摘 要: 本文從傳統(tǒng)數(shù)學(xué)教學(xué)存在的缺陷著手,簡(jiǎn)要闡述數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)之間的關(guān)系,提出了建立傳統(tǒng)數(shù)學(xué)教學(xué)、數(shù)學(xué)建模及數(shù)學(xué)實(shí)驗(yàn)一體化的教學(xué)模式的必要性及其實(shí)施辦法,并對(duì)該教學(xué)模式進(jìn)行了展望。
關(guān)鍵詞: 傳統(tǒng)數(shù)學(xué)教學(xué) 數(shù)學(xué)建模 數(shù)學(xué)實(shí)驗(yàn) 一體化教學(xué)
多年來(lái),傳統(tǒng)數(shù)學(xué)教學(xué)如一支筆、一張紙、一塊黑板單向傳輸教學(xué)方式未能反映數(shù)學(xué)技術(shù)在當(dāng)代科研與實(shí)踐中的應(yīng)用,存在著脫離實(shí)際、落后現(xiàn)實(shí)的現(xiàn)象,同時(shí),極大地影響了學(xué)生創(chuàng)新意識(shí)的培養(yǎng)[1]。因此,在數(shù)學(xué)教學(xué)中必須加強(qiáng)培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,進(jìn)行數(shù)學(xué)實(shí)驗(yàn),解決實(shí)際問(wèn)題的能力。
一、數(shù)學(xué)建模
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并“解決”實(shí)際問(wèn)題的數(shù)學(xué)的思考方法,也是一種強(qiáng)有力的數(shù)學(xué)手段。
數(shù)學(xué)模型一般是實(shí)際事物的一種數(shù)學(xué)簡(jiǎn)化。它常常是以某種意義上接近實(shí)際事物的抽象形式存在的。要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了使描述更具科學(xué)性、邏輯性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的數(shù)學(xué)語(yǔ)言來(lái)描述各種現(xiàn)象。使用數(shù)學(xué)語(yǔ)言描述的現(xiàn)象稱為數(shù)學(xué)模型[2]。
二、數(shù)學(xué)實(shí)驗(yàn)
數(shù)學(xué)模型的建立和求解需要實(shí)驗(yàn)[3],許多數(shù)學(xué)模型是抽象的,只有通過(guò)數(shù)學(xué)實(shí)驗(yàn),才能迅速進(jìn)行數(shù)值求解和做出定量分析,進(jìn)一步地完善和構(gòu)建數(shù)學(xué)模型。這些實(shí)驗(yàn)往往用抽象出來(lái)的數(shù)學(xué)模型代替實(shí)際物體而進(jìn)行。這些實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。
數(shù)學(xué)實(shí)驗(yàn)是數(shù)學(xué)建模的延伸,數(shù)學(xué)實(shí)驗(yàn)課在內(nèi)容深度和廣度上介于常規(guī)數(shù)學(xué)的應(yīng)用和數(shù)學(xué)建模之間。數(shù)學(xué)實(shí)驗(yàn)的目的是提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的積極性,提高學(xué)生對(duì)數(shù)學(xué)知識(shí)的應(yīng)用能力,培養(yǎng)學(xué)生用所學(xué)的數(shù)學(xué)知識(shí)和計(jì)算機(jī)技術(shù)去認(rèn)識(shí)問(wèn)題和解決實(shí)際問(wèn)題的能力。不同于傳統(tǒng)的學(xué)習(xí)方式,它強(qiáng)調(diào)以學(xué)生主動(dòng)動(dòng)手為主的學(xué)習(xí)方式。數(shù)學(xué)實(shí)驗(yàn)離不開(kāi)計(jì)算機(jī),數(shù)學(xué)實(shí)驗(yàn)是計(jì)算機(jī)技術(shù)和數(shù)學(xué)軟件引入數(shù)學(xué)教學(xué)后出現(xiàn)的新生事物。數(shù)學(xué)教學(xué)中的數(shù)學(xué)實(shí)驗(yàn),就是從給定的實(shí)際問(wèn)題出發(fā),借助計(jì)算機(jī)和數(shù)學(xué)軟件,讓學(xué)生在數(shù)字化的實(shí)驗(yàn)中去學(xué)習(xí)和探索,并通過(guò)自己設(shè)計(jì)和動(dòng)手,去體驗(yàn)問(wèn)題解決的教學(xué)活動(dòng)過(guò)程。在數(shù)學(xué)實(shí)驗(yàn)中,由于計(jì)算機(jī)的引入和數(shù)學(xué)軟件的應(yīng)用,數(shù)學(xué)的思想與方法注入了更多、更廣泛的內(nèi)容,促進(jìn)了數(shù)學(xué)同其他學(xué)科之間的結(jié)合,使學(xué)生擺脫乏味的數(shù)學(xué)演算和計(jì)算。從而使學(xué)生得到解放,能有更多的時(shí)間去做創(chuàng)造性工作。探索和創(chuàng)新是數(shù)學(xué)實(shí)驗(yàn)教學(xué)活動(dòng)的首要原則,數(shù)學(xué)實(shí)驗(yàn)重在創(chuàng)新能力培養(yǎng)和綜合素質(zhì)提高,是數(shù)學(xué)素質(zhì)教育、創(chuàng)新教育的需要。
“數(shù)學(xué)建?!迸c“數(shù)學(xué)實(shí)驗(yàn)”,兩者有共同之處,即兩者目標(biāo)相同,均以創(chuàng)新能力為目標(biāo)。前者著眼于數(shù)學(xué)知識(shí)的應(yīng)用,強(qiáng)調(diào)解決實(shí)際問(wèn)題的數(shù)學(xué)方法和模型,即強(qiáng)調(diào)在“應(yīng)用”數(shù)學(xué)的過(guò)程中培養(yǎng)能力;后者著眼于數(shù)學(xué)的學(xué)習(xí)方法,強(qiáng)調(diào)自主探索和實(shí)踐,在探索和實(shí)踐的過(guò)程中學(xué)習(xí)數(shù)學(xué)知識(shí)、運(yùn)用數(shù)學(xué)知識(shí),即強(qiáng)調(diào)在“探索”數(shù)學(xué)的過(guò)程中培養(yǎng)能力。
三、構(gòu)建傳統(tǒng)教學(xué)、數(shù)學(xué)建模及數(shù)學(xué)實(shí)驗(yàn)一體化的教學(xué)模式
首先,傳統(tǒng)的教學(xué)方式比較注重?cái)?shù)學(xué)理論性的教學(xué),教學(xué)方法是以課堂為中心,以“定義、定理推導(dǎo)結(jié)論”為主線,從概念出發(fā)進(jìn)行理論教學(xué)。這種教學(xué)方式注重邏輯的嚴(yán)密性、知識(shí)的系統(tǒng)性,可在短時(shí)間內(nèi)向?qū)W生傳授更多的知識(shí),使學(xué)生學(xué)到數(shù)學(xué)理論和方法,但這種教學(xué)模式缺乏實(shí)踐的動(dòng)手操作能力的鍛煉。
其次,目前大學(xué)數(shù)學(xué)理論課程的教學(xué)中,很少涉及實(shí)際建模問(wèn)題(一般均為單獨(dú)開(kāi)設(shè)數(shù)學(xué)建模課程),使學(xué)生感覺(jué)理論學(xué)習(xí)非??菰?,抽象且難以和身邊的生活及生產(chǎn)實(shí)際問(wèn)題相聯(lián)系,導(dǎo)致很多學(xué)生對(duì)數(shù)學(xué)喪失了興趣。將數(shù)學(xué)建模融入理論教學(xué)是刻不容緩的。在理論教學(xué)中融入數(shù)學(xué)建模教學(xué),不但可以使學(xué)生更好學(xué)習(xí)理論知識(shí),而且可以激發(fā)學(xué)生的創(chuàng)新性,培養(yǎng)團(tuán)結(jié)協(xié)作能力[4]。數(shù)學(xué)建模實(shí)際是一個(gè)學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)的過(guò)程,體現(xiàn)了理論和實(shí)踐的統(tǒng)一。
最后,數(shù)學(xué)實(shí)驗(yàn)是通過(guò)演示某些數(shù)學(xué)現(xiàn)象,可以使學(xué)生對(duì)這些現(xiàn)象具有直觀的認(rèn)識(shí),數(shù)學(xué)軟件的可視化功能可使數(shù)學(xué)思維形象化,可操作化,改變了傳統(tǒng)數(shù)學(xué)理論的抽象性,使晦澀難懂的數(shù)學(xué)理論變得生動(dòng)而有趣[3]。借助計(jì)算機(jī)和數(shù)學(xué)軟件,讓學(xué)生在數(shù)字化的實(shí)驗(yàn)中去學(xué)習(xí)和探索,并通過(guò)自己設(shè)計(jì)和動(dòng)手,去體驗(yàn)問(wèn)題解決的教學(xué)活動(dòng)過(guò)程。
早在2005年,教育部就啟動(dòng)了重點(diǎn)教學(xué)改革專項(xiàng)項(xiàng)目“將數(shù)學(xué)建模的思想方法融入數(shù)學(xué)類主干課程”,該項(xiàng)目對(duì)改變數(shù)學(xué)類主干課程的原有教學(xué)體系起著重要的推動(dòng)作用。近幾年來(lái),許多院校正在將數(shù)學(xué)建模教學(xué)活動(dòng)與數(shù)學(xué)類各主干課程有機(jī)地結(jié)合起來(lái),通過(guò)數(shù)學(xué)建模的思想方法來(lái)提高學(xué)生的綜合素質(zhì),以及研究與實(shí)踐能力。
一體化的教學(xué)模式改變了傳統(tǒng)教學(xué)中內(nèi)容比較陳舊,形式單一,手段相對(duì)落后,以及理論和應(yīng)用聯(lián)系不緊密的狀態(tài),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)了學(xué)生對(duì)所學(xué)知識(shí)的應(yīng)用能力,提高了學(xué)生的綜合素質(zhì)和創(chuàng)新能力,在有限的授課時(shí)間內(nèi)提高了教學(xué)效率。因此,在高校數(shù)學(xué)教學(xué)中很有必要建立傳統(tǒng)教學(xué)、數(shù)學(xué)建模及數(shù)學(xué)實(shí)驗(yàn)一體化的教學(xué)模式。
四、一體化教學(xué)模式實(shí)施辦法
1.將數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有效且適度地融入傳統(tǒng)數(shù)學(xué)教學(xué)。
首先,對(duì)“數(shù)學(xué)建?!焙汀皵?shù)學(xué)實(shí)驗(yàn)”進(jìn)行準(zhǔn)確定位,對(duì)其教學(xué)要求及教學(xué)內(nèi)容合理安排,與主干課程緊密結(jié)合,貫徹少而精的原則。
其次,將數(shù)學(xué)建模的思想融入數(shù)學(xué)類主干課程[5],否則不可能充分體現(xiàn)和認(rèn)可數(shù)學(xué)建模的思想,數(shù)學(xué)建模的成果也是不可能得到鞏固。
最后,充分利用現(xiàn)代化的計(jì)算機(jī)軟件技術(shù),建立開(kāi)放式輔助學(xué)習(xí)平臺(tái),形成學(xué)生與教師之間的互動(dòng)。改變傳統(tǒng)教學(xué)內(nèi)容開(kāi)展數(shù)學(xué)實(shí)驗(yàn),將理論與實(shí)踐相結(jié)合,加深對(duì)數(shù)學(xué)理論的理解。
2.在部分專業(yè)部分班級(jí)的數(shù)學(xué)主干課程中進(jìn)行試點(diǎn),并用實(shí)踐來(lái)檢驗(yàn)一體化模式的科學(xué)性,及時(shí)發(fā)現(xiàn)問(wèn)題并解決。填補(bǔ)數(shù)學(xué)教學(xué)內(nèi)容的不足,讓學(xué)生能接觸到客觀實(shí)際中的數(shù)學(xué)問(wèn)題,親身經(jīng)歷數(shù)學(xué)有用,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,進(jìn)一步改善課程學(xué)習(xí)的主動(dòng)性??偨Y(jié)研究經(jīng)驗(yàn)和教訓(xùn),提煉上升為相關(guān)理論,然后進(jìn)行大規(guī)模的推廣。
五、展望
傳統(tǒng)數(shù)學(xué)教學(xué)是數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)的基礎(chǔ),數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)是傳統(tǒng)數(shù)學(xué)教學(xué)的后續(xù)和延伸,三者相互依存、相互作用、協(xié)調(diào)發(fā)展、共同促進(jìn)[1]。合理采用三種不同教學(xué)進(jìn)行多元化、多視角、全方位的教學(xué)方法研究;對(duì)傳統(tǒng)數(shù)學(xué)教學(xué)內(nèi)容與數(shù)學(xué)實(shí)驗(yàn)及數(shù)學(xué)建模應(yīng)如何滲透、補(bǔ)充、延續(xù)等內(nèi)容的有機(jī)結(jié)合研究,在全面推進(jìn)創(chuàng)新教育和素質(zhì)教育中起到重要的作用。
一體化教學(xué)模式將數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)的思想、方法及內(nèi)容融入到當(dāng)今的高校傳統(tǒng)數(shù)學(xué)教學(xué)中去,是一種行之有效的教育方法,是數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合點(diǎn),是激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生主動(dòng)探索、努力進(jìn)取的有力措施,是推動(dòng)大學(xué)數(shù)學(xué)教學(xué)改革的必由之路,是培養(yǎng)創(chuàng)新意識(shí)和創(chuàng)新思維、鍛煉創(chuàng)新能力的一條重要途徑。
參考文獻(xiàn):
?。?]鄭煜.數(shù)學(xué)建模:創(chuàng)新一體化教學(xué)模式的構(gòu)建,黑龍江高教研究,2008,(8):177-179.
[2]李亞芹,宗容,李海燕.以數(shù)學(xué)建模實(shí)踐為平臺(tái)的高等數(shù)學(xué)教學(xué)探索.高等教育研究,2009,26,(1):89-90.
[3]張翼,盛祖祥,張瑩.淺談數(shù)學(xué)實(shí)驗(yàn)的教學(xué)內(nèi)容與教學(xué)方法,中國(guó)大學(xué)教學(xué),2009,(1):39-40.
[4]王秀梅,秦體恒.以數(shù)學(xué)建模思想為依托,構(gòu)建創(chuàng)新能力培養(yǎng)的平臺(tái).河南機(jī)電高等??茖W(xué)校學(xué)報(bào),2008,16,(2):77-79.
?。?]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)類主干課程.中國(guó)大學(xué)教學(xué),2006,(1):9-11.