季軍遠(yuǎn),邢雅娟,鄭 平
(浙江大學(xué)環(huán)境工程系,浙江杭州 310058)
宏基因組技術(shù)及其在厭氧消化研究中的應(yīng)用
季軍遠(yuǎn),邢雅娟,鄭 平
(浙江大學(xué)環(huán)境工程系,浙江杭州 310058)
在介紹基因(組)富集、基因(組)DNA提取、文庫構(gòu)建及篩選等宏基因組技術(shù)的基礎(chǔ)上,論述了宏基因組技術(shù)在厭氧消化研究中應(yīng)用的重要性,認(rèn)為該技術(shù)可成為研究微生物群落多樣性的首選技術(shù)之一,有助于了解厭氧消化微生物的多樣性、生態(tài)功能和動(dòng)態(tài)變化,揭示厭氧消化微生物學(xué)機(jī)理,提高厭氧消化效能等.同時(shí)宏基因組技術(shù)為微生物資源的深層次開發(fā)利用提供了技術(shù)平臺(tái),并在工業(yè)、農(nóng)業(yè)、海洋等領(lǐng)域具有廣泛的應(yīng)用前景.
宏基因組技術(shù);文庫構(gòu)建;文庫篩選;厭氧消化;微生物群落
微生物是自然界分布最廣、種類最多、數(shù)量最大的生物類群,占生物總量的60%.其在工業(yè)、農(nóng)業(yè)、環(huán)境保護(hù)等領(lǐng)域發(fā)揮著無可替代的作用.但迄今為止,可獲得純培養(yǎng)的微生物只有0.1%~1%,極大限制了人類對(duì)微生物資源的開發(fā)利用.1998年Handelsman[1]等發(fā)起宏基因組(Metagenomes)研究,引起了科學(xué)技術(shù)界的高度關(guān)注,也標(biāo)志著人類利用微生物資源進(jìn)入了一個(gè)新的時(shí)期.本文論述并分析了宏基因組技術(shù)及其在厭氧消化研究中的應(yīng)用,力爭(zhēng)為同行從事相關(guān)研究提供借鑒.
宏基因組技術(shù)依托于基因組學(xué)技術(shù),其關(guān)鍵技術(shù)包括基因(組)富集、基因(組)DNA提取、文庫構(gòu)建、文庫篩選等(見圖1)[2].
為提高功能基因檢出率,減少篩選過程的復(fù)雜程度,需對(duì)目的DNA進(jìn)行富集[3].基因(組)富集可分為細(xì)胞水平富集與基因水平富集.細(xì)胞水平富集利用微生物物理、化學(xué)或生物特性的不同,通過選擇性培養(yǎng)基富集目標(biāo)微生物,如利用含羥甲基纖維素培養(yǎng)基富集含纖維素酶微生物[4].此方法可高效富集快速生長(zhǎng)菌群,但也會(huì)富集一些慢速生長(zhǎng)菌群;基因水平富集包括穩(wěn)定同位素探針(Stable Isotope Probing,SIP)技術(shù)、抑制性消減雜交(Suppression subtractive hybridization,SSH)技術(shù)、差異基因表達(dá)(Differential gene expression analysis,DGE)技術(shù)、噬菌體展示(Phage display)技術(shù)、親和捕獲(Affinity capture)技術(shù)及DNA芯片(Microarrays)技術(shù)等.
圖1 宏基因組文庫構(gòu)建及篩選流程圖Fig.1 The diagram of construction and screening strategies of metagenomic library
1.1.1 穩(wěn)定同位素探針技術(shù)
這項(xiàng)技術(shù)是利用天然存在的不具放射性的同位素標(biāo)記底物,富集參與特定代謝過程的微生物[5].該技術(shù)已用于新功能基因篩選、分離等[6],可直接檢測(cè)群落中具有特定代謝活性的菌群,無需預(yù)知其特性及存在狀態(tài);但該技術(shù)所需的底物標(biāo)記量較大[7],且難以獲得慢生型菌群中的功能基因.Li等[8]利用SIP技術(shù)研究了固體廢棄物厭氧消化反應(yīng)器中微生物種類,共對(duì)567個(gè)細(xì)菌、448個(gè)古菌的16SrRNA序列進(jìn)行了分析并建立了文庫,結(jié)果表明在不同培養(yǎng)條件下,厭氧微生物群落的組成及優(yōu)勢(shì)菌群也不相同.Manefield等[9]利用SIP技術(shù)研究了好氧生物反應(yīng)器中的苯酚降解菌群,確認(rèn)主要功能菌群為陶厄氏菌屬.Sul等[10]利用SIP技術(shù)發(fā)現(xiàn)了新的聯(lián)苯降解基因并對(duì)其進(jìn)行了克隆表達(dá).近年來,5-溴-2-脫氧尿苷同位素探針技術(shù)(BrdUTP)已逐漸成為SIP替代技術(shù)[11].
1.1.2 抑制性消減雜交技術(shù)
這項(xiàng)技術(shù)是以抑制性PCR(Polymerase Chain Reaction)反應(yīng)為基礎(chǔ)的cDNA消減雜交技術(shù),可選擇性擴(kuò)增目的cDNA基因片段.主要用于基因定位克隆、基因分離鑒定等,可實(shí)現(xiàn)高通量,單次循環(huán)即可擴(kuò)增目的基因1 000倍;但該技術(shù)僅能區(qū)分種群間的差異基因.Susan等[12]利用該技術(shù)鑒定了特定環(huán)境條件下原核生物的不同表達(dá)基因,并建立了宏基因文庫.Steele等[13]采用該技術(shù)研究了致病性大腸桿菌O157∶H7的基因特性.
1.1.3 差異基因表達(dá)技術(shù)
這項(xiàng)技術(shù)被廣泛用于基因轉(zhuǎn)錄過程的差異性分析,可分為封閉DGE技術(shù)和開放DGE技術(shù)[14].在DGE技術(shù)的基礎(chǔ)上又衍生了多種改良技術(shù),如生物素選擇性擴(kuò)增及限制性富集技術(shù)(selective amplification via biotin and restrictionmediated enrichment,SABRE)[15]、基因鑒定整合技術(shù)(integrated procedure for gene identification,IPGI)、基因表達(dá)系統(tǒng)分析(serial analysis of gene expression,SAGE)[16]、表達(dá)序列標(biāo)簽串聯(lián)排列連接(tandem arrayed ligation of expressed sequence tags,TALEST)[17]、總基因表達(dá)分析(total gene expression analysis,TOGA)、差異顯示(differential display,DD)等.這些技術(shù)已被廣泛應(yīng)用于探索真核生物基因和研究醫(yī)學(xué)宏基因組等,具有高靈敏性、高選擇性,可分析拷貝基因表達(dá)的差異性.
1.1.4 其他富集技術(shù)
噬菌體展示技術(shù)[18]利用表面蛋白與固定配位體進(jìn)行選擇性親和富集DNA,是實(shí)現(xiàn)高通量篩選的主要富集技術(shù)之一,但存在對(duì)小于50kDa的蛋白質(zhì)表達(dá)不足的問題.親和捕獲技術(shù)[19]通過共價(jià)結(jié)合在固體載體上的寡核苷酸片斷對(duì)目的基因進(jìn)行親和捕獲富集DNA片段,該技術(shù)的應(yīng)用受限于雜交速率,可通過采用mRNA或單鏈DNA取代寡核苷酸得到改進(jìn).DNA芯片技術(shù)[20]可實(shí)現(xiàn)多目的基因高流量自動(dòng)篩選,通過基因標(biāo)簽對(duì)目的基因進(jìn)行富集,可用于宏基因組鳥槍測(cè)序過程的預(yù)篩,其作為新型基因富集技術(shù)具有廣闊的應(yīng)用前景.
獲得高濃度、高質(zhì)量的DNA是宏基因組文庫構(gòu)建的關(guān)鍵之一.DNA提取可分為直接提取和間接提取.直接提取法直接破碎細(xì)胞,提取、純化外釋DNA,可又分為溫和裂解(Soft lysis)與烈性裂解(Harsh lysis).溫和裂解利用化學(xué)試劑或酶裂解細(xì)胞,反應(yīng)條件溫和;烈性裂解利用玻璃珠、超聲波等產(chǎn)生的物理機(jī)械力破碎細(xì)胞,可實(shí)現(xiàn)高效提取.直接提取法具有操作簡(jiǎn)便、成本低、提取率高及完整性好等特點(diǎn),主要用于小片段基因組文庫的構(gòu)建.但存在DNA提取不完全、片段較?。?~50kb)、部分DNA易被環(huán)境樣品吸附等不足[21],間接提取法先分離目標(biāo)微生物后將細(xì)胞破碎提取DNA,利用梯度離心、超順磁硅磁鐵納米顆?;蛎}沖場(chǎng)凝膠電泳等方法分離純化DNA,主要用于原核微生物DNA提取,可獲得大片段DNA(20~500kb),具有純度高、雜質(zhì)干擾少的特點(diǎn),適合構(gòu)建大片段的宏基因組文庫,但存在操作煩瑣、成本高、偏差大、DNA獲得率低、易失物種信息等缺點(diǎn).
1.3.1 載體選擇
載體的選擇主要取決于插入基因片段的大小、外源基因表達(dá)相對(duì)重要性等.載體按其性質(zhì)可分為大插入片段載體、表達(dá)載體及穿梭載體.大插入片段載體廣泛用于宏基因組文庫的構(gòu)建,主要包括細(xì)菌人工染色體載體(BAC)與Cosmid載體等.BAC載體可插入350kb DNA片段,可獲得代謝途徑中完整功能操縱子,已應(yīng)用于代謝途徑多基因簇的分離[22].Cosmid載體主要用于25~35kb DNA片段的克隆,其克隆效率比BAC載體高100~1 000倍,但其插入片段不能超過40 kb.目前BAC、pBeloBAC11、Cosmid、superCos1已成功應(yīng)用于土壤中抗生素合成基因克隆[23-26].表達(dá)載體主要包括質(zhì)粒、噬菌體等,可有效克服E.coli對(duì)外源啟動(dòng)子的識(shí)別障礙[27],載體一般含有誘導(dǎo)啟動(dòng)子以避免毒性物質(zhì)結(jié)構(gòu)表達(dá)對(duì)宿主細(xì)胞的損傷,可有效調(diào)整克隆過程,但其只能插入小片段DNA,且啟動(dòng)子僅能使毗連基因沿特定方向表達(dá).Henne等[28-29]已成功應(yīng)用pBluescript SK(+)載體對(duì)脂肪酶、酯酶及羥基丁酸脫氫酶進(jìn)行克隆表達(dá).穿梭載體可在不同宿主間進(jìn)行基因傳遞、表達(dá),既可保留文庫基因的長(zhǎng)度,又可解決低水平表達(dá)所帶來的問題.Wang等[30]利用E.coli-Sinorhizobium穿梭載體成功篩選到D-3-羥基丁酸鹽降解基因.
1.3.2 宿主選擇
宿主選擇應(yīng)主要考慮轉(zhuǎn)化需要、載體在宿主細(xì)胞中的穩(wěn)定性、文庫構(gòu)建目的等因素.不同的研究目標(biāo)應(yīng)選擇不同的宿主.E.coli是最常用的宿主,其操作簡(jiǎn)單、繁殖迅速、代謝易于控制,但其陽性克隆數(shù)量少,不能表達(dá)真核DNA,其無同源結(jié)合基因recA與recBC及同源限制基因mcrA與mcrBC,嚴(yán)重限制了篩選的普遍性.Gabor等[31]認(rèn)為由于E.coli中缺少某些基因表達(dá)所需的轉(zhuǎn)錄因子、翻譯因子等,其僅能克隆表達(dá)全部基因的40%.鏈霉菌和假單胞菌也常作為構(gòu)建文庫的宿主,具有不同的表達(dá)能力,可對(duì)大范圍的目的基因或操縱子的表達(dá)進(jìn)行檢測(cè)[32].從復(fù)雜的宏基因組中篩選目的基因十分困難且費(fèi)時(shí),因此對(duì)宿主探索與開發(fā)是有效開發(fā)宏基因組資源的關(guān)鍵技術(shù)之一.
微生物種類繁多,其DNA具有高度復(fù)雜性,需要高靈敏度、高通量的技術(shù)對(duì)其進(jìn)行篩選.DNA篩選方法主要分為功能/活性篩選法(Function/activity-based screening)、序列篩選法(Sequence-based screening).
1.4.1 功能/活性篩選法
該法是獲得功能基因最直接的方法,可直觀顯現(xiàn)基因組文庫中具有特殊功能/活性的克隆子.功能基因的獲得取決于宿主-載體系統(tǒng)、目的基因大小及豐度、分析手段、異源基因在宿主中表達(dá)效率等.功能/活性篩選主要通過產(chǎn)生可見特征(如顏色、菌斑等)篩選陽性克隆.其操作簡(jiǎn)便、通量高,但其低陽性率會(huì)引起信號(hào)特征不明顯,且克隆基因在宿主中的偏好表達(dá)限制了其應(yīng)用.近年來對(duì)該法已進(jìn)行了相關(guān)的改進(jìn):①利用細(xì)胞溶菌液進(jìn)行篩選,將溶菌液與底物混合,可提高篩選靈敏度;②將目的基因活性與宿主細(xì)胞存活能力結(jié)合進(jìn)行篩選,以達(dá)到高敏度及高通量,主要用于篩選抗生素或抗重金屬基因[33-34];③報(bào)告基因技術(shù).
底物誘導(dǎo)基因表達(dá)篩選法(Substrate-Induced Gene Expression Screening,SIGEX)已廣泛應(yīng)用于宏基因組文庫的篩選,利用代謝產(chǎn)物誘導(dǎo)相關(guān)基因或酶的表達(dá),為高通量篩選提供了技術(shù)保障.Uchiyama等[35]分別利用苯酚、安息香酸鹽或萘等為底物,結(jié)合熒光激活細(xì)胞分離(FACS)技術(shù),從環(huán)境宏基因組文庫中成功篩選出具有特定生物代謝功能的陽性克隆.
1.4.2 序列分析法
序列分析技術(shù)是現(xiàn)代生命科學(xué)研究的核心技術(shù)之一,是發(fā)現(xiàn)和認(rèn)識(shí)基因多態(tài)性的前提.其主要用于對(duì)現(xiàn)存基因文庫進(jìn)行拓展性鑒別,利用依據(jù)保守序列設(shè)計(jì)的寡核苷酸引物或探針,通過PCR、基因雜交等分子生物學(xué)手段對(duì)目的基因進(jìn)行篩選,其應(yīng)用受PCR反應(yīng)偏好、載體與宿主結(jié)合的穩(wěn)定性、基因拷貝數(shù)變化等因素影響.由于引物的設(shè)計(jì)依賴于已有的序列信息,因此很難發(fā)現(xiàn)新的功能基因;且僅能篩選部分內(nèi)在基因序列,要獲得其完整基因序列還需克隆出其側(cè)翼基因.序列分析技術(shù)已被用于鑒定系統(tǒng)發(fā)育學(xué)中的標(biāo)志基因和帶有高度保守域的酶基因.Yamada等人[36]利用PAI-PCR方法分離得到傳統(tǒng)IPCR無法獲得的糖基水解酶,將靈敏度提高了104倍.Meyer等人[37]利用消減雜交磁珠捕獲(Subtractive hybridization magnetic bead capture)技術(shù)成功的篩選得到新型多銅氧化酶,相比傳統(tǒng)的PCR技術(shù),此方法能在單反應(yīng)中同時(shí)篩選多個(gè)目的基因.
通過對(duì)宏基因組測(cè)序可獲得豐富的基因信息,多種測(cè)序技術(shù)已獲成功應(yīng)用.鳥槍法測(cè)序(Shotgun sequencing)將完整的目標(biāo)序列隨機(jī)打斷成小片段后測(cè)序,可篩選新的天然產(chǎn)物,并可獲得大量信息,主要應(yīng)用于單個(gè)生物基因組的測(cè)序,其消耗大量人力、物力和財(cái)力.覃俊杰等人[38]收集124個(gè)歐洲人腸道菌群的樣本,利用鳥槍測(cè)序技術(shù)對(duì)不同人腸道菌群近6×1011的堿基序列進(jìn)行序列組裝和基因注釋分析,從中獲得3.3×106個(gè)非冗余的人體腸道元基因組,約是人自身基因的150倍,從而估算出人腸道中存在1 000~1 150種細(xì)菌,平均個(gè)體內(nèi)約含有160種優(yōu)勢(shì)菌種.Strous[39]等利用此技術(shù)對(duì)厭氧氨氧化生物反應(yīng)器中的微生物群落進(jìn)行了全基因研究,并分析了生物反應(yīng)器中的生物多樣性.焦磷酸序列(Pyrosequencing)適用于各種環(huán)境生物多樣性的研究,可對(duì)全基因組進(jìn)行測(cè)序,可更全面的獲得微生物基因信息.454焦磷酸序列測(cè)序已在商業(yè)中得到應(yīng)用,已成功開發(fā)了GS20和GS FLX產(chǎn)品.
厭氧消化過程實(shí)質(zhì)上是厭氧微生物以生理群為單位組成微生態(tài)對(duì)廢物進(jìn)行協(xié)同代謝產(chǎn)沼氣的技術(shù),是一個(gè)復(fù)雜而有序的生物反應(yīng)過程.厭氧消化微生物從功能上可分為發(fā)酵細(xì)菌、產(chǎn)氫產(chǎn)乙酸細(xì)菌、同型產(chǎn)乙酸細(xì)菌、產(chǎn)甲烷細(xì)菌四大菌群,不同菌群之間相互依賴,互為對(duì)方創(chuàng)造與維持代謝及生長(zhǎng)所需要的良好環(huán)境條件.在厭氧消化中,由于菌源和廢物成分復(fù)雜,會(huì)形成多種多樣的微生物群落,厭氧消化微生物代謝途徑豐富、代謝通量大,是廢物厭氧消化技術(shù)高效的本質(zhì).在消化過程中微生物群落多樣性及與環(huán)境構(gòu)成的微生物生態(tài)系統(tǒng),從根本上決定了厭氧消化反應(yīng)技術(shù)的潛能.
厭氧消化過程形成的群落結(jié)構(gòu),增加了對(duì)其結(jié)構(gòu)及功能鑒定的復(fù)雜性.宏基因組技術(shù)可成為厭氧消化處理中研究微生物群落多樣性的首選技術(shù),不僅加深對(duì)其群落結(jié)構(gòu)的認(rèn)識(shí),全面掌握厭氧消化反應(yīng)器中微生物組成多樣性,分析環(huán)境條件引發(fā)的群落演替規(guī)律;而且可從遺傳多樣性層面揭示生態(tài)規(guī)律,為研究厭氧消化微生物群落結(jié)構(gòu)、功能提供研究策略,揭示微生物降解廢物的機(jī)理.Wang[40]等采用宏基因組技術(shù)研究了野草青貯厭氧消化微生物群落的構(gòu)成及演變,建立了克隆文庫并進(jìn)行了分析,得出不同環(huán)境條件下其群落組成、結(jié)構(gòu)及功能菌群豐度會(huì)發(fā)生相應(yīng)變化,優(yōu)勢(shì)菌群發(fā)生相應(yīng)的轉(zhuǎn)變.Xu[41]等通過建立克隆文庫研究了氯仿、2-溴乙烷磺酸鹽兩種抑制劑對(duì)產(chǎn)甲烷群落結(jié)構(gòu)的影響,乙酸營(yíng)養(yǎng)型的甲烷鬃毛菌相對(duì)于氫營(yíng)養(yǎng)型的甲烷桿菌與甲烷微菌更易受到抑制劑的影響,且同型產(chǎn)乙酸菌活性增強(qiáng).Kroeber[42]等利用宏基因組技術(shù)研究了以玉米青貯、麥稈、糞便為原料的厭氧發(fā)酵產(chǎn)沼實(shí)際工程反應(yīng)器中的厭氧微生物生物多樣性及群落組成,發(fā)現(xiàn)其獲得的核酸序列相比其他厭氧消化或厭氧生物反應(yīng)器中的序列庫其生物多樣性存在明顯差異,群落構(gòu)成也存在明顯不同,且許多微生物迄今為止為未知或未分類的種群.
宏基因組學(xué)已成為微生物學(xué)、生態(tài)學(xué)、土壤學(xué)等領(lǐng)域的熱點(diǎn)研究方向,已在生物多樣性、新功能基因發(fā)現(xiàn)及活性物質(zhì)篩選等研究領(lǐng)域獲得廣泛應(yīng)用.該技術(shù)可了解生物多樣性,掌握生物群落結(jié)構(gòu),分析微生物生態(tài)特性,重建生物群落功能等[43],有助于了解微生物與環(huán)境生態(tài)因子之間的相互作用、協(xié)同進(jìn)化關(guān)系,了解不同環(huán)境條件下微生物種群及群落演變特性,了解優(yōu)勢(shì)種群及其生理與功能特征.
宏基因組學(xué)技術(shù)在高含量高質(zhì)量DNA提取分離、大片段高穩(wěn)定性載體構(gòu)建及高表達(dá)活性的宿主選擇等技術(shù)層面仍存在不足,需進(jìn)一步研究改善.宏基因組學(xué)是以環(huán)境DNA為基礎(chǔ),在研究過程中會(huì)不可避免的丟失部分多樣性內(nèi)容,若將其與宏轉(zhuǎn)錄組學(xué)、宏蛋白質(zhì)組學(xué)結(jié)合應(yīng)用,將會(huì)對(duì)微生物生態(tài)研究產(chǎn)生更大的推動(dòng)作用.宏基因組技術(shù)更廣泛的應(yīng)用將得力于多技術(shù)之間的交叉融合,如引入融合納米技術(shù)、統(tǒng)計(jì)分析技術(shù)、計(jì)算機(jī)技術(shù)等.
宏基因組技術(shù)必將成為厭氧消化生物多樣性、生物功能及代謝途徑研究的必選技術(shù),可為獲得厭氧消化微生物生理生化信息提供技術(shù)平臺(tái),可用于預(yù)測(cè)或探明特定代謝途徑及功能基因等,可促進(jìn)厭氧消化微生物功能發(fā)掘及高效厭氧消化技術(shù)的開發(fā).
[1]Handelsman J,Rondon M R,Brady S F,et al.Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J].Chemistry &Biology,1998,5(10):245-249.
[2]Miller D N,Bryant J E,Madsen E L,et al.Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples[J].Applied and Environmental Microbiology,1999,65(10):4715-4724.
[3]Knietsch A,Bowien S,Whited G,et al.Identification and characterisation of coenzyme B12-dependent glycerol dehydratase-and diol dehydratase encoding genes from metagenomic DNA libraries derived from enrichment cultures[J].Applied and Environmental Microbiology,2003,69(6):3048-3060.
[4]Rees H C,Grant W D,Jones B E,et al.Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods[J].Extremophiles,2004,8(1):63-71.
[5]Radajewski S,Ineson P,Parekh N R,et al.Stable-isotope probing as a tool in microbial ecology[J].Nature,2000,403(6770):646-649.
[6]Kalyuzhnaya M G,Lapidus A,Ivanova N,et al.Highresolution metagenomics targets specific functional types in complex microbial communities[J].Nature Biotechnology,2008,26(8):997-998.
[7]Radajewski S,McDonald I R,Murrell J C.Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms[J].Current Opinion Biotechnology,2003,14(3):296-302.
[8]Li T L,Mazeas L,Sghir A,et al.Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions[J].Environmental Microbiology,2009,11(4):889-904.
[9]Manefield M,Whiteley A S,Griffiths R I,et al.RNA stable isotope probing,a novel means of linking microbial community function to phylogeny[J].Applied and Environmental Microbiology,2002,68(11):5367-5373.
[10]Sul W J,Park J,Quensen J F,et al.DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl contaminated river sediment[J].Applied and Environmental Microbiology,2009,75(17):5501-5506.
[11]Yin B,Crowley D,Sparovek G,et al.Bacterial functional redundancy along a soil reclamation gradient[J].Applied and Environmental Microbiology,2000,66(10):4361-4365.
[12]Delong S K,Kinney K A,Kirisits M J.Prokaryotic suppression subtractive hybridization PCR cDNA subtraction,a targeted method to identify differentially expressed genes[J].Applied and Environmental Microbiology,2008,74(1):225-232.
[13]Steele M,Ziebell K,Zhang Y,et al.Genomic regions conserved in lineage II escherichia coli O157∶H7strains[J].Applied and Environmental Microbiology,2009,75(10);3271-3280.
[14]Green C D,Simons J F,Taillon B E,et al.Open systems:panoramic views of gene expression[J].Journal of Immunological Methods,2001,250(1/2):67-79.
[15]Lavery D J,Lopez M L,F(xiàn)leury O F,et al.Selective amplification via biotin-and restriction-mediated enrichment(SABRE),a novel selective amplification procedure for detection of differentially expressed mRNAs[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(13):6831-6836.
[16]Velculescu V E,Zhang L,Vogelstein B,et al.Serial analysis of gene expression[J].Science,1995,270(5235):484-487.
[17]Spinella D G,Bernardino A K,Redding A C,et al.Tandem arrayed ligation of expressed sequence tags(TALEST):a new method for generating global gene expression profiles[J].Nucleic Acids Research,1999,27(18):e22.
[18]Crameri R,Suter M.Display of biologically active proteins on the surface of filamentous phages:a cDNA cloning system for the selection of functional gene products linked to the genetic information responsible for their production[J].Gene,1993,137(1):69-75.
[19]Demidov V V,Bukanov N O,F(xiàn)rank K D.Duplex DNA capture[J].Current Issues in Molecular Biology,2000,2(1):31-35.
[20]Wu L,Thompson D K,Li G,et al.Development and evaluation of functional gene arrays for detection of selected genes in the environment[J].Applied and Environmental Microbiology,2001,67(12);5780-5790.
[21]Miller D N,Bryant J E,Madsen E L,et al.Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples[J].Applied and Environmental Microbiology,1999,65(11):4715-4724.
[22]Courtois S,Cappellano C M,Ball M,et al.Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J].Applied and Environmental Microbiology,2003,69(1):49-55.
[23]Brady S F,Clardy J.Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA[J].Journal of the American Chemical Society,2000,122(51):12903-12904.
[24]Brady S F,Chao C J,Handelsman J,et al.Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA[J].Organic Letters,2001,3(13):1981-1984.
[25]MacNeil I A,Tiong C L,Minor C,et al.Expression and isolation of antimicrobial small molecules from soil DNA libraries[J].Journal of Molecular Microbiology and Biotechnology,2001,3(2):301-308.
[26]Gillespie D E,Brady S F,Bettermann A D,et al.Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA[J].Applied and Environmental Microbiology,2002,68(9):4301-4306.
[27]Newman J R,F(xiàn)uqua C.Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator[J].Gene,1999,227(2):197-203.
[28]Henne A,Daniel R,Schmitz R A,et al.Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate[J].Applied and Environmental Microbiology,1999,65(9):3901-3907.
[29]Henne A,Schmitz R A,B?meke M,et al.Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli[J].Applied and Environmental Microbiology,2000,66(7):3113-3116.
[30]Wang C,Meek D J,Panchal P,et al.Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants[J].Applied and Environmental Microbiology,2006,72(1):384-391.
[31]Gabor E M,Alkema W B,Janssen D B.Quantifying the accessibility of the metagenome by random expression cloning techniques[J].Environmental Microbiology,2004,6(9):879-886.
[32]Martinez A,Kolvek S J,Yip C L,et al.Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts[J].Applied and Environmental Microbiology,2004,70(4):2452-2463.
[33]Mori T,Mizuta S,Suenaga H,et al.Metagenomic screening for bleomycin resistance genes[J].Applied and Environmental Microbiology,2008,74(21):6803-6805.
[34]Kazimierczak K A,Scott K P,Kelly D,et al.Tetracycline resistome of the organic pig gut[J].Applied and Environmental Microbiology,2009,75(6):1717-1722.
[35]Uchiyama T,Abe T,Ikemura T,Watanabe K.Substrateinduced gene expression screening of environmental metagenome libraries for isolation of catabolic genes[J].Nature Biotechnology,2005,23(1):88-93.
[36]Yamada K,Terahara T,Kurata S,et al.Retrieval of entire genes from environmental DNA by inverse PCR with pre-amplification of target genes using primers containing locked nucleic acids[J].Environmental Microbiology,2008,10(4):978-987.
[37]Meyer Q C,Burton S G,Cowan D A.Subtractive hybridization magnetic bead capture:a new technique for the recovery of fulllength ORFs from the metagenome[J].Biotechnology,2007,2(1):36-40.
[38]Qin J,Li R,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464(7285):59-67.
[39]Strous M,Pelletier E,Mangenot S,et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794.
[40]Wang H,Vuorela M,Ker?nen A L,et al.Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production[J].FEMS Microbiology Ecology,2010,72(3):496-506.
[41]Xu K W,Liu H,Chen J.Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion[J].Bioresoure Technology,2010,101(8):2600-2607.
[42]Kr?ber M,Bekel T,Diaz N N,et al.Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing[J].Journal of Biotechnology,2009,142(1):38-49.
[43]Blow N.Metagenomics:Exploring unseen communities[J].Nature,2008,453(7195):687-692.
Metagenomic Technology and Its Application in Anaerobic Digestion Research
JI Junyuan,XING Yajuan,ZHENG Ping
(Department of Environmental Engineering,Zhejiang University,Hangzhou 310058,China)
The metagenomic technology is introduced,which is composed of enrichment of gene DNA,extraction of DNA,construction and screening of clone libraries,etc.Metagenomic technology can make it possible to enormously amplify the space of microbial resource utilization;it has been broadly applied in industry,agriculture and ocean etc.This methodology is of great potential for use in anaerobic digestion research,it can be used to study microbial diversity in anaerobic digestor,enable to peep at more complete scenario of microbial communities and to better find out the spatial distribution and spatio-temporal dynamics of microorganisms in anaerobic digestor,it also can reveal the microbial mechanism of anaerobic digestion,enhance efficiency of digestion reactors.Metagenomic technology provides a technology platform for the deep-seated development and utilization of microbial resources;it has broad prospects in the field of industrial,agricultural,marine and other applications.
metagenomic technology;libraries construction;libraries screening;anaerobic digestion;microbial community
Q 93
A
1008-9225(2012)04-0001-06
2012-02-14
國(guó)家高技術(shù)研究發(fā)展計(jì)劃“863”滾動(dòng)支撐項(xiàng)目(2009AA06Z311);浙江省重大科技專項(xiàng)(2010C13001).
季軍遠(yuǎn)(1980-),男,山東煙臺(tái)人,浙江大學(xué)博士研究生.
王 穎】