張 亮
(天津大學(xué) 理學(xué)院,天津 300072)
利普希茨空間到有界解析函數(shù)空間的加權(quán)微分復(fù)合算子*
張 亮
(天津大學(xué) 理學(xué)院,天津 300072)
加權(quán)微分復(fù)合算子理論是算子領(lǐng)域的重要組成部分.不同空間的加權(quán)微分復(fù)合算子的有界性和緊致性被深入地研究并出現(xiàn)了許多成果.在此基礎(chǔ)上給出了單位圓盤上從利普希茨空間到有界解析函數(shù)空間的加權(quán)微分復(fù)合算子有界和緊致的性質(zhì),并證明了算子有界和緊致的充要條件.
利普希茨空間;有界解析函數(shù)空間;加權(quán)微分復(fù)合算子
設(shè)φ∈H(D),記Cφ為H(D)上的復(fù)合算子:Cφf(shuō)(z)=f(φ(z)),z∈D ,f∈H(D).設(shè)D為H(D)上的微分算子:Df(z)=f'(z).H(D)上的加權(quán)微分復(fù)合算子uCφD定義為:uCφDf(z)=u(z)f'(φ(z)).
范數(shù)A與范數(shù)B等價(jià),記:A≈B,如果存在常數(shù)C>0,使得B/C≤A≤CB.
文獻(xiàn)[1~5]已經(jīng)深入研究了微分復(fù)合算子在不同空間的有界性和緊致性.借助文獻(xiàn)[1~5]的一些方法,給出了從利普希茨空間到有界解析函數(shù)空間的加權(quán)微分復(fù)合算子的一些性質(zhì).
引理1[6]設(shè)X和Y是Λα或者H∞β空間,則算子uCφD:X→Y是緊算子,當(dāng)且僅當(dāng)uCφD:X→Y為有界算子且對(duì)任意有界序列{fk}?X,當(dāng)k→∞ 時(shí),若{fk}在單位圓盤的緊子集上一致收斂于0,則uCφDfk在Y上也一致收斂于0.
引理2[7]如果0 < α < 1,則B1-α(D)= Λα(D);且任意的f∈ Λα(D)有:
定理1 假設(shè)0<α<1且φ是單位圓盤上的解析自映射,u∈H(D),則uCφD∶Λα→H∞β是有界算子當(dāng)且僅當(dāng)
證明 微分復(fù)合算子有界的充分性證明如下:
假設(shè)條件(1)成立,則對(duì)任意的z∈D且f∈Λα,
微分復(fù)合算子有界的必要性證明如下:
假設(shè)uCφD:Λα→H∞β是有界算子,則對(duì)所有f∈ Λα,存在常數(shù)C,使得 ‖uCφDf‖H∞β≤C‖f‖Λα.則令f(z)=z,有:
證明 微分復(fù)合算子是緊算子的充分性證明如下:
假設(shè)uCφD:Λα→H∞β有界且式(8)成立,設(shè){fk}k∈N是Λα上的序列滿足sku∈p∈N‖fk‖Λα< ∞,且當(dāng)k→∞ 時(shí),fk在D的緊子集上一致收斂于0.由假設(shè),對(duì)任意的ε>0,存在δ∈(0,1),使得下式成立,即:
設(shè)K={z∈D:|φ(z)|≤δ},結(jié)合引理2,則有:
微分復(fù)合算子是緊算子的必要性證明如下:
假設(shè)uCφD是緊算子,則uCφD是有界的.設(shè){zk}k∈N是D上的序列且當(dāng)k→∞ 時(shí),|φ(zk)|→1.設(shè):
易證fk∈Λα,sku∈pN‖ fk‖Λα<∞,且當(dāng)k→∞ 時(shí),fk在D的緊子集上一致收斂于0.
因?yàn)閡CφD是緊的,由引理1,klim→∞‖uCφDfk‖H∞β=0.所以:
[1]Stevi'c S.Norm of weighted composition operators from Bloch space to on the unit ball[J].Ars Combinatoria,2008,88:125–127.
[2]Stevi'c S.On a new operator fromto the Bloch -type space on the unit ball[J].Utilitas Mathematica,2008,77:257 -263.
[3]Wulan H ,Zhou J.Type spaces of analytic functions[J].Journal of Function Spaces and Applications,2006,4(1):73 -84.
[4]Zhou Z H,Shi J H.Compactness of composition operators on the Bloch space in classical bounded symmetric domains[J].Michigan Math,2002,50:381-405.
[5]Hu Z,Wang S.Composition operators on Bloch-type spaces[J].Proceedings of the Royal Society of EdinburghA,2005,135(6):1229-1239.
[6]Cowen C C,MacCluer B D.Composition operators on spaces of analytic functions[M].CRC Press,Boca Raton,F(xiàn)L,1995.
[7]Zhu K H.Spaces of holomorphic functions in the unit ball[M].New York:Springer,2005.
Abstrac:Theories of weighted differentiation composition operators are important component parts in operator fields.Boundedness and compactness of the weighted differentiation composition operators between different spaces have been widely studied and a number of results have been given.On this basis,the necessary and sufficient conditions of the boundedness and compactness of the weighted differentiation composition operator from the Lipschitz spaces to bounded analytic function spaces in the unit disk are presented and proved.
Weighted Differentiation Composition Operators from Lipschitz Space to Bounded Analytic Function Space
ZHANG Liang
(Institute of Sciences,Tianjin University,Tianjin 300072,China)
Lipschitz spaces;bounded analytic function spaces;weighted differentiation composition operators
O 174.5
A
1673-2103(2011)05-0025-03
2011-06-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(10971153);國(guó)家自然科學(xué)基金資助項(xiàng)目(10671141)
張亮(1983-),男,山東德州人,在讀碩士研究生,研究方向:多復(fù)變函數(shù)和算子理論及其應(yīng)用.