羅金亮
(電子工程學院 合肥 230037)
隨著單基地雷達面臨的綜合電子干擾、反輻射導彈、目標隱形、低空超低空突防等“四大威脅”的加劇,曾一度冷落的雙基地雷達由于其固有的“四抗”優(yōu)勢得到了迅速發(fā)展。大量文獻[1~3]表明,雙基地雷達對于遠距離大功率壓制性干擾具有出色的抗干擾能力[4]。如何對雙基地雷達實施有效干擾,已成為電子對抗領域亟待解決的難題。面對雙基地雷達,大功率壓制干擾已毫無優(yōu)勢。要想實現(xiàn)有效干擾,我們可以選取所需干信比較小的欺騙式干擾。由于雙基地雷達多用于遠程預警,其在工作中將對所探測到的目標進行航跡關聯(lián),所以常規(guī)的假目標欺騙干擾對其影響不大,因而需采用具有一定航跡關聯(lián)的欺騙干擾方可實現(xiàn)有效欺騙。
對于單基地雷達,要實現(xiàn)可控假目標航跡,干擾機必須具備以下幾個功能:第一,干擾機的有效輻射功率應足以使干擾信號從雷達天線的副瓣進入;第二,應能分析雷達天線的掃描規(guī)律并精確測出其參數(shù)(如圓周掃描);第三,干擾機的接收靈敏度應足以接收到雷達的副瓣信號;第四,干擾機的輻射功率、假目標的持續(xù)時間和速度均可控,以模擬不同特征的目標;第五,能精確測定輻射源的地理位置(或者通過其他偵察系統(tǒng)提供)[5]。
對于雙基地雷達,由于干擾機較難得到其接收機的位置、天線波束寬度及掃描周期等相關信息,因而無法形成可控航跡干擾,則干擾機在實施干擾時很有可能使得產(chǎn)生的假航跡與目標真實航跡偏離不遠甚至重疊,這將可能給目標帶來更大威脅,因此,在對雙基地雷達進行航跡欺騙干擾時必須選擇多目標航跡欺騙干擾的方式。
設雷達發(fā)射線性調(diào)頻信號,其數(shù)學表達式為:
式中,g(t)為矩形信號;k為線性調(diào)頻信號的調(diào)頻斜率;f0為載頻。
干擾機的接收到的信號可表示為:
式中,A1為雷達信號在傳輸過程中的增益;Δt0為由干擾機與雷達發(fā)射機之間的距離所引起的信號傳輸時延;fd為由干擾機相對雷達的徑向速度引起的多普勒頻移。
干擾機在實施干擾時,其信號脈沖延時為Δt,方波延時為Δtx,即為干擾機在接收到雷達信號Δtx時間后發(fā)射干擾信號,其信號形式為:
若雙基地雷達接收機接收到此信號,其將會在離干擾機方位為Δtx/w,距離為CΔt/2的位置形成一個假目標。若雷達在天線轉動的下個周期又收到一個位置偏離不遠的假目標,則若干個假目標形成后便會使雷達誤認為此為一條目標飛行航跡,使其自動錄入航跡,從而形成航跡欺騙。
如要形成多目標航跡欺騙,則干擾機需要在接收到雷達信號后每隔Δtx時間發(fā)射一次干擾信號,干擾信號中的脈沖延時Δt要使得前后假目標點可以形成航跡關聯(lián)。這樣便可以使雷達顯示器上形成多條斷續(xù)航跡以及多個“亮點”,如圖1所示。
圖1 雙基地雷達多航跡期望干擾效果示意圖
從圖1中可以看出,對雙基地雷達進行航跡欺騙干擾較難形成一條連續(xù)的航跡,但干擾后在雷達顯示器上所形成的多條斷續(xù)航跡以及多個“亮點”,將會給雷達帶來如下影響:
a.數(shù)量繁多的假目標脈沖信號將嚴重影響雷達的信號檢測;
b.斷續(xù)航跡及“亮點”將可能使操縱員產(chǎn)生誤判為真實目標的斷續(xù)航跡及點跡;
c.斷續(xù)航跡將可有效掩護真實目標的航跡不被發(fā)現(xiàn);
d.多條斷續(xù)航跡將可使雷達航跡錄入產(chǎn)生“飽和”。
通過上述分析得知,要想利用較小干擾功率來實現(xiàn)對雙基地雷達的成功干擾,多目標航跡欺騙干擾是首選的干擾樣式。接下來所需要分析的是,在實際運用過程中,干擾機需要多大功率、其位置應該如何部署等問題。
對雙基地雷達的多目標航跡欺騙干擾機需要的功率與雷達發(fā)射機的輻射功率大小無關,主要與雷達接收機的天線增益、副瓣增益及噪聲電平有關,其所需的干擾功率可表示為:
式中,Rj為干擾機與雷達接收機之間的距離;Pσ為雙基地雷達接收機輸入噪聲功率;ΔF為干擾機頻譜寬度;Δf0為雷達接收機瞬時帶寬;Gt(θ)為雷達接收機在θ方向上的天線增益;λ為雷達工作波長。
Pσ可以表示為:
式中,K為玻爾茲曼常數(shù),一般取1.38×10-23J/K;T0為絕對溫度,一般取290K;N為接收機輸入噪聲系數(shù)。
在干擾過程中,由于干擾機較難獲取雙基地雷達接收機的位置,因此要想使干擾信號能從雷達任意方向的副瓣進入,則式(4)中的雷達副瓣增益Gt(θ)應為:
式中:C為一常數(shù),一般為0.07~0.1;θ0.5為雷達接
由于干擾機無法確定雙基地雷達接收機的位置,因此在實施干擾時,通常選擇將干擾波束的中心對準雙基地雷達的發(fā)射機,如圖2所示。收天線半功率波束寬度。
將式(6)和式(5)代入式(4)可得干擾機所需的干擾功率:
圖2 干擾雙基地雷達示意圖
若干擾機一旦定型,則其天線波束寬度便已固定,設方位波束寬度為α,仰角波束寬度為β,假設干擾機在實施干擾前通過情報偵察已獲得雙基地雷達發(fā)射機與接收機之間通常部署的距離為D,此時干擾機要想使得干擾信號能夠有效地覆蓋上雙基地雷達的接收機,則干擾機距離雷達發(fā)射機的距離Rt應為:
從式(8)中可以看出Rt與α成反比,若α為一定值,要想使干擾信號方位波束形成全面覆蓋,則:
在實際運用中,雙基地雷達發(fā)射機通常位于掩護嚴密的后方,所以干擾機不可能也不會位于發(fā)射機的頂空進行干擾,而是在遠處對其進行升空照射,干擾機的高度H由圖2(b)可得方程組:
通過解方程組(10),可得:
將式(8)代入式(11)可得:
從式(12)中可以看出H與β成正比,若β為一定值,要想使干擾信號仰角波束形成全面覆蓋,則:
假設有一雙基地雷達,其發(fā)射機與接收機之間的部署距離D通常為100km,雷達信號波長λ為10cm,接收機內(nèi)部噪聲系數(shù)N為2,天線主瓣增益為30dB,半功率波束寬度θ0.5為3°,干擾機選擇多目標航跡欺騙干擾樣式對雷達實施干擾,干擾功率Pj為100W,干擾頻譜寬度ΔF為1000MHz,天線方位波束寬度 α 為 50°,仰角波束寬度 β 為 4°[6]。
根據(jù)上述假設條件,由于干擾機未獲得雷達接收機的準確位置,則干擾機此時應選擇將干擾波束中心對準雷達發(fā)射機,根據(jù)式(9)、式(13)可得:
通過上述可知,干擾機應部署在離雷達發(fā)射機距離Rt≥214.45km,高度H≤12.58km的位置。
若根據(jù)3.1節(jié)所得結果對干擾機進行部署,根據(jù)圖2可知,干擾機距雷達接收機的距離Rj可能為114.8km~315.05km之間的任意一值?,F(xiàn)對干擾機能否使雷達形成干擾進行分析。
根據(jù)式(7),可以求出當干擾機距雷達接收機的距離Rj為任一可能值所對應的干擾機所需有效干擾功率值,如表1所示。
表1 干擾機在不同干擾距離下所需的有效干擾功率
通過Matlab仿真可得干擾機所需有效干擾功率曲線圖,如圖3所示。
圖3 干擾機所需有效干擾功率曲線圖
通過仿真結果可以看出,若雙基地雷達接收機部署在距離干擾機114.8km~277.3km處,干擾機可實現(xiàn)對雷達的有效干擾,若接收機部署在更遠的位置,則干擾機無法對其實施有效干擾。干擾機要想實現(xiàn)對雷達的全面干擾,則其有效干擾功率PjGjture必須提升至1.61×105W。
本文分析了雙基地雷達的工作特點,得出運用多目標航跡欺騙干擾可實現(xiàn)對雙基地雷達的有效干擾,而后對航跡欺騙干擾的實際運用進行了研究,估算了干擾機要想實現(xiàn)成功干擾所需的有效干擾功率及其位置部署??蔀楦蓴_雙基地雷達的戰(zhàn)法運用提供依據(jù)和參考,具有一定的軍事意義。
[1]張錫祥,肖開奇,顧杰.新體制雷達對抗導論[M].北京:北京理工大學出版社,2010.
[2]沈陽,陳永光,李修和.雙基地雷達干擾暴露區(qū)的計算與仿真分析[J].現(xiàn)代雷達,2003,(11):4-6.
[3]郭克成,陸靜.雙基地雷達的抗干擾能力及有效干擾區(qū)分析[J].現(xiàn)代雷達,2004,(9):20-22.
[4]王勇剛,李修和,沈陽.分布式壓制性干擾下的雙基地雷達探測能力研究[J].電子信息對抗技術,2007,(4):45 -49.
[5]孫龍祥.一種具有航跡特征的雷達假目標產(chǎn)生技術[J].雷達科學與技術,2005(4):198-202.
[6]楊振起,張永順.雙(多)基地雷達系統(tǒng)[M].北京:國防工業(yè)出版社,1998.
[7]周續(xù)力.對搜索警戒雷達的多目標航跡欺騙[J].電子信息對抗技術,2007,(6):43 -45.
[8]S Deb,et al.A generalized S-D assignment algorithm for multisensor-multitarget state estimation[J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(2):523 -537.
[9]KEITH B PURV IS,CHANDLER P R,PACHTER M.Feasible Flight Paths for Cooperative Generation of a Phantom Radar Track[J].Journal of Guidance,Control,and Dynamics,2006,29(3):653-661.