胡振華,周樹清,彭冬云
(1.湖南城市學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院,中國(guó)益陽(yáng) 413000;2.湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,中國(guó)長(zhǎng)沙 410081)
雙障礙問題的弱解的高階可積性
胡振華1,2,周樹清2*,彭冬云2
(1.湖南城市學(xué)院數(shù)學(xué)與計(jì)算機(jī)學(xué)院,中國(guó)益陽(yáng) 413000;2.湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,中國(guó)長(zhǎng)沙 410081)
通過構(gòu)造特殊的檢驗(yàn)函數(shù),并利用逆H?lder不等式,得到了由二階擬線性橢圓型偏微分方程div(A (x,▽u))=div f(x)所描述的系統(tǒng)的雙障礙問題的弱解的局部和全局高階可積性.雙障礙問題的研究在控制論、優(yōu)化控制、金融問題等方面有著廣泛的應(yīng)用.
雙障礙問題;局部高階可積性;全局高階可積性;優(yōu)化控制;逆H?lder不等式
設(shè)區(qū)域Ω?Rn有界,是通常的Sobolev空間.設(shè)θ(x)∈e.}.稱φ(x),ψ(x)為障礙,θ為邊界值.
考慮區(qū)域Ω上的二階擬線性橢圓型偏微分方程
定義稱函數(shù)-雙障礙問題(1)的弱解,是指
障礙問題出現(xiàn)在非線性位勢(shì)理論、變分極值以及變分不等式理論中[1-2].它廣泛地應(yīng)用于材料的相變理論、燃燒理論、優(yōu)化控制理論以及金融問題中[3-4].在f(x)=0,A滿足齊次性條件下,文獻(xiàn)[5]得到了(A)-雙障礙問題(1)的弱解的高階可積性與穩(wěn)定性結(jié)果.本文討論(A)-雙障礙問題(1)的弱解的局部和全局高階可積性.對(duì)單個(gè)障礙的情形,文[6]得到了單障礙問題的弱解的高階可積性.
設(shè)Ω?Rn是一個(gè)有界區(qū)域,n
n-1<p<+∞且s>p.假設(shè)映射A:Rn×R→Rn是Caratheodory函數(shù)且滿足下列條件:
(A1)存在0<α<β<∞,對(duì)所有h∈Rn以及a.e.x∈Ω,A(x,h)h≥α|h|p,|A(x,h)|≤β|h|p-1;
(A2)對(duì)a.e.x∈Ω和h1≠h2,(A(x,h1)-A(x,h2))(h1-h(huán)2)>0.
先給出一些記號(hào).給定x0∈Ω,設(shè)Qr是一個(gè)中心在x0邊長(zhǎng)為r的方體,Qλr(λ>0)是與Qr中心相同,邊平行且邊長(zhǎng)為λr的方體.記f(x)在Qr中的平均值為
首先,給出一個(gè)定理,其證明請(qǐng)參見Giaquinta和Modica[9].在上述計(jì)算中,多次使用了H?lder不等式、Young不等式.若取,則由(22)式可得
為估計(jì)(23)式中的最后一項(xiàng),我們利用邊界?Ω是p-Poincaré厚的條件.事實(shí)上,函數(shù)u-θ能連續(xù)零延拓到CΩ,因而
利用Minikowski不等式和H?lder不等式可得
因此由式(23)、(24)和(25)可得
其中C=C(diamΩ,n,p).
因?yàn)棣取蔐s(Ω),由式(30)可得u∈Lδ(Ω).記q=min{t,δ}>p,若p<n,則u∈W1,q(Ω).如果p≥n,則上述推理過程對(duì)任何p*<∞都成立,再利用Minkowski不等式和H?lder不等式可得u∈Ls(Ω),因而u∈W1,q(Ω).只要取∈0=q-p,即知定理成立.
[1]HEINONEN J,KILPELAINEN T,MARTIO O.Nonlinear potential theory of degenerate elliptic equations[M].Oxford:Clarendon Press,1993.
[2]KUBO M,YAMAZAKI N.Periodic solutions of elliptic-parabolic variational inequalities with time-dependent constraints[J].J Evol Eqns,2006,6(1):71-93.
[3]BARRON E N,JENSEN R.Minimizing the L∞norm of the gradient with an energy constraint[J].Comm in PDE,2005,30 (12):1741-1772.
[4]CAHN J W,HANDWERKER C A,TAYLOR J E.Geometric models of crystal growth[J].Acta Met,1992,40(7):1443-1474.
[5]LI G,MARTIO O.Stability and higher integrability of derivatives of solutions in double obstacle problems[J].J Math Anal Appl,2002,272(1):19-29.
[6]LI G,MARTIO O.Stability of solutions of varying degenerate elliptic equations[J].Indiana Math J,1998,47(3):873-891.
[7]GRANLUND S.An Lp-estimate for the gradient of extremals[J].Math Scand,1982,50(1):66-72.
[8]LI G,MARTIO O.Local and global integrability of gradients in obstacle problems[J].Ann Acad Sci Fenn Ser A I Math,1994,19:25-34.
[9]GIAQUINTA M,MODICA G.Regularity results for some classes of higher order nonlinear elliptic systems[J].J Fur Reine U Angew Math,1979,311/312:145-169.
[10]IWANIEC T.The Gehring lemma:proceedings of the International Symposium,Ann Arbor,August 1995[C]//P.L.Duren. Quasiconformal mappings and analysis.New York:Springer-Verlag,1998.
[11]GILBARG D,TRUDINGER N S.Elliptic partial equations of second order[M].2nd ed.New York:Springer-Verlag,1983.
Higer Integrability for Weak Solutions to a Class of Double Obstacle Problems
HU Zhen-hua1,2,ZHOU Shu-qing2*,PENG Dong-yun2
(1.College of Mathematics and Computer Science,Hunan City University,Yiyang 413000,China; 2.College of Mathematics and Computer Science,Hunan Normal University,Changsha 410081,China)
By constructing special test functions and using inverse H?lder′s inequality,local and global higher integrability results to the weak solutions to a class of double problems described by quasilinear elliptic partial differential equations div(A(x,▽u))=div f(x),are obtained.The research of double obstacle can widely be used in control problems,optimal control problems and financial problems.
double obstacle;local higher integrability;global higher integrability;optimal control;inverse H?lder′s inequality
O175.25
A
1000-2537(2011)05-0007-05
2011-03-13
國(guó)家自然科學(xué)基金資助項(xiàng)目(10971061);湖南省自然科學(xué)基金(11JJ6005)和湖南師范大學(xué)優(yōu)秀青年培養(yǎng)計(jì)劃資助項(xiàng)目(080640)
*通訊作者,E-mail:zhoushuqing87@163.com
(編輯沈小玲)