)一步研究光導(dǎo)開(kāi)關(guān)的自激勵(lì)源(電流絲)的光致電離效應(yīng)奠定了堅(jiān)實(shí)的基礎(chǔ).
:
[1]Mazzola M S,Schoenbach K H,Lakdawala V K,et al.Infrared Quenching ofConductivity at High Electric Fieldsin a Bulk,Copper-compensated,Optically Activated GaAs Wwitch[J].IEEE,Transactions on Electron Devices,1990 ,37(12):2499-2505.
[2]Schoenbach K H ,Kenney J S,Peterkin F E ,et al.Temporal Development of Electric Field Structures in Photoconductive GaAs Wwitches[J].Applied Physics Letters,1993,63(15):2100-2102.
[3]Loubriel G M,Zutavern F J,HjalmarsonH P,et al.Measurement of the Velocity of Current Filaments in Optically Triggered,High Gain GaAs Wwitches[J].Journal Applied Physics Letters,1994 ,64(24):3323-3325.
[4]Stout P J,Kushner M J.Modeling of High Power Semiconductor Switches Operated in the Nonlinear Mode[J].Applied Physics,1996,79(4):2084-2090.
[5]Zutavern F J,Baca A G ,Chow W W ,et al.SemiconductorLasers from Photoconductive Wwitch Filaments[C]//IEEE Pulsed Power Plasma Science Conf.Las Vegas:IEEE Press,2001:170-173.
[6]Kayasit P,Joshi R P,Islam N,et al.Transient and Steady State Simulationsof Internal Temperature Profiles in High-power Semiinsulating GaAs Photoconductive Switches[J].Journal Applied Physics,2001,89(2):1411-1417.
[7]Zutavern F J,Glover S F,ReedK W ,et al.Fiber-optically Controlled Pulsed Power Switches[J].IEEE Transactions on Plasma Science,2008 ,36(5):2533-2540.
[8]劉鴻,阮成禮.本征砷化鎵光導(dǎo)開(kāi)關(guān)中的流注模型[J].科學(xué)通報(bào),2008,53(18):2181-2185.
[9]劉鴻,阮成禮,鄭理.砷化鎵光導(dǎo)開(kāi)關(guān)的疇電子崩理論分析[J].科學(xué)通報(bào),2011,56(9):679-684.
[10]Yang H C ,Cui H J,Sun Y Q,et al.High Power,Longevity Gallium Arsenide Photoconductive Semiconductor Switches[J].Chinese Science Bull,2010 ,55(13):1331-1337.
[11]劉鴻.非線性光導(dǎo)開(kāi)關(guān)中的高場(chǎng)疇機(jī)制[J].成都大學(xué)學(xué)報(bào)(自科版),2007,26(3),228-231.
[12]Liu Hong,Ruan Chengli.“S-shaped”Negative Differential Conductivity of High GainGaAs Photoconductive Switches[C]//IEEE Lasers&ElectroOptics&ThePacific Rim Conference on Lasers and Electro-Optics,2009.CLEO/PACIFIC RIM apos;09.Shanghai,China:IEEE Press,2009:1-2.
[13]Liu Hong,Ruan Chengli.Streamer in High Gain GaAs Photoconductive SemiconductorSwitches[C]//17th IEEE International Pulsed Power Conference(PPC2009).Washington,USA:IEEE Press,2010:663-668.
[14]劉鴻,阮成禮.高增益砷化鎵光導(dǎo)開(kāi)關(guān)中的光致電離效應(yīng)[J].光學(xué)學(xué)報(bào),2009,29(2):496-499.
[15]劉鴻,阮成禮.高增益砷化鎵光導(dǎo)開(kāi)關(guān)中的的特征量分析[J].中國(guó)激光,2010,37(2):394-397.
[16]劉鴻,鄭理,程浩,等.砷化鎵光導(dǎo)開(kāi)關(guān)中流注輻射實(shí)驗(yàn)理論分析[J].成都大學(xué)學(xué)報(bào)(自科版),2012,31(2):133-135.
Theoretical Analysis of Streamer Radiation in GaAs Photoconductive Semiconductor Switches(PCSS)
LIU Hong1,ZHENGLi2,YANGHongjun1,YANGWei1,ZHENGYonglin1
(1.School of Electronic Information Engineering,Chengdu University,Chengdu 610106,China;2.Department of Electrical and Mechanical Engineering,Chengdu Technological University,Chengdu 611730,China)
Abstract:The spontaneous radiative phenomenon of different wavelength of radiation at one end of a stre amer(i.e.current filament)in high gain GaAs photoconductive semiconductor switches(PCSS)was ana lyzed.The relationship among radiative recombination coefficients of different radiative wavelengths was in duced.And the mathematical model of spontaneous radiation of current filament with the change of current filament was expanded.The results show that the other intensity peaks of spontaneous radiation of the stre amer are slightly less than the spontaneous radiation intensity of 890nm when the filament currents are the same.
Key words:GaAs photoconductive semiconductor switch(PCSS);current filament;radiative recombination coefficient;radiative intensity
TN365
A
1004-5422(2012)04-0324-03
2012-09-10.
四川省科技廳基礎(chǔ)應(yīng)用研究計(jì)劃(2010JY0160)資助項(xiàng)目.
劉 鴻(1961—),男,博士,副教授,從事光電子學(xué)與光導(dǎo)開(kāi)關(guān)技術(shù)研究.