陳莉敏
?
常型Sturm-Liouville算子特征值的漸近式和跡公式
陳莉敏
(常州工程職業(yè)技術(shù)學(xué)院 基礎(chǔ)部,江蘇 常州 213164)
應(yīng)用迭代法計(jì)算了自伴型Sturm-Liouville微分算子特征值的漸近式,據(jù)此給出了算子的一類?ài)E公式,并計(jì)算出其正則項(xiàng)和跡量.
Sturm-Liouville算子;特征值;跡公式
定理1[3]55自伴邊條件下的特征值都是實(shí)的.
[1] ATKNSON F V. Discrete and continuous boundary problems[M]. New York: Academic Press, 1964.
[2]EATHEMATICA S P. On the location of spectral concentration for Sturm-Liouville problems with rapidly decaying potential[J]. Mathematica, 1998, 45: 23-36.
[3]劉景麟. 常微分算子譜論[M]. 北京:科學(xué)出版社,2009.
[4]LEVITAN B M, SARGSJAN I S. Sturm-Liouville and Dirac operators[M]. Dordrecht: Kluwer Academic Publishers, 1991.
An Asymptotic Expression and Trace Formula of Eigenvalues for Sturm-Liouville Operators
CHENLi-min
(Department of Basic Courses, Changzhou Institute of Engineering Technology, Changzhou 213164, China)
The coefficients in asymptotic formulae of eigenvalue for Sturm-Liouville operators with self-adjoined boundary condition are calculated, and on the basis of this, a new trace concept and its expressions are introduced.
Sturm-Liouville operators; eigenvalues; trace formulae
1006-7302(2012)02-0025-04
O175
A
2011-11-08
陳莉敏(1977—),女,江蘇揚(yáng)州人,講師,碩士,研究方向?yàn)槲⒎址匠?