任詠紅,徐志敏,張曉有
(遼寧師范大學(xué) 數(shù)學(xué)學(xué)院,遼寧 大連 116029)
一個(gè)基于NCP函數(shù)的非線性Lagrange函數(shù)
任詠紅,徐志敏,張曉有
(遼寧師范大學(xué) 數(shù)學(xué)學(xué)院,遼寧 大連 116029)
基于修正的Fischer-Burmeister NCP函數(shù),提出了一個(gè)求解具有不等式約束的非線性優(yōu)化問題的非線性Lagrange函數(shù),討論了該函數(shù)在K-T點(diǎn)處的性質(zhì).收斂定理表明,在適當(dāng)?shù)臈l件下,當(dāng)懲罰參數(shù)小于某一閾值時(shí),基于該非線性Lagrange函數(shù)的算法產(chǎn)生的點(diǎn)列具有局部收斂性.
非線性優(yōu)化;非線性Lagrange函數(shù);NCP函數(shù);收斂性
考慮具有不等式約束的非線性優(yōu)化問題其中 x∈IRn,fi(x)∶IRn→IR1,i=0,…,m 是實(shí)值函數(shù).
近年來,求解問題(1)的非線性Lagrange方法倍受國內(nèi)外學(xué)者的關(guān)注.由于非線性Lagrange函數(shù)可用于發(fā)展非線性規(guī)劃問題的對(duì)偶算法,該算法對(duì)原始變量的可行性沒有限制,因此,非線性La?grange函數(shù)的構(gòu)造方法成為研究熱點(diǎn)之一,迄今為止,已出現(xiàn)許多有效的非線性Lagrange函數(shù),具有代表性的工作參見文獻(xiàn)[1-3].
值得注意的是,極小NCP函數(shù)通過積分運(yùn)算
[1]Bertsekas D P.Constrained Optimization and Lagrange Multiplier Methods[M].New York:Academic Press,1982.
[2]Polyak R A.Modified barrier function:theory and meth?ods.Mathematical Programming[J].1992,54(2):177-222.
[3]Polyak R A.Log-Sigmoid multipliers method in con?strained optimization[J].Annals of operations Research,2001,101:427-460.
[4]Ren Y H,Zhang L W,Xiao X T.A nonlinear Lagrangian based on Fischer-Burmeister NCP function[J].Applied Mathematics and Computation,2007(188):1344-1363.
[5]Kanzow C,Kleinmichel H.A new class of semismooth Newton method for nonlinear complementarity problems[J].Comput Optim Appl,1998,11:227-251.
A Nonlinear Lagrangian Based on NCP Function
REN Yonghong,XU Zhimin,ZHANG Xiaoyou
(School of Mathematics,Liaoning Normal University,Dalian116029,China)
This paper proposes a nonlinear Lagrangian based on a modified Fischer-Burmeister NCP function for solv?ing nonlinear optimization problem with inequality constraints.Properties of proposed nonlinear Lagrangian at K-T point are discussed.The convergence theorem shows that the sequence of points generated by nonlinear Lagrange algorithm is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions.
Nonlinear Optimization;Nonlinear Lagrangian;NCP Function;Convergence
O 41
A
1674-4942(2011)04-0365-05
2011-09-18
遼寧省博士科研啟動(dòng)基金項(xiàng)目(20091046)
畢和平