余春開,于雙妮,盧朝輝,陳 杰
中國醫(yī)學科學院 北京協(xié)和醫(yī)學院 北京協(xié)和醫(yī)院病理科, 北京 100730
·綜述·
微小RNA在胰腺導管腺癌中的研究進展
余春開,于雙妮,盧朝輝,陳 杰
中國醫(yī)學科學院 北京協(xié)和醫(yī)學院 北京協(xié)和醫(yī)院病理科, 北京 100730
微小RNA (miRNA)是一種內(nèi)源性非編碼RNA分子,長度19~24個核苷酸,作為轉(zhuǎn)錄后調(diào)節(jié)分子發(fā)揮作用。多種腫瘤中都存在miRNA表達譜的改變,差異表達的miRNA發(fā)揮癌基因或抑癌基因的作用,與腫瘤的發(fā)生、發(fā)展和預后有著密切的聯(lián)系。對胰腺導管腺癌miRNA表達譜的研究及其靶基因的探索有助于了解胰腺導管腺癌的發(fā)病機制,同時miRNA表達譜是胰腺導管腺癌早期診斷和預后判斷潛在的腫瘤標志物。本文總結(jié)了近年已知miRNA在胰腺腺癌中的表達情況,并探討miRNA在胰腺導管腺癌診斷、治療及預后中的作用。
胰腺導管腺癌;微小RNA;靶基因;生物學標志物
胰腺導管腺癌是一種高度侵襲性的腫瘤,且臨床癥狀出現(xiàn)晚,不易早期發(fā)現(xiàn),是實性腫瘤中預后最差的,5年生存率小于5%。在美國,胰腺導管腺癌在癌癥導致的死亡原因中排第4位。在我國發(fā)病率逐年上升,且有年輕化的趨勢。雖然化療和放療等輔助治療對于延長胰腺導管腺癌患者生存時間發(fā)揮了一定作用,但是預后仍然很差,中位生存期小于24個月。目前幾乎沒有胰腺導管腺癌特異性的生物學標記,也沒有滿意的胰腺導管腺癌的診斷和治療方法。胰腺導管腺癌微小RNA(microRNA, miRNA)的研究有助于了解胰腺導管腺癌的發(fā)病機制,并可能為胰腺導管腺癌的診斷和治療提供新線索。
miRNA是一種內(nèi)源性非編碼單鏈小分子RNA,長度19~24個核苷酸,通過與mRNA 特定區(qū)域結(jié)合對蛋白質(zhì)的翻譯進行調(diào)控。在多種生物學過程中發(fā)揮重要作用。目前已報道1000多種人類miRNA,其中一部分miRNA在細胞增殖、凋亡和分化中發(fā)揮作用。多種腫瘤中存在miRNA表達譜的改變,miRNA與腫瘤的發(fā)生、發(fā)展和預后有著密切的聯(lián)系。近年研究表明,miRNA 在人類胰腺導管腺癌組織中有異常表達,其表達譜可清楚區(qū)分癌組織與慢性胰腺炎及正常胰腺組織[1-12]。有研究顯示miRNA 在人外周血中穩(wěn)定表達,提示miRNA 是胰腺導管腺癌早期診斷潛在的腫瘤標記物[1]。另有研究者發(fā)現(xiàn)了一些胰腺導管腺癌相關(guān)miRNA作用的靶基因,提示miRNA可能是胰腺導管腺癌潛在的治療靶點。
miRNA由不同的染色體位點轉(zhuǎn)錄而成,編碼miRNA的基因約占整個基因組的2%~5%。miRNA的生物合成較為復雜[2-3],首先miRNA基因由RNA 合酶Ⅱ介導轉(zhuǎn)錄成初級-miRNA(primary miRNA),其含有帽子結(jié)構(gòu)和poly A 尾。初級-miRNA在核內(nèi)被核糖核酸酶Ⅲ家族成員Drosha剪切成約70核苷酸 具有發(fā)夾狀結(jié)構(gòu)的前體-miRNA(precursor miRNA)。與雙鏈RNA 結(jié)合蛋白DGCR8結(jié)合,前體-miRNA由核輸出蛋白-5和RAN 2GTP轉(zhuǎn)運到胞質(zhì),被另一種核糖核酸酶Ⅲ家族成員Dicer剪切為長約22核苷酸的雙鏈miRNA。miRNA 雙體經(jīng)過解旋酶的作用解旋,產(chǎn)生成熟miRNA單體,其中具有生物學作用的一條單鏈成熟miRNA很快和RNA誘導沉默復合物進行組合,而另一條鏈大部分情況下被降解。在RNA誘導沉默復合物的保護下,miRNA與靶mRNA的3’端非編碼區(qū)相結(jié)合[4]。
研究表明miRNA 在人體一系列重要的生命過程中發(fā)揮調(diào)控作用,包括細胞增殖、細胞凋亡、生長發(fā)育、細胞分化和炎癥等。人體中20%~30%的蛋白編碼基因被miRNA 調(diào)控,miRNA與相應(yīng)的基因和蛋白質(zhì)一起形成人體復雜而精確的調(diào)控網(wǎng)絡(luò)。研究證實多種腫瘤組織都存在miRNA表達譜的改變,miRNA與腫瘤的發(fā)生、發(fā)展和預后有著密切的聯(lián)系。與正常組織相比,腫瘤組織存在差異性表達,有部分miRNA表達上調(diào),部分miRNA表達下調(diào)。Volinia等[5]運用含有特異性探針的芯片對54 個樣本(包括肺、乳腺、胃、前列腺、結(jié)腸和胰腺癌6 種實體瘤組織)的137個miRNA 表達譜進行分析,發(fā)現(xiàn)有49個miRNA 差異表達,其中34個miRNA在腫瘤組織中的表達高于其在正常組織中的表達。
與腫瘤相關(guān)的微小RNA,被稱為致癌微小RNA。miRNA表達的改變可發(fā)揮癌基因或抑癌基因的作用。若在腫瘤細胞中高表達,具有類似癌基因的作用;在腫瘤組織中低表達時,則具有類似腫瘤抑制因子的作用。
胰腺導管腺癌是多基因參與的高度惡性腫瘤,且這些多基因改變參與了胰腺導管腺癌從胰腺癌前病變到胰腺導管腺癌的不同發(fā)展過程。胰腺癌前病變包括胰腺導管內(nèi)乳頭狀黏液性腫瘤、黏液性囊腺瘤及胰腺導管上皮內(nèi)瘤變(pancreatic intraepithelial neoplasia,PanIN)。胰腺癌前病變可能存在不同的miRNA表達譜[6-8]。Habbe等[6]用qRT-PCR和核酸鎖定原位雜交的方法檢測15例胰腺導管內(nèi)乳頭狀黏液性腫瘤及對應(yīng)的對照組織發(fā)現(xiàn)miR-155表達顯著上調(diào)。Ryu等[7]分析了miR-21、 miR-155和miR-221在胰腺非浸潤性病變(PanIN-1、PanIN-2和 PanIN-3)的表達,結(jié)果顯示miR-155表達上調(diào)出現(xiàn)在PanIN-2,而miR-21表達上調(diào)出現(xiàn)在PanIN-3。這些研究結(jié)果均提示miR-155表達異常出現(xiàn)在胰腺導管腺癌的較早期階段,miR-155可作為胰腺癌前病變的生物學標記物。
近幾年miRNA芯片和定量PCR技術(shù)被應(yīng)用于miRNA的研究。有學者用這些技術(shù)研究胰腺導管腺癌的miRNA表達譜,比較胰腺導管腺癌來源的細胞系或胰腺導管腺癌組織與慢性胰腺炎、正常胰腺組織的miRNA表達情況,結(jié)果顯示胰腺導管腺癌中有大量的miRNA表達出現(xiàn)異常[9-12]。與正常胰腺組織相比,胰腺導管腺癌細胞系或癌組織中miRNA的表達異常大部分表現(xiàn)為高表達,如miR-21、miR-155、miR-221、miR-210等,小部分為低表達,如miR-148a/-148b;并且發(fā)現(xiàn)慢性胰腺炎miRNA的表達譜與正常胰腺組織相似,而胰腺正常組織與胰腺導管腺癌的miRNA表達譜則明顯不同[9-12]。
由于腫瘤組織標本中包含了腫瘤細胞、間質(zhì)、正常腺泡及導管等各種類型細胞,因此由整個腫瘤組織檢測到的miRNA不能直接反應(yīng)腫瘤細胞的miRNA改變。用核酸鎖定原位雜交方法可以明確定位哪種細胞出現(xiàn)了miRNA表達改變。研究顯示大部分miRNA如miR-21和miR-155的過表達位于腫瘤細胞,而不是間質(zhì)、正常腺泡或?qū)Ч躘6, 13];另有報道m(xù)iR-221、 miR-376a及miR-301的表達亦定位于腫瘤細胞,而間質(zhì)、正常腺泡或?qū)Ч軣o表達[9]。
根據(jù)生物信息學預測,一種miRNA 可調(diào)控多種靶mRNA的表達,而一個靶mRNA可以接受多個miRNA 的調(diào)控。miRNA對靶基因的調(diào)控發(fā)生在轉(zhuǎn)錄后水平,通過對靶基因轉(zhuǎn)錄體的切割或?qū)ζ浞g抑制等兩種機制來下調(diào)靶基因的表達。這兩種機制的選擇取決于其與靶基因轉(zhuǎn)錄體序列互補的程度。如果miRNA 與靶基因轉(zhuǎn)錄體mRNA 充分互補,miRNA 將通過切割方式降解靶基因;如果miRNA與靶基因轉(zhuǎn)錄體mRNA未充分互補, 但有多個互補位點,那么miRNA 將對靶基因進行翻譯抑制[14]。miRNA對其功能靶點的最低要求是至少7個堿基與5’端互補結(jié)合,即可調(diào)控其靶基因。
近年陸續(xù)有關(guān)于胰腺導管腺癌miRNA的功能研究及其靶基因的報道(表1)。但是由于miRNA與靶基因之間的調(diào)控網(wǎng)絡(luò)非常復雜,特別是胰腺導管腺癌發(fā)生發(fā)展中發(fā)揮關(guān)鍵作用的miRNA與靶基因仍需要大量的研究進一步證實。
胰腺導管腺癌組織存在miRNA的異常表達,而且miRNA的差異表達有胰腺的組織特異性,因此miRNA可用于胰腺導管腺癌與其他臟器組織來源惡性腫瘤的鑒別診斷[10, 41-42]。Poy等[43]研究顯示miR-375和miR-376在鼠胰腺和胰腺細胞系中的表達明顯高于鼠的腦、心臟和肝組織。Olson等[44]檢測了540例實性腫瘤(包括乳腺、結(jié)腸、肺、胰腺、前列腺和胃)的miRNA表達譜,發(fā)現(xiàn)不同實性腫瘤及正常細胞的miRNA表達譜有差異,miR-21、miR-191和 miR-17-5p在所有6種類型腫瘤均顯著過表達,而miR-218-2在結(jié)腸、胃、前列腺和胰腺均低表達,在肺癌和乳腺癌未出現(xiàn)低表達,這些結(jié)果表明結(jié)腸、胰腺、前列腺和肺具有相似的miRNA表達,而乳腺和肺分別有不同的miRNA表達。胰腺內(nèi)分泌和外分泌腫瘤的miRNA的表達亦存在差異,如miR-204主要在胰島素瘤中表達,且與其免疫組化胰島素的表達有相關(guān)性,miRNA可用于鑒別內(nèi)分泌腫瘤和腺泡來源的腫瘤[45]。
表 1 胰腺導管腺癌相關(guān)微小RNA的功能及其靶基因
相對于幾萬種mRNA和蛋白的表達譜,只有幾百種的miRNA表達譜可能是一種更好的鑒別診斷方法[46]。另外miRNA分子比mRNA要短,更能耐受核糖核酸酶的降解,且在福爾馬林固定石蠟包埋組織和血漿中能完整的保存,因此石蠟包埋組織和外周血也可用于胰腺導管腺癌miRNA的研究和診斷[10, 46-47]。Ho等[32]對胰腺導管腺癌患者和正常人的外周血miR-210的對照研究顯示,miR-210能被有效的檢測到并定量,并且發(fā)現(xiàn)胰腺導管腺癌患者和正常人的外周血 miR-210 的表達有顯著性差異。另外還發(fā)現(xiàn)胰腺導管腺癌患者胰液與腫瘤組織中有相似的miRNA表達改變[48]。由此推測miRNA可作為胰腺導管腺癌的診斷性篩查和預后監(jiān)測。
雖然miRNA用于胰腺導管腺癌的臨床診斷還需要大量的研究工作,但是目前的研究結(jié)果表明miRNA表達譜是潛在的診斷標記物。
miRNA在腫瘤中可以發(fā)揮癌基因和抑癌基因的作用,因此產(chǎn)生了兩種以miRNA為基礎(chǔ)的腫瘤治療新策略:即恢復腫瘤中低表達的miRNA及阻斷腫瘤中過表達的miRNA。關(guān)于miRNA功能研究的體外和體內(nèi)試驗證實人工合成miRNA或其反義寡核苷酸可影響癌基因及抑癌基因的表達、腫瘤細胞生長能力和腫瘤的生長速度[13,18,36,38-40]。
合成miRNA、修正miRNA低表達將是一種新的腫瘤治療方法[37]。let-7在正常胰腺腺泡中高表達而在低分化癌細胞中表達缺失,體外修復胰腺導管腺癌中l(wèi)et-7的表達水平,獲取胞漿合成let-7的細胞或轉(zhuǎn)染慢病毒載體,結(jié)果在體外和體內(nèi)對細胞增生、K-ras的表達和有絲分裂蛋白激酶活性有較強的抑制作用[36]。hsa-mir-217在胰腺導管腺癌中表達下調(diào),采用構(gòu)建的hsa-mir-217表達載體、人工合成前體pre-mir-217和抑制劑anti-mir-217對胰腺導管腺癌細胞進行轉(zhuǎn)染,結(jié)果顯示升高hsa-mir-217可以顯著抑制胰腺導管腺癌細胞系PANC-1及MIA PaCa-2細胞生長及非錨著依賴性生長能力;217-載體體內(nèi)轉(zhuǎn)染PANC-1細胞裸鼠移植瘤模型結(jié)果顯示,與對照組相比,217-載體轉(zhuǎn)染組移植瘤的生長速度顯著減慢;轉(zhuǎn)染217-抑制劑的MIA PaCa-2細胞內(nèi)源性hsa-mir-217水平降低而非錨著依賴性生長能力增強[13]。
另外,miRNA的反義寡核苷酸在體內(nèi)能抑制miRNA的功能。合成腫瘤組織中高表達miRNA或其前體的反義寡核苷酸可以抑制腫瘤細胞增殖和腫瘤生長速度。反義寡核苷酸包括2’-O-甲基、2’-O-甲氧乙基的膽固醇分子偶聯(lián)的寡聚核苷酸或鎖定核苷酸的寡核苷酸。
miRNA的表達與胰腺導管腺癌的預后是否存在一定的相關(guān)性?如果確實有某些miRNA的表達與胰腺導管腺癌的預后有相關(guān)性,那么miRNA可以作為一個重要的生物學指標,并確定哪些患者需要進一步的治療。miR-21是目前研究較多的可能與胰腺導管腺癌預后密切相關(guān)的miRNA[15, 17, 49]。Dillhoff等[16]用原位雜交的方法證實miR-21的表達與胰腺腫瘤大小、分化、淋巴結(jié)轉(zhuǎn)移情況和臨床分期無相關(guān)性,但是與miR-21局灶表達或無表達且淋巴結(jié)陰性的患者相比,miR-21過表達的患者預后更差。Bloomston等[10]比較了存活超過2年的淋巴結(jié)轉(zhuǎn)移的患者和2年內(nèi)死亡的患者的miRNA表達情況,結(jié)果顯示淋巴結(jié)轉(zhuǎn)移而生存期長的患者有6個miRNA (miR-452、miR-105、miR-127、miR-518a-2、 miR-187、和miR-30a-3p)高表達;另外研究顯示miR-196-a2的高表達與預后差存在相關(guān)性。Greither等[21]用定量RT-PCR的方法檢測56例胰腺癌miRNA表達情況并分析了與預后隨訪相關(guān)性,結(jié)果顯示miR-155、 miR-203、miR-210和miR-222與預后差存在顯著的相關(guān)性,與表達下調(diào)的患者相比,這4個miRNA表達上調(diào)的患者死亡風險增高6.2倍[21]。另外miR-17-5p[50]和hsa-miR-200c[51]也可能與胰腺導管腺癌的預后差有關(guān)。
miRNA在外周血中穩(wěn)定存在,因此,外周血miRNA是胰腺導管腺癌預后隨訪潛在的生物學標記物。Kong 等[52]用實時定量PCR檢測了35例胰腺導管腺癌、15例慢性胰腺炎和15例正常人血清miRNA表達情況,結(jié)果顯示血清miR-21可以區(qū)別胰腺癌患者和正常人,血清miR-155 和 miR-196a可以區(qū)別胰腺疾病患者和正常人,而非手術(shù)患者的血清miR-196a比手術(shù)患者明顯高,而且高表達的患者預后明顯差。
miRNA 與腫瘤的發(fā)生、發(fā)展和預后有著密切的聯(lián)系。miRNA的功能研究及在胰腺導管腺癌發(fā)生、發(fā)展、診斷和治療中的作用,已成為胰腺導管腺癌研究的熱點。有研究表明胰腺導管腺癌存在miRNA異常表達,并且部分miRNA可能具有胰腺特異性,但是尚未明確是哪個或哪幾個miRNA在胰腺導管腺癌的發(fā)生發(fā)展中發(fā)揮關(guān)鍵作用,且其調(diào)控的靶基因及調(diào)控機制尚需做大量的研究工作,而其在胰腺導管腺癌診斷、治療及預后上的研究尚處于初步階段,還不能廣泛地應(yīng)用于臨床。希望胰腺導管腺癌miRNA的研究能進一步剖析胰腺導管腺癌的發(fā)病機制,并為胰腺導管腺癌的臨床診斷和預后隨訪提供特異、敏感的分子生物標志物,為胰腺導管腺癌的治療研究提供新視野。
[1] Ali S, Almhanna K, Chen W, et al. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer[J]. Am J Transl Res, 2010, 3(1):28-47.
[2] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543):853-858.
[3] Kong Y, Han JH. MicroRNA: biological and computational perspective[J]. Genomics Proteomics Bioinformatics, 2005, 3(2):62-72.
[4] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[5] Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U S A, 2006, 103(7):2257-2261.
[6] Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia[J]. Cancer Biol Ther, 2009, 8(4):340-346.
[7] Ryu JK, Hong SM, Karikari CA, et al. Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma[J]. Pancreatology, 2010, 10(1):66-73.
[8] du Rieu MC, Torrisani J, Selves J, et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions[J]. Clin Chem, 2010, 56(4):603-612.
[9] Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene, 2007, 26(30):4442-4452.
[10] Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J]. JAMA, 2007, 297(17):1901-1908.
[11] Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis[J]. World J Surg, 2009, 33(4):698-709.
[12] Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer, 2007, 120(5):1046-1054.
[13] Zhao WG, Yu SN, Lu ZH, et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS[J]. Carcinogenesis, 2010, 31(10):1726-1733.
[14] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[15] Bhatti I, Lee A, James V, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg, 2010,15(1):199-208.
[16] Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival[J]. J Gastrointest Surg, 2008, 12(12):2171-2176.
[17] Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer[J]. PLoS One, 2010, 5(5):e10630.
[18] Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma[J]. Pancreas, 2009, 38(7):e190-e199.
[19] Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene[J]. Oncogene, 2008, 27(31):4373-4379.
[20] Bhatti I, Lee A, James V, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma[J]. J Gastrointest Surg, 2011, 15(1):199-208.
[21] Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival[J]. Int J Cancer, 2010, 126(1):73-80.
[22] Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development[J]. Proc Natl Acad Sci U S A, 2007, 104(41):16170-16175.
[23] Kong X, Du Y, Wang G, et al. Erratum to: detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis[J]. Dig Dis Sci, 2010, 56(2):602-609
[24] Ma Y, Yu S, Zhao W, et al. miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2[J]. Cancer Lett, 2010, 298(2):150-158.
[25] Wang F, Xue X, Wei J, et al. hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations[J]. Br J Cancer, 2010, 103(4):567-574.
[26] Lu Z, Li Y, Takwi A, et al. miR-301a as an NF-kappaB activator in pancreatic cancer cells[J]. EMBO J, 2011, 30(1):57-67.
[27] Park JK, Henry JC, Jiang J, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor[J]. Biochem Biophys Res Commun, 2011, 406(4):518-523
[28] Hao J, Zhang S, Zhou Y, et al. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer[J]. Biochem Biophys Res Commun, 2011, 406(4):552-557.
[29] Hao J, Zhang S, Zhou Y, et al. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer[J]. FEBS Lett, 2011, 585(1):207-213.
[30] Zhang XJ, Ye H, Zeng CW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer[J]. J Hematol Oncol, 2010, 32(3):46.
[31] Sureban SM, May R, Lightfoot SA, et al. DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism[J]. Cancer Res, 2011, 71(6):2328-2338.
[32] Ho AS, Huang X, Cao H, et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer[J]. Transl Oncol, 2010, 3(2):109-113.
[33] Jiang J, Lee EJ, Gusev Y, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J]. Nucleic Acids Res, 2005, 33(17):5394-5403.
[34] Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005, 120(5):635-647.
[35] Dangi-Garimella S, Strouch MJ, Grippo PJ, et al. Collagen regulation of let-7 in pancreatic cancer involves TGF-beta1-mediated membrane type 1-matrix metalloproteinase expression[J]. Oncogene, 2011, 30(8):1002-1008.
[36] Torrisani J, Bournet B, du Rieu MC, et al. let-7 MicroRNA transfer in pancreatic cancer-derived cells inhibitsinvitrocell proliferation but fails to alter tumor progression[J]. Hum Gene Ther, 2009, 20(8):831-844.
[37] Li Y, Vandenboom TN, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells[J]. Cancer Res, 2010, 70(4):1486-1495.
[38] Yan H, Wu J, Liu W, et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells[J]. Hum Gene Ther, 2010, 21(12):1723-1734.
[39] Yu S, Lu Z, Liu C, et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer[J]. Cancer Res, 2010, 70(14):6015-6025.
[40] Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells[J]. PLoS One, 2009, 4(8):e6816.
[41] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes[J]. RNA, 2005, 11(3):241-247.
[42] Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression[J]. Proc Natl Acad Sci U S A, 2006, 103(8):2746-2751.
[43] Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004, 432(7014):226-230.
[44] Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer[J]. Genes Dev, 2009, 23(18):2152-2165.
[45] Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior[J]. J Clin Oncol, 2006, 24(29):4677-4684.
[46] Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435(7043):834-838.
[47] Albulescu R, Neagu M, Albulescu L, et al. Tissular and soluble miRNAs for diagnostic and therapy improvement in digestive tract cancers[J]. Expert Rev Mol Diagn, 2011, 11(1):101-120.
[48] Sadakari Y, Ohtsuka T, Ohuchida K, et al. MicroRNA expression analyses in preoperative pancreatic juice samples of pancreatic ductal adenocarcinoma[J]. JOP, 2010, 11(6):587-592.
[49] Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity[J]. Cancer Res, 2010, 70(11):4528-4538.
[50] Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion[J]. Cancer Biol Ther, 2010, 10(8):748-757.
[51] Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation[J]. Mol Cancer, 2010, 9:169.
[52] Kong X, Du Y, Wang G, et al. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis[J]. Dig Dis Sci, 2010, 56(2):602-609.
ResearchAdvancesinMicroRNAinPancreaticDuctalAdenocarcinoma
YU Chun-kai, YU Shuang-ni, LU Zhao-hui, CHEN Jie
Department of Pathology, PUMC Hospital, CAMS and PUMC, Beijing 100730, China
CHEN Jie Tel:010-65295490, E-mail: xhblk@163.com
MicroRNA (miRNA), small non-coding RNA consisted of 19-24 nucleotides, are able to regulate gene expression at the post-transcriptional level. The aberrant expressions of miRNA have been found in various cancers and contribute to carcinogenesis by promoting the expression of proto-oncogenes or by inhibiting the expression of tumor suppressor genes. miRNA are related closely with the oncogenesis, progression, and prognosis of tumors. The discovery of the aberrant expression of miRNA in pancreatic ductal adenocarcinoma (PDA) and its target genes are helpful for the understanding of the pathogenesis of PDA and for the early diagnosis and prediction of this disease. In this paper, we summarize the recent research advances in miRNA expression in PDA and its target genes and discuss the potential role of miRNA in the diagnosis, and treatment of PDA.
pancreatic ductal adenocarcinoma; microRNA;target gene; biomarker
ActaAcadMedSin, 2011,33(5):575-581
陳 杰 電話:010-65295490,電子郵件:xhblk@163.com
R735.9
A
1000-503X(2011)05-0575-07
10.3881/j.issn.1000-503X.2011.05.019
國家自然科學基金(30471970)和國家科技支撐計劃(十一五)課題(2006BAI02A14)Supported by the National Nature Sciences Foundation of China(30471970) and the National Key Technology R&D Program in the 11th Five Year Plan of China (2006BAI02A14)
2011-04-06)