王明,萬(wàn)堅(jiān)
(盲信號(hào)處理重點(diǎn)實(shí)驗(yàn)室,成都610041)
一種子帶分頻段信道估計(jì)算法?
王明,萬(wàn)堅(jiān)
(盲信號(hào)處理重點(diǎn)實(shí)驗(yàn)室,成都610041)
針對(duì)當(dāng)前高速率通信中信道階數(shù)很長(zhǎng)導(dǎo)致信道估計(jì)和均衡困難的問(wèn)題,利用子帶濾波器組近似完全重構(gòu)的特點(diǎn),提出一種在子帶內(nèi)進(jìn)行分頻段信道估計(jì)、在全頻帶綜合信道參數(shù)的估計(jì)方法。該方法較全頻帶信道估計(jì)收斂速度快,收斂誤差小,能很好適應(yīng)惡劣的信道情況。雖然總的計(jì)算量大于全頻帶信道估計(jì),但由于采用并行計(jì)算,所以能大大減少運(yùn)算時(shí)間。仿真試驗(yàn)表明,在重構(gòu)誤差足夠小的情況下,子帶數(shù)目越多,收斂越快,收斂殘差比全頻帶信道估計(jì)小5 dB左右。
信道估計(jì);子帶分解;收斂;自適應(yīng)濾波;濾波器組
隨著衛(wèi)星無(wú)線通信技術(shù)的發(fā)展與應(yīng)用,通信速率和傳輸帶寬不斷提高[1]。寬帶無(wú)線通信系統(tǒng)的性能主要受到無(wú)線信道環(huán)境的制約,在百兆級(jí)的數(shù)據(jù)傳輸速率下,微秒級(jí)的多徑延遲就會(huì)導(dǎo)致上百個(gè)符號(hào)間的干擾。為保證通信的可靠性,信道估計(jì)是寬帶無(wú)線通信系統(tǒng)的關(guān)鍵技術(shù)之一。無(wú)線信道不像有線信道那樣固定并可預(yù)見(jiàn),而是具有很大的隨機(jī)性,導(dǎo)致接收信號(hào)的幅度、相位和頻率失真很難進(jìn)行分析。為了保證系統(tǒng)良好的性能,需要采用信道估計(jì)的方法來(lái)跟蹤信道響應(yīng),即估計(jì)出信道的時(shí)域或者頻域響應(yīng),對(duì)接收到的數(shù)據(jù)進(jìn)行校正與恢復(fù)[2]。
目前,信道估計(jì)多采用線性自適應(yīng)濾波器實(shí)現(xiàn),
在高速數(shù)據(jù)傳輸系統(tǒng)中,信道階數(shù)往往上百階。常規(guī)的信道估計(jì)算法收斂速度慢,在時(shí)變信道和突發(fā)通信中,信道估計(jì)收斂慢是限制系統(tǒng)性能的一個(gè)主要問(wèn)題。近年來(lái),為提高長(zhǎng)沖激響應(yīng)自適應(yīng)濾波器的收斂速度,子帶技術(shù)被應(yīng)用到自適應(yīng)濾波中[3-5]。本文提出的子帶分頻段信道估計(jì)算法首先對(duì)接收寬帶信號(hào)進(jìn)行子帶濾波器組濾波,得到多個(gè)窄帶信號(hào),在窄帶帶寬內(nèi),對(duì)相應(yīng)信道響應(yīng)進(jìn)行估計(jì),然后分別給出了在頻域和時(shí)域合并子帶信道估計(jì)參數(shù)的方法,最后通過(guò)仿真驗(yàn)證了子帶分頻段信道估計(jì)的有效性和算法優(yōu)點(diǎn)。
2.1 子帶自適應(yīng)濾波開(kāi)環(huán)結(jié)構(gòu)
圖1為子帶自適應(yīng)濾波開(kāi)環(huán)結(jié)構(gòu),開(kāi)環(huán)結(jié)構(gòu)LMS算法的子帶自適應(yīng)濾波器的更新方程為[4]
2.2 子帶自適應(yīng)濾波閉環(huán)結(jié)構(gòu)
圖2為子帶自適應(yīng)濾波閉環(huán)結(jié)構(gòu),分析和綜合濾波器長(zhǎng)度為L(zhǎng),濾波器時(shí)延Δ=。歸一化LMS算法的更新方程如下[5]:
式中,hi(n)為第i個(gè)子帶對(duì)應(yīng)的分析濾波器。收斂條件0<<(Δ-1/(),當(dāng)延時(shí)Δ較大時(shí),收斂條件表示為0<1)。因此,濾波器延時(shí)大大減少了更新因子的取值范圍,降低了算法收斂速度[7]。
3.1 子帶分頻段信道估計(jì)算法原理
子帶分頻段信道估計(jì)算法采用開(kāi)環(huán)結(jié)構(gòu),結(jié)構(gòu)如圖3所示。每個(gè)子帶估計(jì)出對(duì)應(yīng)的信道參數(shù),再轉(zhuǎn)化為全頻帶信道系數(shù)。假設(shè)信道沖激響應(yīng)為h(n),接收信號(hào)d(n)=x(n)?h(n)。子帶信道估計(jì)收斂后,輸入輸出關(guān)系為
式中,hi(n)為分析濾波器組的沖激響應(yīng),↓M表示下采M倍,wi(n)為估計(jì)的子帶信道參數(shù)。對(duì)等式兩邊上采M倍和綜合濾波得到:
即估計(jì)的全頻帶信道參數(shù)為
3.2 子帶分頻段信道估計(jì)參數(shù)的轉(zhuǎn)化
對(duì)每個(gè)窄子帶信道進(jìn)行估計(jì),然后將每個(gè)子帶信道參數(shù)轉(zhuǎn)化為全頻帶的信道參數(shù)??梢圆捎脙煞N轉(zhuǎn)化方式:頻域轉(zhuǎn)化和時(shí)域轉(zhuǎn)化。假設(shè)每個(gè)子帶自適應(yīng)濾波器長(zhǎng)度是一致的,Ns=,L為轉(zhuǎn)化后的全頻帶信道估計(jì)參數(shù)長(zhǎng)度。采用過(guò)采樣的子帶分解,采樣倍數(shù)滿足M=D/2,所以采用頻域轉(zhuǎn)化時(shí),只需取各子帶估計(jì)參數(shù)Ns個(gè)DFT系數(shù)的中間Ns/2個(gè)進(jìn)行綜合。首先對(duì)各子帶估計(jì)參數(shù)wi(k),0≤i≤D-1,0≤k≤Ns-1進(jìn)行DFT變換,得到頻域系數(shù)[Wi(0)Wi(1)…Wi(Ns-1)]。根據(jù)式(10)得到全頻帶信道估計(jì)頻域系數(shù)?H(l),0≤l≤L-1,然后對(duì)?H(l)進(jìn)行DFT反變換得到全頻帶信道估計(jì)參數(shù)?h(l)。
子帶信道參數(shù)時(shí)域轉(zhuǎn)化在操作上更為簡(jiǎn)潔,由式(9)可知,將子帶估計(jì)信道參數(shù)插值M倍后,再通過(guò)子帶濾波器組,濾除鏡頻分量,將所有參數(shù)相加就得到全頻帶信道估計(jì)參數(shù)。相比頻域轉(zhuǎn)化,時(shí)域轉(zhuǎn)化引入的誤差更小,但計(jì)算量要大。
3.3 計(jì)算量分析
為減少子帶濾波帶來(lái)的運(yùn)算量,子帶分解采用圖4所示的多相結(jié)構(gòu)[9]。圖中Ei(z),0≤i≤D-1是分析濾波器組的多相分量。
(1)子帶分解
原型濾波器長(zhǎng)度Lp,一次濾波需要Lp次復(fù)數(shù)乘法。2M點(diǎn)IDFT需要2M×lb(2M)次乘法。則各通道各輸出一個(gè)數(shù)據(jù)需要Lp+M×lb(2M)次復(fù)數(shù)乘法。接收數(shù)據(jù)和訓(xùn)練序列都需要子帶分解,共2Lp+2M×lb(2M)次復(fù)數(shù)乘法。
(2)子帶分頻段信道估計(jì)的系數(shù)更新
每個(gè)子帶自適應(yīng)濾波的抽頭個(gè)數(shù)為Ns,每迭代更新一次需要Ns次復(fù)數(shù)乘法,2M個(gè)子帶共需要2MNs次復(fù)數(shù)乘法。
(3)系數(shù)轉(zhuǎn)換
頻域轉(zhuǎn)化時(shí),各子帶信道估計(jì)系數(shù)矢量進(jìn)行Ns點(diǎn)的DFT,需要Ns×lb(Ns/2)次復(fù)數(shù)乘法,頻域合并后得到L=M×Ns點(diǎn)全頻帶時(shí)域系數(shù),進(jìn)行IFFT變換需要L×lb(L/2)次復(fù)數(shù)乘法,一共需要L× lb(L/2)+MNs×lb(Ns/2)次復(fù)數(shù)乘法。時(shí)域轉(zhuǎn)化時(shí),子帶信道估計(jì)系數(shù)分別通過(guò)對(duì)應(yīng)的分析濾波器組和綜合濾波器組,需要2NsLp復(fù)數(shù)乘法,2M個(gè)子帶共需要4MNsLp次復(fù)數(shù)乘法。
采用系數(shù)頻域轉(zhuǎn)化,子帶分頻段信道估計(jì)每更新輸出一次結(jié)果需要2 Lp+2M×lb(2M)+2MNs+ L×lb(L/2)+MNs×lb(Ns/2)復(fù)數(shù)乘法。采用時(shí)域轉(zhuǎn)化,需要2 Lp+2M×lb(2M)+2MNs+2MNsLp次復(fù)數(shù)乘法。在全頻帶直接做信道估計(jì)每更新輸出一次需要2L次復(fù)數(shù)乘法。子帶分頻段信道估計(jì)總的計(jì)算量要大于全頻帶信道估計(jì),但是,子帶分頻段信道估計(jì)算法多個(gè)子帶可以并行計(jì)算,所以運(yùn)行時(shí)間能大大減少。
子帶分頻段信道估計(jì)相對(duì)全頻帶信道估計(jì),計(jì)算量要大,但收斂速度快。輸入信號(hào)x(n)的自相關(guān)矩陣和子帶分解后的信號(hào)自相關(guān)矩陣有式(11)關(guān)系,特別是當(dāng)信道為深衰落信道時(shí),兩者值差距更大。因此,對(duì)于一些全頻帶信道估計(jì)不能收斂的情況,子帶分頻段信道估計(jì)算法仍有可能完成收斂。
式中,λmax、λmin分別是全頻帶信號(hào)自相關(guān)矩陣的最大和最小特征值,λi,max、λi,min為子帶信號(hào)自相關(guān)矩陣的最大和最小特征值。
實(shí)驗(yàn)條件:QPSK信號(hào)調(diào)制,信噪比25 dB;子帶數(shù)目D分別為4、8、16,子帶濾波器設(shè)計(jì)采用文獻(xiàn)[8]中的迭代優(yōu)化算法,阻帶衰減在-60 dB以上,重構(gòu)誤差小于-50 dB,如圖5所示;信道采用132階非線性相位深衰落信道;信道頻率響應(yīng)如圖6所示;全頻帶自適應(yīng)濾波器長(zhǎng)度為152,子帶自適應(yīng)濾波器長(zhǎng)度為152/M;子帶數(shù)為4、8、16的信道估計(jì)更新步長(zhǎng)分別為0.004 3、0.007 5、0.015 1,全頻帶更新步長(zhǎng)為0.001 1。步長(zhǎng)的取值由收斂條件決定,全頻帶信道估計(jì)步長(zhǎng)最小,子帶分頻帶信道估計(jì)步長(zhǎng)相應(yīng)增加,這樣能保證收斂到最小殘差。不同子帶數(shù)目下信道估計(jì)收斂情況如圖7所示。圖7中,對(duì)比4個(gè)曲線可知,全頻帶信道估計(jì)收斂最慢,殘差最大,子帶分頻帶信道估計(jì)中子帶數(shù)目越多,收斂越快,這是因?yàn)樽訋?shù)目增加,則每個(gè)子帶頻段內(nèi)的自相關(guān)矩陣最大值λi,max減小,最小值λi,min增大。子帶信道估計(jì)收斂殘差基本是一致的,比全頻帶信道估計(jì)殘差小5 dB左右。但是并不是子帶數(shù)目越多,收斂情況就越好,因?yàn)樽訋?shù)目增加,子帶重構(gòu)誤差也增大,對(duì)子帶濾波器設(shè)計(jì)要求越高。當(dāng)子帶數(shù)目超過(guò)一定值時(shí),收斂情況會(huì)變差。一般來(lái)說(shuō),信道特性越惡劣,頻率選擇性衰落越明顯,子帶分頻段信道估計(jì)帶來(lái)的優(yōu)勢(shì)也越明顯。在信道頻率選擇性衰落特別嚴(yán)重時(shí),全頻帶信道估計(jì)往往無(wú)法收斂,但子帶分頻帶信道估計(jì)仍可以收斂。
子帶分頻帶信道估計(jì)算法將信道特性劃分為不同窄帶信道特性,分別對(duì)每個(gè)窄帶信道進(jìn)行估計(jì),然后在全頻帶綜合估計(jì)參數(shù)。與全頻帶信道估計(jì)的仿真試驗(yàn)比較表明,子帶分頻帶信道估計(jì)具有收斂速度快,收斂誤差小,信道適應(yīng)性強(qiáng)等特點(diǎn),可應(yīng)用于信道階數(shù)長(zhǎng)、信道頻率選擇性衰落嚴(yán)重的通信場(chǎng)合。本文中子帶分頻段信道估計(jì)是基于有訓(xùn)練序列的條件下,接收信號(hào)和訓(xùn)練序列可同步進(jìn)行子帶分解,從而對(duì)每一個(gè)窄子帶進(jìn)行信道估計(jì)。如果在信道盲估計(jì)的情況下,每一個(gè)子帶信號(hào)將不具備原來(lái)信號(hào)的恒模、累積量等特性,從而無(wú)法對(duì)每一個(gè)窄子帶進(jìn)行信道盲估計(jì)。如何把子帶技術(shù)應(yīng)用到信道盲估計(jì)是下一步研究的問(wèn)題。
[1]Pathmasuntharam J S,Dwertmann C,Lyer T,et al.Intelligent middleware for high speed maritime mesh networks with satellite communications[C]//Proceedings of the 9th International Conference on Intelligent Transport Systems Telecommunications.Kensington:IEEE,2009:1564-1568.
[2]Pu Liang,Liu Jian,Yuan Fang,et al.Channel Estimation in Mobile Wireless Communication[C]//Proceedings of 2010 International Conference on Communications and Mobile Computing.Shenzhen:IEEE,2010:70-80.
[3]Gerek O N,Cetin A E.Adaptive polyphase subband decomposition structures for image compression[J].IEEE Tranactions on Image Processing,2000,9(10):1649-1660.
[4]Alves R G,Petraglia M R,Diniz P S R.Convergence analysis of an oversampled subband adaptive filtering structure using global error[C]//Proceedings of 2000 IEEE International Conference on Acoustics,Speech,and Signal Processing.Istanbul,Turkey:IEEE,2000:468-471.
[5]Petraglia M R,Alves R G,Diniz P S R.Convergence analysis of an oversampled subband adaptive filtering structure with local errors[C]//Proceedings of 2000 IEEE International Symposium on Circuits and Systems.Geneva,Switzerland:IEEE,2000:563-566.
[6]Johansson S,Nordebo S,Claesson I.Convergence analysis of a twin-reference complex least-mean-squares algorithm[J].IEEE Transactions on Speech and Audio Processing,2002,10(4):213-221.
[7]Ingvar Claesson,F(xiàn)redric Lindstrom,Christian Schuldt.A Low-Complexity Delayless Selective Subband Adaptive Filtering Algorithm[J].IEEE Transactions on Signal Processing,2008,56(12):124-127.
[8]Xu Hua,Lu Wu-Sheng,Antoniou A.Efficient iterative design method for cosine-modulated QMF banks[J].IEEE Transactions on Signal Processing,1996,44(7):1657-1668.
[9]Phoong See-May,Vaidyanathan P P.A polyphase approach to time-varying filter banks[C]//Proceedings of1996 IEEE International Conference on Acoustics,Speech,and Signal Processing.Pasadena:IEEE,1996:1554-1557.
WANG Ming was born in Changsha,Hunan Province,in 1986.He received the B.S.degree in 2009.He is now a graduate student.His research concerns subband signal processing.
Email:mingwang2010@gmail.com
萬(wàn)堅(jiān)(1977—),男,江西南昌人,2007年獲博士學(xué)位,現(xiàn)為高級(jí)工程師,主要研究方向?yàn)樾盘?hào)處理、通信信號(hào)盲分離等。
WAN Jian was born in Nanchang,Jiangxi Province,in 1977. He received the Ph.D.degree in 2007.He is now a senior engineer.His research interests include signal processing and blind signal separating,etc.
A Channel Estimation Algorithm Based on Subband Frequency-domain Decomposition
WANG Ming,WAN Jian
(Science and Technology on Blind Signal Processing Laboratory,Chengdu 610041,China)
In high speed communications,the channel estimation and equalization are difficult because of the very long channel length.In allusion to the difficultpoints,by using the near perfect reconstruction speciality of filter banks,an algorithm with channel estimation in every subband and constructing the parameters in fullband is proposed.Compared with the fullband channel estimation,the convergence speed of the proposed method is faster,the convergence error is smaller,and the adaptability for bad channel is better.The whole computation load is more than thatoffullband channelestimation,butthe computation time is reduced largely because ofthe parallel computation of subband signals.Computer simulations illustrate the proposed method has faster convergence speed with more subbands and 5 dB convergence error less than the fullband channelestimation,ifthe reconstruction error is small enough.
channel estimation;subband decomposition;convergence;adaptive filter;filter banks
The Science and Technology on Blind Signal Processing Laboratory Foundation
TN911
A
10.3969/j.issn.1001-893x.2012.03.022
王明(1986—),男,湖南長(zhǎng)沙人,2009年獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)樽訋盘?hào)處理等;
1001-893X(2012)03-0362-05
2011-10-31;
2012-01-04
盲信號(hào)處理重點(diǎn)實(shí)驗(yàn)室基金資助項(xiàng)目