陳仕洲
(韓山師范學(xué)院數(shù)學(xué)與信息技術(shù)系,廣東潮州 521041)
一類具有分布時(shí)滯高階微分方程的周期解
陳仕洲
(韓山師范學(xué)院數(shù)學(xué)與信息技術(shù)系,廣東潮州 521041)
利用Mawhin重合度理論,研究了一類具有分布時(shí)滯的高階p-Laplacian中立型微分方程,獲得了其周期解存在性的一些新結(jié)果.
分布時(shí)滯;p-Laplacian;中立型泛函微分方程;周期解;重合度理論
近年來,關(guān)于p-Laplacian微分方程的周期解問題,已引起人們的關(guān)注[1-3].但對(duì)具有分布時(shí)滯的高階p-Laplacian中立型微分方程周期解的研究并不多.文[1]和[3]分別研究了具有變差變?cè)膒-Laplacian中立型方程
[1]彭世國(guó).具有偏差變?cè)膒-Laplacian中立型Lienard型方程的周期解[J].?dāng)?shù)學(xué)年刊,2008,29A(5):617-626.
[2]PENG SHI-GUO,ZHU SI-NING.Periodic solutions for p-Laplacian Rayleigh equations with adeviating argument[J].Nonlinear Analysis,2007,67:138-146.
[3]朱艷玲,汪凱.具有p-Laplacian算子的中立型泛函微分方程周期解[J].系統(tǒng)科學(xué)與數(shù)學(xué),2009,29(6):808-817.
[4]LU SHIPING,GE WWIGAO,ZHENG ZUXIOU.Periodic solutions to neutral differential equation with deviating arguments[J].Appl.Math.Comput.,2004,152:17-27.
[5]GAINES R E,MAWHIN J L.Coincidence degree and nonlinear differential equations[M].Berling:Springer-Verlag,1977,95-169.
[6]LI J W,WANG G Q.Sharp inequalities for periodic functions[J].Applied Mathematics E-Notes,2005(5):75-83.
Periodic Solutions for a Kind of High-Order Differential Equations with Distributed Delay Arguments
CHEN Shi-zhou
(Department of Mathematics and Information Technology,Hanshan Normal University,Chaozhou 521041,China)
By using the continuation theorem of coincidence degree theory developed by Mawhin,we study a kind of high-order p-Laplacian neutral functional differential equation with distributed delay arguments.Some new results on the existence of periodic solutions are obtained.
distributed delay;p-Laplacian;neutral functional differential equation;periodic solution;coincidence degree
O175.7
A
1007-6883(2011)06-0001-07
2011-10-16
陳仕洲(1959-),男,廣東汕頭人,韓山師范學(xué)院數(shù)學(xué)與信息技術(shù)系副教授.
責(zé)任編輯 朱本華