周 婷,張仕光
?
廣義分裂下的預(yù)處理Gauss-Seidel迭代法收斂性的討論
*周 婷,張仕光
(衡水學(xué)院數(shù)學(xué)與計算機學(xué)院,河北,衡水 053000)
運用Gauss-Seidel迭代法解線性方程組,討論了在一類預(yù)條件矩陣下的Gauss-Seidel迭代法的收斂性。在更廣義的分裂條件下,對預(yù)條件Gauss-Seidel迭代法和相應(yīng)的Gauss-Seidel迭代法的收斂性進(jìn)行了比較,得到了比較定理。最后給出數(shù)值例子驗證了所得到的主要結(jié)論。
預(yù)條件;-矩陣;-矩陣;Gauss-Seidel迭代法
考慮線性方程組
, (1)
引理 1[7]設(shè)是一個-矩陣,那么下面幾個命題等價:
(1)是非奇異-矩陣;
(3)的所有主子式都是正的.
則預(yù)條件Gauss-Seidel迭代法的迭代矩陣為
.
因為是一個非奇異-矩陣,
考慮滿足定理1條件的方程組(1)的系數(shù)矩陣,
令
[1] Kohno T, Kotakemori H, Niki H. Improving the Modified Gauss-Seidel Method for-matrices [J]. Linear algebra and its applications, 1997, 267: 113–123.
[2] Wu Mei jun, Wang Li, Song Yong zhong. Preconditioned AOR iterative method for linear systems [J]. Applied Numerical Mathematics, 2007, 57(5-7): 672-685.
[3] 劉慶兵,陳果良.預(yù)條件AOR和2PPJ迭代法收斂性的注記[J].華東師范大學(xué)學(xué)報:自然科學(xué)版,2009 (4):26-34.
[4] Li Wen, Sun Wei wei. Modified Gauss Seidel type methods and Jacobi type methods for Z-matrices [J]. Linear Algebra and its Applications, 2000, 317(1-3): 227-240.
[5] 周婷,郭文彬.-矩陣及其比較矩陣的預(yù)條件Gauss-Seidel法的收斂性[J]. 煙臺大學(xué)學(xué)報:自然科學(xué)與工程版,2011,24(4):260-263.
[6] Varga R S. Matrix Iterative Analysis [M].Berlin: Springer, 2000.
[7] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences [M]. SIAM, Philadelphia, PA, 1994.
[8] Frommer A, Szyld D. B.-splitting and two-stage iterative methods[J]. Numer. Math.,1992, 63(1): 345-356.
[9] Elsner L. Comparisons of weak regular splittings and multisplitting methods[J].Numer.Math,1989,56: 283-289.
[10] Li wen. Comparison results for solving precondtioned linear systems [J]. J. Comput. Appl. Math, 2005, 176(2): 319-329.
The convergence disscussion of the preconditioned Gauss-Seidel iterative method with a more general splitting
*ZHOU Ting, ZHANG Shi-guang
(College of Mathematics and Computer Science Hengshui University, Hengshui, Hebei 053000, China)
Using the Gauss-Seidel iterative method for the solution of the linear equations, the convergence of the Gauss-Seidel iterative method is discussed under a type of preconditioned matrix. With a more general splitting, we compare the convergence of the preconditioned Gauss-Seidel iterative method and the corresponding Gauss-Seidel iterative method. Furthermore, we get some comparison theorems. Finally, a numerical example is given to illustrate the validity of the conclusions.
precondition;-matrix;-matrix; Gauss-Seidel iterative method
1674-8085(2012)03-0013-03
O241.6
A
10.3969/j.issn.1674-8085.2012.03.003
2012-03-06;
2012-04-11
河北省高等學(xué)??茖W(xué)研究計劃項目(Z2010188);衡水學(xué)院2011年科學(xué)研究項目(2011026)
*周 婷(1976-),女,山東臨朐人,碩士,主要從事數(shù)值計算方法及其應(yīng)用研究(E-mail: zhouting7606@163.com);
張仕光(1975-),男,山東平度人,講師,碩士,主要從事廣義逆理論及應(yīng)用研究(E-mail: shiguang08@yahoo.com.cn).
井岡山大學(xué)學(xué)報(自然科學(xué)版)2012年3期