宋彩彩,林 進(jìn),曲占慶,呂仁慶
?
4,5-二溴-1-丙基-3-甲基咪唑和1-丙基-3-甲基咪唑基離子液體的密度泛函研究
宋彩彩1,林 進(jìn)1,曲占慶2,*呂仁慶3
(1.中國(guó)石油大學(xué)(華東)化學(xué)工程學(xué)院,山東,青島 266555;2. 中國(guó)石油大學(xué)(華東)石油工程學(xué)院,山東,青島 266555;3. 中國(guó)石油大學(xué)(華東)理學(xué)院,山東,青島 266555)
采用密度泛函理論和DNP基組,對(duì)比研究了4,5-二溴-1-丙基-3-甲基咪唑和1-丙基-3-甲基咪唑與[PF6]-的相互作用。計(jì)算結(jié)果表明,H2原子和丙基支鏈氫原子與[PF6]-的氟原子相互作用形成氫鍵。[PMIM]+[PF6]-的最低未占軌道(LUMO)是分布在咪唑環(huán)上的p*軌道,而[PMIM-Br]+[PF6]-的LUMO為環(huán)原子和Br原子構(gòu)成的s*軌道。
密度泛函理論;基于鹵代咪唑的離子液體;氫鍵
離子液體是指全部由離子組成的液體,由于其獨(dú)特的物理和化學(xué)性質(zhì),被廣泛的應(yīng)用到有機(jī)/無(wú)機(jī)合成、催化、分離、電化學(xué)和光化學(xué)領(lǐng)域中[1]。在離子液體中,陽(yáng)離子往往是體積較大的有機(jī)陽(yáng)離子,如咪唑、吡啶、吡咯、季銨鹽等物種,和不同的陰離子結(jié)合形成多種離子液體。其中基于二烷基咪唑陽(yáng)離子的離子液體研究最為廣泛。常見(jiàn)的陰離子有[PF6]-、[BF4]-、NO3-、CH3COO-、CF3COO-、CF3SO3-、CF3SO2NSO2CF3-等。由于離子液體的多樣性,可以根據(jù)不同的需要來(lái)調(diào)配離子液體的物理化學(xué)性質(zhì)??梢圆捎糜?jì)算機(jī)模擬的方法在分子水平上研究離子液體的相互作用,如密度泛函理論[2-26]、Hartree-Fock方法[2,22,25],半經(jīng)驗(yàn)分子軌道法[9,27],分子動(dòng)力學(xué)法[3,28-31],Monte Carlo法[32]等。密度泛函理論法被廣泛用于研究烷基咪唑基離子液體,最近有兩篇文獻(xiàn)綜述了模擬離子液體的不同方法[33-34]。
Mukai和Nishikawa[35-37]合成了一系列鹵代咪唑基離子液體。據(jù)我們所知,目前還沒(méi)有關(guān)于鹵代咪唑基和咪唑基離子液體相互作用的理論研究比較。本研究主要比較了兩種咪唑基離子液體的相互作用,考察了陰陽(yáng)離子相互作用的電子性質(zhì)和拓?fù)湫再|(zhì)。
4,5-二溴-1-丙基-3-甲基咪唑陽(yáng)離子([PMIM-Br]+)、1-丙基-3-甲基咪唑基陽(yáng)離子([PMIM]+)和[PF6]-陰離子的結(jié)構(gòu)如圖1所示。設(shè)計(jì)不同的[PMIM-Br]+和[PMIM]+與[PF6]-相互作用初始模型。
圖1 初始結(jié)構(gòu) (a) [PMIM-Br]+, (b) [PMIM]+, (c) PF6-
所有計(jì)算采用DMol3方法。采用GGA/PW91/DNP方法對(duì)初始結(jié)構(gòu)進(jìn)行了未加限制的全優(yōu)化,并進(jìn)行了頻率分析。將所得的優(yōu)化結(jié)構(gòu)進(jìn)行了NBO電子性質(zhì)分析和AIM拓?fù)湫再|(zhì)分析。
采用GGA/PW91/DNP方法優(yōu)化了[PMIM-Br]+、[PMIM]+、[PF6]-、[PMIM-Br]+[PF6]-和 [PMIM]+[PF6]-的結(jié)構(gòu),所得結(jié)構(gòu)如圖2所示。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中陽(yáng)離子的結(jié)構(gòu)參數(shù)和單獨(dú)的[PMIM-Br]+和[PMIM]+陽(yáng)離子結(jié)構(gòu)參數(shù)相近,都保留了咪唑環(huán)的平面結(jié)構(gòu)。[PMIM-Br]+[PF6]-中的C2–H2的鍵長(zhǎng)為1.088 ?,而[PMIM-Br]+中的C2–H2的鍵長(zhǎng)為1.081 ?;[PMIM]+[PF6]-中的C2–H2的鍵長(zhǎng)為1.091 ?,而[PMIM]+中的C2–H2的鍵長(zhǎng)為1.082 ?,這是由于[PF6]-中的F2與咪唑環(huán)上H2原子相互作用造成的。單獨(dú)的[PF6]-陰離子中P-F鍵長(zhǎng)1.650 ?相比,[PMIM-Br]+[PF6]-中的P-F1、P-F2和P-F3鍵長(zhǎng)分別增長(zhǎng)了0.027 ?、0.044 ?、0.018 ?,而[PMIM]+[PF6]-中的P-F1、P-F2和P-F3鍵長(zhǎng)分別增長(zhǎng)了0.020 ?、0.040 ?、0.023 ?。與此相對(duì)應(yīng),P-F4、P-F5和P-F6鍵長(zhǎng)發(fā)生了收縮,這符合鍵級(jí)守恒原則[38]。離子液體陰陽(yáng)離子對(duì)是通過(guò)H原子和F原子相互作用的氫鍵聯(lián)系在一起。
圖2 優(yōu)化結(jié)構(gòu)和部分相互作用距離(a) [PMIM-Br]+ (b) [PMIM]+ (c) [PMIM-Br]+[PF6]- (d) [PMIM]+[PF6]- (?)
表1 (a) [PMIM-Br]+和(b) [PMIM]+陽(yáng)離子咪唑環(huán)的s, p布居數(shù)和自然原子軌道線性組合
表2 (c) [PMIM-Br]+[PF6]-和(d) [PMIM]+[PF6]-陽(yáng)離子咪唑環(huán)的s, p布居數(shù)和自然原子軌道線性組合
[PMIM-Br]+、[PMIM]+、[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-陽(yáng)離子咪唑環(huán)的s、p布居數(shù)和自然原子軌道線性組合能給出陽(yáng)離子環(huán)的軌道信息。表1和表2顯示,咪唑環(huán)上的原子采用sp2雜化,形成五個(gè)s成鍵軌道,其余的垂直于環(huán)的p軌道肩并肩重疊形成大p鍵。咪唑環(huán)上五個(gè)s軌道的電子布居數(shù)為1.977-1.983e。[PMIM-Br]+和[PMIM-Br]+[PF6]-中s(C4-Br1) 和s(C5-Br2)軌道是由環(huán)上碳原子的sp2雜化軌道和Br上的半滿p軌道相互作用形成的。有意思的是,[PMIM-Br]+和[PF6]-相互作用p鍵分布在C5-C4和N3-C2上,[PMIM-Br]+陽(yáng)離子上的p鍵分布在C5-C4和N1-C2上。孤對(duì)電子向反鍵軌道離域可用二級(jí)微擾穩(wěn)定化能來(lái)估算。表3所示為[PMIM-Br]+和[PMIM-Br]+[PF6]-中Br1和Br2涉及孤對(duì)電子的受-授NBO相互作用及其二級(jí)微擾穩(wěn)定化能((2))。Br1和Br2孤對(duì)電子和p*(C4-C5)的強(qiáng)烈相互作用表示為L(zhǎng)P(Br1)?p*(C4-C5)和LP(Br2)?p*(C4-C5)。在[PMIM-Br]+中為15.59 kcal/mol和15.60 kcal/mol,在[PMIM-Br]+[PF6]-中為14.25 kcal/mol和14.02 kcal/mol,二級(jí)微擾穩(wěn)定化能很大,這表明LP(Br1)和LP(Br2)向p*(C4-C5)有很大程度的電子離域。表3所示,LP(Br1) 和LP(Br2)向環(huán)上s*反鍵軌道有一定程度的遷移。在[PMIM-Br]+中,二級(jí)微擾穩(wěn)定化能LP(Br1)?s*(C4-C5)、 LP(Br1)?s*(C4-N3)、LP(Br2)?s*(C4-C5)和LP(Br2)?s*(C5-N1)分別為 5.44 kcal/mol、 8.95 kcal/mol,、5.43 kcal/mol和8.99 kcal/mol,而在[PMIM-Br]+[PF6]-中,二級(jí)微擾穩(wěn)定化能LP(Br1)?s*(C4-C5)、LP(Br1)?s*(C4-N3)、LP(Br2)?s*(C4-C5)和LP(Br2)?s*(C5-N1)分別為5.33 kcal/mol、8.35 kcal/mol、5.18 kcal/mol和8.47 kcal/mol。盡管Br的Pauling電負(fù)性(2.96)比C的電負(fù)性(2.55)大,由于Br原子上孤對(duì)電子向環(huán)上的離域,導(dǎo)致Br的正電性,在[PMIM-Br]+中分別為Br1 (+0.23342)和Br2 (+0.23252),在[PMIM-Br]+[PF6]-中分別為Br1 (+0.18699)和Br2 (+0.18456)。
表3 [PMIM-Br]+和[PMIM-Br]+[PF6]-中Br1和Br2涉及孤對(duì)電子的受-授NBO相互作用及其二級(jí)微擾穩(wěn)定化能
圖3和圖4所示為[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-的最高已占軌道(HOMO)和最低未占軌道(LUMO)及其能量示意圖。福井謙一的前線軌道理論能反映出陰陽(yáng)離子的相互作用情況。由圖3所示,PMIM-Br]+[PF6]-和[PMIM]+[PF6]-的HOMO主要來(lái)源于咪唑環(huán)的p型軌道, [PMIM-Br]+[PF6]-的HOMO不僅包含環(huán)上的原子還有Br原子,而[PMIM]+[PF6]-的HOMO主要包含環(huán)上的原子。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-的HOMO有明顯的不同,[PMIM-Br]+[PF6]-的HOMO主要來(lái)源于環(huán)原子和Br原子構(gòu)成的s型軌道,而[PMIM]+[PF6]-的HOMO主要來(lái)源于環(huán)原子所構(gòu)成的p型軌道。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-的HOMO和LUMO均來(lái)源于陽(yáng)離子,該結(jié)論與[C4MIM]+[PF6]-的HOMO和LUMO均來(lái)源于[C4MIM]+陽(yáng)離子是一致的[39]。[PMIM-Br]+和[PF6]-相互作用能為79.9 kcal/mol,而[PMIM]+和[PF6]-相互作用能為76.6 kcal/mol,由此可見(jiàn),Br原子取代到咪唑環(huán)的4,5位,對(duì)相互作用能的影響不大。
圖3 HOMO軌道(a) [PMIM-Br]+[PF6]-、(c) [PMIM]+[PF6]-和LUMO軌道(b) [PMIM-Br]+[PF6]-、(d) [PMIM]+[PF6]-
圖4 HOMO和LUMO軌道能量示意圖(a) [PMIM-Br]+[PF6]-和(b) [PMIM]+[PF6]-
Fig. 4 The HOMO and LUMO energy scheme of (a) [PMIM-Br]+[PF6]- and (b) [PMIM]+[PF6]-
離子液體中陰陽(yáng)離子的主要相互作用之一是氫鍵。NBO分析可用來(lái)評(píng)估電荷的分布和成鍵性質(zhì)。[PMIM-Br]+中H2的NBO電荷為+0.27581,[PMIM]+中H2的NBO電荷為+ 0.27227,由于N1和N2原子的電負(fù)性很大,所以導(dǎo)致H2原子具有最大的正電荷。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中[PF6]-的電荷數(shù)分別為-0.95335和-095493,這說(shuō)明負(fù)電荷從[PF6]-向[BMIM-Br]+和[PMIM]+陽(yáng)離子發(fā)生了遷移。[PMIM-Br]+[PF6]-中H2原子的NBO電荷為0.30477,而[PMIM]+[PF6]-中H2原子的NBO電荷為0.30983,F(xiàn)2的負(fù)電荷增大,這是由于氫鍵的形成所致。非鍵范德華相互作用的判定標(biāo)準(zhǔn)之一就是相應(yīng)的原子間距小于兩個(gè)原子的范德華半徑之和。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中F2×××H2和F1×××H71的距離分別為1.931 ?、2.318 ?和1.868 ?、2.322 ?,小于Bondi范德華半徑之和(2.67 ?)[40]。
研究氫鍵是否存在,它們的拓?fù)湫再|(zhì)也可以作為一種判據(jù)。根據(jù)Bader的AIM拓?fù)淅碚揫41],化學(xué)鍵可以用電子密度r(r)和其相應(yīng)的Laplacian?2r(r)進(jìn)行描述。鍵關(guān)鍵點(diǎn)(BCP)的r(r)和?2r(r)反映鍵的性質(zhì)。?2r(r) > 0說(shuō)明鍵以離子性為主,?2r(r) < 0表明鍵以共價(jià)鍵為主。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中氫鍵的拓?fù)湫再|(zhì)列入表4中。根據(jù)形成氫鍵的拓?fù)湫再|(zhì)標(biāo)準(zhǔn)rBCP= 0.002~0.035 a.u.,?2BCP= 0.024~0.139 a.u.[42],[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中各有二個(gè)氫鍵。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中F2×××H2的rBCP和?2BCP較大,這和H2的高正電性及短的氫鍵鍵長(zhǎng)是一致的。形成氫鍵的電子受-授相互作用(2)如表5所示。(2)反映出電子授-受軌道相互作用的強(qiáng)度,(2)越大,相互作用程度越大。[PMIM-Br]+[PF6]-和[PMIM]+[PF6]-中LP(F2)?s*(C2-H2)的(2)較大,說(shuō)明H2形成的氫鍵最強(qiáng)。
表4 [PMIM-Br]+[PF6]-和[PMIM]+[PF6]-優(yōu)化結(jié)構(gòu)中陰陽(yáng)離子相互作用的拓?fù)湫再|(zhì)
表5 [PMIM]+[PF6]- and [PMIM-Br]+[PF6]-中氫鍵的授-受相互作用及二級(jí)微擾穩(wěn)定化能E(2) (kcal/mol)
采用密度泛函理論方法考察了4,5-二溴-1-丙基-3-甲基咪唑和1-丙基-3-甲基咪唑與[PF6]-的相互作用。研究結(jié)果表明,陰陽(yáng)離子之間的作用取決于電子效應(yīng)和空間效應(yīng)。NBO和AIM分析表明,兩種離子液體的陰陽(yáng)離子之間相互作用主要是氫鍵作用。但由于Br取代咪唑環(huán)的4,5位,導(dǎo)致兩種離子液體的前線軌道組成發(fā)生了變化。陰陽(yáng)離子之間的相互作用能基本相同。
[1] Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications [J]. Appl. Catal. A: Gen., 2010, 373 (1–2):1-56.
[2] Carper W R, Wahlbeck P G, Antony J H, et al.13C NMR relaxation studyof the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [J]. Anal. Bioanal. Chem., 2004, 378 :1548-1554.
[3] Del Pópolo M G, Lynden-Bell R M, Kohanoff J. Ab initio molecular dynamics simulation of a room temperature ionic liquid [J]. J. Phys. Chem., 2005, 109 (12):5895-5902.
[4] Won J, Kim D B, Kang Y S, et al. An ab initio study of ionic liquid silver complexes as carriers in facilitated olefin transport membranes [J]. J. Membrane Sci., 2005, 260 (1–2): 37-44.
[5] Pakiari A H, Siahrostami S, Ziegler T, An insight into microscopic properties of aprotic ionic liquids: A DFT study [J]. J. Mol. Struct.: Theochem, 2010, 955 (1–3): 47-52.
[6] Xiao D, Hines Jr. L G, Holtz M W, et al. Effect of cation symmetry on the low-frequency spectra of imidazolium ionic liquids: OKE and Raman spectroscopic measurements and DFT calculations [J]. Chem. Phys. Lett., 2010, 497 (1–3): 37-42.
[7] Danten Y, Caba?o M I, Besnard M. Interaction of water diluted in 1-butyl-3-methyl imidazolium ionic liquids by vibrational spectroscopy modeling [J]. J. Mol. Liquids, 2010, 153 (1): 57-66.
[8] Ong S P, Ceder G.Investigation of the effect of functional group substitutions on the gas-phase electron affinities and ionization energies of room-temperature ionic liquids ions using density functional theory [J]. Electrochimica Acta, 2010, 55 (11): 3804-3811.
[9] Kunsagi-Mate S, Lemli B, Nagy G, et al. Conformational change of the cation-anion pair of an ionic liquid related to its low-temperature solid-state phase transitions [J]. J. Phys. Chem. B, 2004, 108 (26): 9246-9250.
[10] Dhumal N R, Damodaran K. Molecular interactions and normal vibrationsof Fe–bis (trifluoromethan-esulfonyl) imide and 1-ethyl-3-methylimidazolium-Fe-bis (trifluoro methane sulfonyl)imide ionic liquids: A density functional study [J]. J. Mol. Struct.: Theochem, 2009, 906 (1): 78-82.
[11] Krischok S, Eremtchenko M, Himmerlich M, et al. Temperature-dependent electronic and vibrational structure of the 1-ethyl-3-methylimidazolium bis(trifluoro methyl sulfonyl) amide room-temperature ionic liquid surface: A study with XPS, UPS, MIES, and HREELS [J]. J. Phys. Chem. B,2007, 111 (18): 4801-4806.
[12] Hao Y, Peng J, Hu S, et al. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations [J]. Thermochimica Acta, 2010, 501 (1–2): 78-83.
[13] Santiago R S, Santos G R, Aznar M. Uniquac correlation of liquid-liquid equilibrium in systems involving ionic liquids: The DFT–PCM approach [J]. Fluid Phase Equilibria, 2009, 278 (1-2): 54-61.
[14] Zahn S, Kirchner B. Validation of dispersion-corrected density functional theory approaches for ionic liquid systems [J].J. Phys. Chem., 2008, 112 (36): 8430-8435.
[15] Pakiari A H, Siahrostami S, Ziegler T, An insight into microscopic properties of aprotic ionic liquids: A DFT study [J]. J. Mol. Struct.: Theochem, 2010, 955 (1–3): 47-52.
[16] Heimer N E, Del Sesto R E, Meng Z, et al. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids [J]. J. Mol. Liquids, 2006, 124 (1–3): 84-95.
[17] Guo J, Zhang D, Duan C, et al. Probing anion–cellulose interactions in imidazolium- based room temperature ionic liquids: A density functional study [J]. Carbohydrate Research, 2010, 345 (15): 2201-2205.
[18] Song Z, Wang H, Xing L. Density functional theory study of the ionic liquid [emim]OH and complexes [emim]OH(H2O)= 12[J]. J. Solution Chem., 2009, 38 (9): 1139-1154.
[19] Liu X, Song Z, Wang H. Density functional theory study on the –SO3H functionalized acidic ionic liquids [J]. Struct. Chem., 2009, 20 (3): 509-515.
[20] Zhang Y, Chen X, Wang H, et al. DFT study on the structure and cation-anion interaction of amino acid ionic liquid of [C3mim]+[Glu]-[J]. J. Mol. Struct.: Theochem, 2010, 952 (1–3): 16-24.
[21] Sun H, Zhang D, Liu C, et al. Geometrical and electronic structures of the dication and ion pair in the geminal dicationic ionic liquid 1,3-bis[3-methylimidazolium-yl] propane bromide [J]. J. Mol. Struct.: Theochem, 2009, 900 (1–3): 37-43.
[22] Dhumal N R. Molecular interactions in 1,3-dimethylimi- dazolium-bis (trifluromethane sulfonyl) imide ionic liquid [J].Chem. Phys., 2007, 342 (1): 245-252.
[23] Kroon M C, Buijs W, Peters C J, et al. Quantum chemical aided prediction of the thermal decompositionmechanisms and temperatures of ionic liquids [J]. Thermochimica Acta, 2007, 465 (1–2): 40-47.
[24] Kiefer J, Pye C C. Structure of the room-temperature ionic liquid 1-hexyl-3-methyl imidazolium hydrogen sulfate: Conformational isomerism [J]. J. Phys. Chem. A,2010, 114 (24): 6713-6720.
[25] Gong L, Guo W, . Xiong J, et al. Structures and stability of ionic liquid model with imidazole and hydrogen fluorides chains: Density functional theory study [J]. Chem. Phys. Lett., 2006, 425 (1–3): 167-178.
[26] Shukla M, Srivastava N, Saha S. Theoretical and spectroscopic studies of 1-butyl-3-methyl imidazolium iodide room temperature ionic liquid: Its differences with chloride and bromide derivatives [J]. J. Mol. Struct., 2010, 975 (1–3): 349-356.
[27] Dymek C J, Stewart J J P. Calculation of hydrogen-bonding interactions between ions in room-temperature molten salts [J]. Inorg. Chem., 1989, 28 (8): 1472-1476.
[28] Bagno A, D'Amico F, Saielli G. Computer simulation of diffusion coefficients of the room-temperature ionic liquid [bmim][BF4]: Problems with classical simulation techniques [J]. J. Mol. Liquids, 2007, 131/132 (1–3): 17-23.
[29] Shah J K, Maginn E J. Molecular dynamics investigation of biomimetic ionic liquids [J]. Fluid Phase Equilibria, 2010, 294 (1–2): 197-205.
[30] Prado C E R, Freitas L C G. Molecular dynamics simulation of the room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [J]. J. Mol. Struct.: Theochem, 2007, 847 (1–3): 93-100.
[31] Morrow T I, Maginn E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J]. J. Phys. Chem. B, 2002,106 (49): 12807-12813.
[32] Shah J K, Maginn E J. A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate: liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2[J]. Fluid Phase Equilibria, 2004, 222/223 (1): 195-203.
[33] Dommert F, Schmidt J, Krekeler C, et al. Towards multiscale modeling of ionic liquids: From electronic structure to bulk properties [J]. J. Mol. Liquids, 2010, 152 (1–3): 2-8.
[34] Vega L F, Vilaseca O, Llovell F, et al. Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives [J]. Fluid Phase Equilibria, 2010, 294 (1–2): 15-30.
[35] Mukai T, Nishikawa K. Syntheses and crystal structures of two ionic liquids with halogen-bonding groups: 4,5- dibromo-and 4,5-diiodo-1-butyl-3-methylimidazolium tri?uoro methanesulfonates[J].Solid State Sci.,2010,12 (5): 783-788.
[36] Mukai T, Nishikawa K. Halogen bonding and hydrogen bonding in 4,5-diiodo-3-methyl-1-propylimidazolium hexafluorophosphate [J]. X-ray Structure Analysis Online, 2010, 26: 39-40.
[37] Mukai T, Nishikawa K. Zigzag sheet crystal packing in a halogen-bonding imidazolium salt: 1-butyl-4,5-dibromo- 3-methylimidazolium iodide [J]. X-ray Structure Analysis Online, 2010, 26: 31-32.
[38] van Santen R A, Kramer G J. Reactivity theory of zeolitic Br?nsted acidic sites [J]. Chem. Rev., 1995, 95 (3): 637-660.
[39] Nishi T,Iwahashi T, Yamane H, et al. Electronic structures of ionic liquids [Cnmim]+BF4-and [Cnmim]+PF6-studied by ultraviolet photoemission, inverse photoemission, and near-edge X-ray absorption fine structure spectroscopies [J]. Chem. Phys. Lett., 2008, 455 (4–6): 213-217.
[40] Bondi A. van der Waals volumes and radii [J]. J. Phys. Chem., 1964, 68 (3): 441-451.
[41] Bader R F W. A quantum theory of molecular structure and its applications [J]. Chem. Rev., 1991, 91 (5): 893-928.
[42] Lipkowski P, Grabowski S J, Robinson T L, et al. Properties of the C?H···H dihydrogen bond: An ab initio and topological analysis [J]. J. Phys. Chem. A, 2004, 108 (49): 10865-10872.
DENSITY FUNCTIONAL study on 4,5-dibromo-1-propyl-3-methylimidazolYL and 1-propyl-3-methylimidazolYL hexafluorophosphate LIQUID
SONG Cai-cai1,LIN Jin1,QU Zhan-qing2,*LV Ren-qing3
(1. College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266555, China;2 .College of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266555, China;3. College of Science, China University of Petroleum (East China), Qingdao, Shandong 266555, China)
The interaction of 4,5-dibromo-1-propyl-3-methylimidazole and 1-propyl-3-methylimidazole with [PF6]-was comparatively studied. The calculated results suggested that H2 and the propyl side-chain hydrogen atoms interact with fluorine atoms of [PF6]-to form hydrogen bondings. The lowest unoccupied molecular orbital (LUMO) of [PMIM]+[PF6]-is theptype orbital distributed on the imidazole ring, but that of [PMIM-Br]+[PF6]-is thestype orbital composed of ring and bromine atoms.
density functional theory; halogen substituted imidazole ring-based ionic liquid; hydrogen bonding
1674-8085(2012)03-0040-09
O641
A
10.3969/j.issn.1674-8085.2012.03.009
2012-01-24;
2012-03-12
國(guó)家重大專項(xiàng)大型油氣田及煤層氣開(kāi)發(fā)項(xiàng)目(2011ZX05051)
宋彩彩(1989-),女,山東萊陽(yáng)人,中國(guó)石油大學(xué)(華東)化學(xué)工程學(xué)院本科生(E-mail:393691299@qq.com);
林 進(jìn)(1990-),男,江西井岡山人,中國(guó)石油大學(xué)(華東)化學(xué)工程學(xué)院本科生(E-mail:1311870044@qq.com)’
曲占慶(1963-),男,山東萊州人,教授,博士生導(dǎo)師,主要從事能源開(kāi)發(fā)與應(yīng)用研究(E-mail:quzhq@upc.edu.cn);
*呂仁慶(1969-),男,山東萊陽(yáng)人,副教授,博士,主要從事離子液體及脫硫脫氮的理論研究(E-mail:lvrenqing@upc.edu.cn).
井岡山大學(xué)學(xué)報(bào)(自然科學(xué)版)2012年3期