邵禮翠, 朱 燕
(揚州大學 數(shù)學科學學院, 江蘇 揚州 225002)
某些亞純多葉函數(shù)的性質(zhì)
邵禮翠, 朱 燕
(揚州大學 數(shù)學科學學院, 江蘇 揚州 225002)
亞純函數(shù); 微分從屬; Gauss超幾何函數(shù)
(1)
且在去心單位圓U*={z:z∈C,0lt;|z|lt;1}=U{0}內(nèi)p葉解析的函數(shù)f(z)組成的函數(shù)類.
設f(z)和g(z)在U內(nèi)解析,如果存在一個Schwarz函數(shù)w(z)在U內(nèi)解析,并且w(0)=0,|w(z)|lt;1(z∈U),使得f(z)=g(w(z)),則稱f(z)從屬于g(z),記作fg.事實上,f(z)g(z)(z∈U)?f(0)=g(0),且f(U)?g(U).進一步,如果g(z)在U內(nèi)單葉,則有f(z)g(z)(z∈U)?f(0)=g(0)且f(U)?g(U).
定義Gauss超幾何函數(shù)2F1如下:
(2)
(3)
定義f1(z)和f2(z)的Hadamard卷積為
(4)
按照Pochhammer符號
(k)0=1,(k)n=k(k+1)(k+2)…(k+n-1)(n∈N),
定義函數(shù):
(5)
(6)
(7)
從(1)和(7)可看出,
(8)
由(8)容易看出
(9)
(10)
引理1[7]設h在U內(nèi)解析, 凸單葉,并且h(0)=1,
φ=1+b1z+b2z2+…,如果
(11)
則φ(z)q(z)=γz-γtγ-1h(t)dth(z)(z∈U),并且q(z)是最佳控制.
(12)
2F1(a,b;c;z)=2F1(b,a;c;z)
(13)
(14)
若無特別說明,下文中agt;0,cgt;0,λgt;-p,-1≤Blt;A≤1.
(15)
如果
(16)
則
(17)
其中
證明由(14)和(9),可得
(18)
令
(19)
對(19)兩邊微分,可得
則
φ(z)q(z)
(20)
則
(21)
其中j∈N∪{0},αgt;0,
(22)
證明由定理1證明可知:
令
則φ(z)=1+b1z+b2z2+…
從(20)可得,
φ(z)h(z)(z∈U)
(23)
現(xiàn)在設
(24)
容易驗證
(25)
(26)
因此
2(1-γ)Rcosθ+2γR2(2cos2θ-1)-1=R4γ(1-r2)2+R2[(1-γ)(1-r2)-2γr2]≥
R2[γ(1-r)2+(1-γ)(1-r2)-2γr2]=R2(1-2γr-r2)gt;0(|z|=rlt;ρ),
所以
(27)
下證精確性.
由于
則
[1] Cho N E,Kwon O S, Srivastava H M. Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators?[J].Math Anal Appl, 2004, 292: 470-483.
[2] Liu J L, Patel J. Certain properties of multivalent functions associated with an extended fractionalDifferintegral operator?[J].Applied Mathematics and Computation, 2008, 203:703-713.
[3] Liu J L. Some properties of certain meromorphically multivalent functions?[J].Applied Mathematics and Computation, 2009, 210:136-140.
[4] Liu J L, Ahuja O P. Differential subordinations and argument inequalities?[J].Journal of the Franklin Institute, 2010, 347:1430-1436.
[5] Patel J, Cho N E, Srivastava H M.Certain subclasses of multivalent functions associated with a family of linear operators?[J].Mathematical and Computer Modelling, 2006, 43:320-338.
[6] Sokol J, Spelina L T. Convolutionproperties for certain classes of multivalent functions?[J].Math Anal Appl, 2008, 337:1190-1197.
[7] Miller S S, Mocanu P T. Differential subordinations and univalent functions?[J].Michigan Math, 1981, 28:157-171.
[8] Whittaker E T, Watson G N. A course on Modern Analysis:An Introduction to the General Theory of Infinite Processes and of Analytic Functions:with an Account of the Principle Transcendental Functions,fourthed?[M]. Cambridge University Press:Cambridge,1927.
[責任編輯:李春紅]
SomePropertiesofCertainMeromorPhicallyMultivalentFunctions
SHAO Li-cui, ZHU-Yan
(Department of Mathematics, Yangzhou University, Yangzhou Jiangsu 225002, China)
meromorphically functions; differential subordination; gauss hypergeometric function
O174.5
A
1671-6876(2011)02-0110-04
2010-12-25
邵禮翠(1984-), 女, 安徽懷遠人, 碩士研究生, 研究方向為復分析.