陳磊 鄧子軍 綜述 李玉泉 楊向群 審校
心肌再生的種子細(xì)胞的研究進(jìn)展
陳磊 鄧子軍 綜述 李玉泉 楊向群 審校
以往認(rèn)為心肌再生極為困難,近年來隨著種子細(xì)胞的研究深入,心肌再生已成為可能,細(xì)胞移植已成為心肌病損替代治療的新興方向。本文就心肌再生研究領(lǐng)域中用于移植的種子細(xì)胞的研究進(jìn)展進(jìn)行綜述。
心肌 再生醫(yī)學(xué) 種子細(xì)胞
急、慢性缺血都可導(dǎo)致心肌細(xì)胞壞死、凋亡,并形成瘢痕,最后導(dǎo)致心臟的電生理活動和泵血功能障礙。傳統(tǒng)觀點認(rèn)為,心肌是終末細(xì)胞,缺乏再生能力,然而心臟干細(xì)胞的發(fā)現(xiàn)表明心肌是可以再生的。但是,由于心肌再生能力極弱,體內(nèi)心臟干細(xì)胞的數(shù)量和再生速度遠(yuǎn)不能滿足缺血后心功能恢復(fù)的需求。研究表明,基于細(xì)胞移植的再生醫(yī)學(xué)方法可使患者心肌得到再生。本文就心肌再生領(lǐng)域中用于移植的種子細(xì)胞的研究進(jìn)展進(jìn)行綜述。
骨骼肌成肌細(xì)胞(Skeletal myoblasts,SM)是最早用于心肌修復(fù)的種子細(xì)胞[1],由于來源廣泛、體外增殖能力強、在心梗條件下生存能力很強等優(yōu)勢,SM的應(yīng)用很快進(jìn)入了臨床試驗階段。然而,它在體內(nèi)并不能轉(zhuǎn)化為心肌細(xì)胞,與心肌細(xì)胞也不能形成縫隙連接[2],導(dǎo)致細(xì)胞移植后存在同步化障礙和心律失常的隱患。Menasché等[3]報道,移植SM后,患者室性心律失常的發(fā)生率明顯升高,且未發(fā)現(xiàn)心功能改善。美國FDA已禁止將此作為心肌修復(fù)的治療手段。但Roell等[4]發(fā)現(xiàn),通過使SM過表達(dá)縫隙連接蛋白43,可增強它與心肌的同步能力,預(yù)示著由SM移植造成的心律失常將有望得到預(yù)防。目前,SM常用于基因修飾的載體細(xì)胞,最近有研究將小鼠SM重編程為iPS,用于修復(fù)小鼠心肌梗死獲得成功[5]。
人胚胎干細(xì)胞(Embryonic stem cells,ES)已經(jīng)成功地被誘導(dǎo)為跳動的心肌細(xì)胞,通過使用粒細(xì)胞集落刺激因子[6]、維生素C、p38促分裂原活化蛋白激酶抑制劑[7]等,均能顯著提高它向心肌細(xì)胞的轉(zhuǎn)化率。此外,移植的心肌細(xì)胞不但可以長期存活并進(jìn)一步分化成熟,還能與宿主心肌組織相融合,提高心肌損害動物模型的泵血功能[8]。但ES移植要走向臨床,還面臨著許多難以克服的缺陷。首先,它的應(yīng)用存在倫理方面的問題;其次,對誘導(dǎo)后的心肌細(xì)胞進(jìn)行分離純化和擴增仍然難以完善地解決,盡管已有研究者利用基因抗性、硅石膠態(tài)懸浮液梯度離心等方法進(jìn)行篩選,但還沒有發(fā)現(xiàn)一種較為成熟和安全的方法適用于臨床;再次,分化不成熟或者向其他方向分化的ES在移植后的致瘤性問題目前仍無法解決。最近,用輻射過的ES細(xì)胞注入小鼠或恒河猴的心梗部位,使其心功能得到改善,心梗面積也顯著減小。該結(jié)果表明,ES不需要通過轉(zhuǎn)化為心肌細(xì)胞也能修復(fù)心肌梗死[9]。
Takahashi等[10]利用逆轉(zhuǎn)錄病毒將4個轉(zhuǎn)錄因子c-Myc、Oct3/4、SOX2、Klf4導(dǎo)入人成纖維細(xì)胞,獲得了誘導(dǎo)性多能干細(xì)胞(Induced pluripotent stem cells,iPS),并成功利用激活素A(Activin A)和骨形成蛋白 4(Bone morphogenetic protein-4,BMP4),在體外將它誘導(dǎo)為跳動的心肌細(xì)胞。隨后相關(guān)研究進(jìn)一步證實了它向心肌分化的能力。Nelson等[11]報道,將iPS直接移植到心肌內(nèi),可以引起心肌細(xì)胞的原位再生,并可改善心梗后的心功能。Fujiwara等[12]運用環(huán)孢素A提高了iPS向心肌分化的效率。這些研究成果表明,iPS極有可能成為理想的心肌再生種子細(xì)胞。但是,由于誘導(dǎo)過程需要轉(zhuǎn)基因,可能存在腫瘤源性基因融合的危險。盡管有報道無需轉(zhuǎn)導(dǎo)c-Myc基因也可以獲得iPS,并可以培育出有穩(wěn)定心肌分化特性的細(xì)胞[13],但其致瘤性仍不能完全克服。因此,在臨床應(yīng)用之前,相關(guān)的安全性研究和進(jìn)一步的動物實驗是目前的研究重點。
1998年,Kajstura等[14]首先在心臟中發(fā)現(xiàn)了一類具有自我更新、表達(dá)心肌表面標(biāo)志的細(xì)胞,并推斷心臟中存在心臟干細(xì)胞(Cardiac stem cells,CSC);后續(xù)研究發(fā)現(xiàn),心梗后 CSC可發(fā)生歸巢、分化[15]。這些結(jié)果改變了人們以往對心臟自我穩(wěn)態(tài)維持及損傷修復(fù)的認(rèn)識,同時也為心肌再生的研究提供了一條新的思路。一般認(rèn)為,CSC主要表達(dá)Islet-1、Sca-1、ckit。以干(祖)細(xì)胞不同抗原為基礎(chǔ),可將CSC分為c-kit+細(xì)胞、側(cè)群 (Side population,SP)細(xì)胞和成心肌細(xì)胞(Cardioblast)。
研究還證明,除了在體內(nèi)能夠自我更新、橫向分化外,CSC在條件培養(yǎng)基中[16]以及和心肌細(xì)胞共培養(yǎng)的條件下也能分化為自主搏動的心肌樣細(xì)胞,造血生長因子和胰島素樣生長因子可以刺激其增殖[17];其次,是c-kit基因啟動了CSC的分化[18],在心梗發(fā)生時,通過激活p38-MAPK途徑可使CSC從正常心肌組織向梗死部位遷移[19];再次,他汀類降脂藥能激活心臟原位的CSC增殖、分化[20],從而能有效地減少心肌死亡。
盡管通過CSC增殖分化可使心肌再生,但在體內(nèi)并不足以替代病損心肌的功能。因此,Lee等[21]成功地從心肌穿刺標(biāo)本中分離擴增CSC,通過移植擴增的細(xì)胞來改善心功能。由此可見,CSC具有廣闊的臨床應(yīng)用前景,目前已進(jìn)行了Ⅰ期臨床試驗[22],相關(guān)的基礎(chǔ)和臨床研究正在進(jìn)行。隨著對CSC認(rèn)識的深入,以細(xì)胞移植為基礎(chǔ),結(jié)合心臟輔助技術(shù)的治療策略,有可能成為心肌再生領(lǐng)域中一個革命性的里程碑。
Nagaya等[23]將骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchymal stemcells,BMSC)移植到大鼠心梗區(qū)域后發(fā)現(xiàn),移植的細(xì)胞分化為心肌細(xì)胞、內(nèi)皮細(xì)胞和平滑肌細(xì)胞,并分泌血管源性細(xì)胞生長因子,使得梗死面積縮小,心功能顯著改善。Gnecchi等[24]發(fā)現(xiàn),在移植72 h內(nèi),細(xì)胞尚未完全分化為心肌時,即可觀察到心功能和移植部位的血供明顯改善,因此推測早期的心功能改善不能全部歸結(jié)于移植細(xì)胞的心肌再生作用,而應(yīng)考慮是細(xì)胞移植的其他效應(yīng)所致;DeSantiago等[25]證實,BMSC通過旁分泌作用抑制心肌細(xì)胞死亡,并加強其收縮力;此外,這些信號分子還可增強CSC在缺血缺氧條件下的應(yīng)激能力,刺激其增殖、分化,并介導(dǎo)其向病損部位遷移[26]。
BMSC不表達(dá)MHCⅡ類分子,免疫原性低,可通過與T細(xì)胞密切接觸而抑制其功能[27]。因此,BMSC的同種異體移植并不需要應(yīng)用免疫抑制劑。另外,Du等[28]發(fā)現(xiàn),BMSC還具有免疫調(diào)節(jié)作用,通過抑制NF-kappaB通路,導(dǎo)致TNF-α和IL-6分泌減少、IL-10分泌增多,從而減輕炎癥反應(yīng)對殘存心肌的損傷。
盡管上述研究成果說明BMSC適合作為心肌再生的種子細(xì)胞,但是臨床應(yīng)用還存在著一些亟待解決的問題。首先,由于缺乏特異性表面標(biāo)志,BMSC的鑒定將是今后研究的重點之一;其次,細(xì)胞誘導(dǎo)和分化機制有待進(jìn)一步闡明,為臨床應(yīng)用提供可靠的理論基礎(chǔ);另外,細(xì)胞誘導(dǎo)及純化方法需要更深層次的探索,以使其具備臨床應(yīng)用所必須的安全性和可靠性。
2003年,Rangappa等[29]用5-氮雜胞苷成功誘導(dǎo)白色脂肪的脂肪干細(xì)胞(Adipose-derived stem cell,ADSC)向心肌分化;次年,Planat-Benard等[30]首次證實了白色脂肪的ADSC可以自發(fā)地分化為心肌細(xì)胞,Gwak等[31]利用轉(zhuǎn)化生長因子β1也成功地將ADSC誘導(dǎo)為心肌。隨后,Choi等[32]構(gòu)建了一個血管化的、包含hADSC和大鼠心肌細(xì)胞的復(fù)合物,發(fā)現(xiàn)ADSC在體內(nèi)分化為心肌細(xì)胞,并與一同植入的大鼠心肌細(xì)胞融合,并參與了新生血管的形成。Metzele等[33]將hADSC與新生鼠的心肌細(xì)胞進(jìn)行共培養(yǎng),發(fā)現(xiàn)在細(xì)胞融合后,ADSC不僅能自我更新,還可以和心肌一樣呈節(jié)律性收縮、產(chǎn)生動作電位,由此推論細(xì)胞融合可能是心臟組織中心肌細(xì)胞自我更新的機制之一。Bagno等[34]向冠脈結(jié)扎的大鼠心室壁注射ADSC,發(fā)現(xiàn)心功能較對照組顯著提高。Cai等[35]用阿托伐他丁在心梗早期進(jìn)行預(yù)處理后發(fā)現(xiàn),ADSC的移植和分化效率均明顯提高。
將成熟脂肪細(xì)胞進(jìn)行“天花板”培養(yǎng),部分貼壁的細(xì)胞吐出脂滴,最終形成成纖維細(xì)胞樣的去分化脂肪(Dedifferentiated fat,DFAT)細(xì)胞[36],并具備多向分化潛能[37]。 Jumabay 等[38]將DFAT細(xì)胞移植到大鼠的心梗區(qū)域,8周后在移植的細(xì)胞中檢測到心肌標(biāo)志物,梗死區(qū)周圍毛細(xì)血管密度增高。在隨后的體外培養(yǎng)中,他們又意外發(fā)現(xiàn)小鼠白色脂肪的DFAT細(xì)胞能夠自發(fā)地分化成節(jié)律跳動以及靜止的心肌細(xì)胞,它們表達(dá)心肌表面標(biāo)志,并能穩(wěn)定增殖,具有4期自動除極化,對心血管活性藥物有明顯反應(yīng)[39]。DFAT細(xì)胞來源廣泛,自體可取,分化增殖能力幾乎不受供體年齡影響,與ADSC相比,DFAT細(xì)胞來源于純度達(dá)99.9%的成熟脂肪細(xì)胞,更加均一,使得DFAT細(xì)胞非常適合應(yīng)用于細(xì)胞移植。然而,由DFAT細(xì)胞分化而來的心肌細(xì)胞僅在表面標(biāo)志物、電生理特征方面進(jìn)行了初步研究,其去分化和再分化的機制尚未闡明,對DFAT細(xì)胞進(jìn)行更為深入的研究是十分必要的。
Yamada等[40]首次發(fā)現(xiàn)在棕色脂肪組織中存在心肌前體細(xì)胞(Brown adipose tissue-derived cardiac progenitor cells,BATDCP)。從分離方法上看,BATDCP是對ADSC進(jìn)一步的篩選、分離后所得到的細(xì)胞,但是由于棕色脂肪在成年個體中含量及活性有限,不符合Gimble等[41]提出的適用于再生醫(yī)學(xué)種子細(xì)胞的理想標(biāo)準(zhǔn)。Liu等[42]改進(jìn)了Yamada的分離方法,提高了BATDCP的產(chǎn)率;另外,有研究證明,ADSC和MSC一樣具有免疫調(diào)節(jié)作用[43],不引起細(xì)胞毒性免疫反應(yīng),并可抑制炎癥,已用于移植物抗宿主病的治療[44],使得利用棕色脂肪中的心肌前體細(xì)胞進(jìn)行自體或異體移植成為可能。
Koyanagi等[45]報道,將從外周血分離出的人內(nèi)皮祖細(xì)胞與大鼠心肌細(xì)胞共培養(yǎng),可使其分化為心肌細(xì)胞,用Wnt5a激活PKCδ可以增強其心肌標(biāo)志的表達(dá)[46]。有研究報道,內(nèi)皮祖細(xì)胞移植后,通過新生血管形成和新生心肌形成兩種機制,可修復(fù)梗死心肌[47]。Lin等[48]認(rèn)為,從人月經(jīng)血和子宮內(nèi)膜中可分離出表達(dá) Oct-4、SSEA-4、Nanog、c-kit的間充質(zhì)干細(xì)胞,它們周期性自我更新、生成血管并分泌多種生長因子,可分化為自主搏動的心肌細(xì)胞,移植后未發(fā)現(xiàn)腫瘤形成及排斥反應(yīng)的發(fā)生。Ge等[49]利用人羊膜間充質(zhì)干細(xì)胞重編程的iPS成功誘導(dǎo)為心肌細(xì)胞。此外,人生精細(xì)胞在體外可以轉(zhuǎn)變成ES樣、具有三系分化潛能的多能干細(xì)胞[50]。因其具有良好的可塑性,無免疫原性,不存在倫理學(xué)問題等諸多優(yōu)點,未來的應(yīng)用前景十分光明,但致瘤性的相關(guān)研究還有待進(jìn)一步深入和完善。目前,這些研究尚處于探索階段,尚未用于心臟疾病的治療,但是為心肌再生提示了一條可能的途徑。
隨著研究的深入,心肌再生的干細(xì)胞治療在再生醫(yī)學(xué)領(lǐng)域已有長足的發(fā)展,它們未來的臨床應(yīng)用也具備無限的可能。但是,對細(xì)胞的誘導(dǎo)方法還必須進(jìn)一步研究和改進(jìn),以提高心肌細(xì)胞的產(chǎn)率,降低培養(yǎng)成本;對誘導(dǎo)和分化機制必須進(jìn)行更深層次的研究和探討,從而保證細(xì)胞在臨床上應(yīng)用的安全性和可靠性;對理想的新型種子細(xì)胞的探尋仍需繼續(xù);制定細(xì)胞治療相關(guān)標(biāo)準(zhǔn)、進(jìn)行規(guī)范化的臨床前研究以及生物安全性研究,同樣是今后的研究重點。盡管面臨很多問題和挑戰(zhàn),但心肌再生將成為未來心肌疾病治療的必然趨勢。
[1]Chiu RC,Zibaitis A,Kao RL.Cellular cardiomyoplasty:myocardial regeneration with satellite cell implantation[J].Ann Thorac Surg,1995,60(1):12-18.
[2]Reinecke H,Poppa V,Murry CE.Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting[J].J Mol Cell Cardiol,2002,34(2):241-249.
[3]Menasché P,Alfieri O,Janssens S,et al.The Myoblast autologous grafting in ischemic cardiomyopathy(MAGIC)trial:first randomized placebo-controlled study of myoblast transplantation[J].Circulation,2008,117(9):1189-1200.
[4]Roell W,Lewalter T,Sasse P,et al.Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia[J].Nature,2007,450(7171):819-824.
[5]Ahmed RP,Haider HK,Buccini S,et al.Reprogramming of skeletal myoblasts for induction of pluripotency for tumor-free cardiomyogenesis in the infarcted heart[J].Circ Res,2011,109(1):60-70.
[6]Shimoji K,Yuasa S,Onizuka T,et al.G-CSF Promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs[J].Cell Stem Cell,2010,6(3):227-237.
[7]Graichen R,Xu X,Braam SR,et al.Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK[J].Differentiation,2008,76(4):357-370.
[8]van Laake LW,van Donselaar EG,Monshouwer-Kloots J,et al.Extracellular matrix formation after transplantation of human embryonic stem cellderivedcardiomyocytes[J].Cell Mol Life Sci,2010,67(2):277-290.
[9]Burt RK,Chen YH,Verda L,et al.Mitotically inactivated embryonic stem cells can be utilized as an in vivo feeder layer to nurse damaged myocardium following acute myocardial infarction:a pre-clinical study[J].Circ Res,2012,Epub ahead of print.
[10]Takahashi K,Tanabe K,Ohnuki M,et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell,2007,131(5):861-872.
[11]Nelson TJ,Martinez-Fernandez A,YamadaS,et al.Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells[J].Circulation,2009,120(5):408-416.
[12]Fujiwara M,Yan P,Otsuji TG,et al.Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with Cyclosporin-A[J].PLoS One,2011,6(2):e16734.
[13]Martinez-Fernandez A,Nelson TJ,Ikeda Y,et al.c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells[J].J Cardiovasc Transl Res,2010,3(1):13-23.
[14]Kajstura J,Leri A,Finato N,et al.Myocyte proliferation in endstage cardiac failure in humans[J].Proc Natl Acad Sci U S A,1998,95(15):8801-8805.
[15]Oh H,Bradfute SB,Gallardo TD,et al.Cardiacprogenitor cells from adult myocardium:homing,differentiation,and fusion after infarction[J].Proc Natl Acad Sci U S A,2003,100:12313-12318.
[16]Tallini YN,Greene KS,Craven M,et al.c-kit expression identifies cardiovascular precursors in the neonatal heart[J].Proc Natl Acad Sci U S A,2009,106(6):1808-1813.
[17]Torella D,Ellison GM,Karakikes I,et al.Growth-factor-mediated cardiac stem cell activation in myocardial regeneration[J].Nat Clin Pract Cardiovasc Med,2007,4 Suppl 1:S46-51.
[18]Li M,Naqvi N,Yahiro E,et al.c-kit is required for cardiomyocyte terminal differentiation[J].Cire Res,2008,102(6):677-685.
[19]Kuang D,Zhao X,Xiao GX,et al.Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK[J].Basic Res Cardiol,2008,103(3):265-273.
[20]Torella D,Indolfi C,Goldspink DF,et al.Cardiac stem cell-based myocardial regeneration:towards a translational approach[J].Cardiovasc Hematol Agents Med Chem,2008,6(1):53-59.
[21]Lee ST,White AJ,Matsushita S,et al.Intra myocardial injection of autologous cardiospheresorcardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction[J].J Am Coll Cardiol,2011,57(4):455-465.
[22]Bolli R,Chugh AR,D'Amario D,et al.Cardiac stem cells in patients with ischaemic cardiomyopathy(SCIPIO):initial results of a randomised phase 1 trial[J].Lancet,2011,378(9806):1847-1857.
[23]Nagaya N,Kangawa K,Itoh T,et al.Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy[J].Circulation,2005,112(8):1128-1135.
[24]Gnecchi M,He H,Noiseux N,et al.Evidence supporting paracrine hypothesis for Akt-modified mesenehymal stem cell-mediated cardiac protection and functional improvement[J].FASEB J,2006,20(6):661-669.
[25]DeSantiago J,Bare DJ,Semenov I,et al.Excitation-contraction coupling in ventricular myocytes is enhanced by paracrine signaling from mesenchymal stem cells[J].J Mol Cell Cardiol,2012,52(6):1249-1256.
[26]Nakanishi C,Yamagishi M,Yamahara K,et al.Activation of cardiac progenitor cells through paracrine effects of mesenehymal stem cells[J].Biochem Biophys Res Commun,2008,374(1):11-16.
[27]Imanishi Y,Saito A,Komoda H,et al.Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats[J].J Mol Cell Cardiol.2008,44(4):662-671.
[28]Du YY,Zhou SH,Zhou T,et al.Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction[J].Cstotherapy,2008,10(5):469-478.
[29]Rangappa S,Fen C,Lee EH,et al.Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes[J].Ann Thorac Surg,2003,75(3):775-779.
[30]Planat-Bénard V,Menard C,André M,et al.Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells[J].Circ Res,2004,94(2):223-229.
[31]Gwak SJ,Bhang SH,Yang HS,et al.In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growthfactor-beta1[J].Cell Biochem Funct,2009,27(3):148-154.
[32]Choi YS,Matsuda K,Dusting GJ,et al.Engineering cardiac tissue in vivo from human adipose-derived stem cells[J].Biomaterials,2010,31(8):2236-2242.
[33]Metzele R,Alt C,Bai X,et al.Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes[J].FASEB J,2011,25(3):830-839.
[34]Bagno LL,Werneck-de-Castr JP,Oliveira PF,et al.Adiposederived stromal cell therapy improves cardiac?function after coronary occlusion in rats[J].Cell Transplant,2012,Epub ahead of print.
[35]Cai A,Zheng D,Dong Y,et al.Efficacy of Atorvastatin combined with adipose-derived mesenchymal stem cell transplantation on cardiac function in rats with acute myocardial infarction[J].Acta Biochim Biophys Sin(Shanghai),2011,43(11):857-866.
[36]Sugihara H,Yonemitsu N,Miyabara S,et al.Primary cultures of unilocular fat cells:Characteristics of growth in vitro and changes in differentiation properties[J].Differentiation,1986;31(1):42-49.
[37]Matsumoto T,Kano K,Kondo D,et al.Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential[J].J Cell Physiol,2008,215(1):210-222.
[38]Jumabay M,Matsumoto T,Yokoyama S,et al.Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infracted cardiac tissue in rats[J].J Mol Cell Cardiol,2009,47(5):565-575.
[39]Jumabay M,Zhang R,Yao Y,et al.Spontaneously beating cardiomyocytes derived from white mature adipocytes[J].Cardiovasc Res,2010,85(1):17-27.
[40]Yamada Y,Wang XD,Yokoyama S,et al.Cardiac progenitor cells in brown adipose tissuerepaired damaged myocardium[J].Biochem Biophys Res Commun,2006,342(2):662-670.
[41]Gimble JM,Katz AJ,Bunnel BA.Adipose-derived stem cells for regenerative medicine[J].Circ Res,2007,100(9):1249-1260.
[42]Liu Z,Wang H,Zhang Y,et al.Efficient isolation of cardiac stem cells from brown adipose[J].J Biomed Biotechno,2010,2010:104296.
[43]Niemeyer P,Kornacker M,Mehlhorn A,et al.Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro[J].Tissue Engineering,2007,13(1):111-121.
[44]Yanez R,Lamana ML,Garcia-Castro J,et al.Adipose tissuederived mesenehymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease[J].Stem Cells,2006,24(11):2582-2591.
[45]Koyanagi M,Bushoven P,IwasakiM,et al.Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells[J].Circ Res,2007,101(11):1139-1145.
[46]Koyanagi M,Iwasaki M,Haendeler J,et al.Wnt5a increases cardiac gene expressions of cultured human circulating progenitor cells via a PKC delta activation[J].PLoS One,2009,4(6):e5765.
[47]Thal MA,Krishnamurthy P,Mackie AR,et al.Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair[J].CircRes,2012,111(2):180-190.
[48]Lin J,Xiang D,Zhang JL,et al.Plasticity of human menstrual blood stem cells derived from the endometrium[J].J Zhejiang Univ Sci B,2011,12(5):372-380.
[49]Ge X,Wang IN,Toma I,et al.Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells[J].Stem Cells Dev,2012,21(15):2798-2808.
[50]Conrad S,Renninger M,Hennenlotter J,et al.Generation of pluripotent stem cells from adult human testis[J].Nature,2008,456(7220):344-349.
Seed Cells for Cardiomyocyte Regeneration
CHEN Lei,DENG Zijun,LI Yunquan,YANG Xiangqun.Department of Human Anatomy,Institute of Biomedical Engineering;Second Military Medical University,Shanghai 200433,China.
YANG Xiangqun(E-mail:yangxq@smmu.edu.cn).
Myocardium;Regenerative medicine;Seed Cells
Q813.1+1
B
1673-0364(2012)05-0288-04
10.3969/j.issn.1673-0364.2012.05.013
國家自然科學(xué)基金(31170934)。
200433 上海市 第二軍醫(yī)大學(xué)解剖學(xué)教研室,生物醫(yī)學(xué)工程研究所。
楊向群(E-mail:yangxq@smmu.edu.cn)。
【Summary】Many researches demonstrated that cell transplantation has become an alternative therapy for myocardial diseases in a new direction.Myocardial regeneration was once considered being faced with mountains of difficulties.However,recently,with the advancing study in seed cells,it becomes possible for cardiomyocyte regeneration.The seed cells used in myocardial regeneration was reviewed in this paper.
2012年8月4日;
2012年9月12日)