劉興軍,張紅玲,王書亮,王翠萍,潘復(fù)生,湯愛濤,趙棟梁
(1. 廈門大學(xué) 材料學(xué)院,廈門 361005;2. 重慶大學(xué) 材料科學(xué)與工程學(xué)院,重慶 400045;3. 北京鋼鐵研究總院,北京 100081)
RE-X二元合金相圖的熱力學(xué)數(shù)據(jù)庫
劉興軍1,張紅玲1,王書亮1,王翠萍1,潘復(fù)生2,湯愛濤2,趙棟梁3
(1. 廈門大學(xué) 材料學(xué)院,廈門 361005;2. 重慶大學(xué) 材料科學(xué)與工程學(xué)院,重慶 400045;3. 北京鋼鐵研究總院,北京 100081)
利用CALPHAD方法,采用亞正規(guī)溶體模型、亞點(diǎn)陣模型以及理想氣體模型來描述RE-X (Ag, Bi, Cr, Mn,Mo, V, Zn)中二元系各相的Gibbs自由能,并結(jié)合相平衡及熱力學(xué)性質(zhì)的實(shí)驗(yàn)結(jié)果,對(duì)Ag-RE (RE: Sc, Y, Nd, Sm, Gd,Tb, Ho, Er)、Bi-RE (RE: Nd, Tm, Er, Ho, Pr, Gd)、Cr-RE (RE: Ce, Nd, Sm, Lu)、Mn-RE (RE: Pr, Nd, Sm, Eu, Tb, Dy, Ho,Er, Tm, Yb, Lu)、Mo-RE (RE: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu)、V-RE (RE: La, Ce, Pr, Nd, Ho,Lu)和Zn-RE (RE: Y, Ce, Pr, Nd, Sm ) 各二元系相圖進(jìn)行熱力學(xué)優(yōu)化與計(jì)算。計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)取得很好的一致性,并結(jié)合其他相關(guān)稀土二元系相圖熱力學(xué)計(jì)算,初步建立部分稀土二元合金相圖的熱力學(xué)數(shù)據(jù)庫。該熱力學(xué)數(shù)據(jù)庫可以提供相平衡及熱力學(xué)性質(zhì)等多種信息,為外推計(jì)算稀土多組元體系的相平衡提供理論基礎(chǔ),并為高性能稀土合金材料的設(shè)計(jì)及制備提供重要的理論指導(dǎo)。
稀土合金;相圖;熱力學(xué)計(jì)算
稀土元素由于其結(jié)構(gòu)的特殊性而具有諸多其他元素所不具備的光、電、磁、熱等性能,從而可以制備成許多能用于高新技術(shù)的新材料[1]。中國(guó)是稀土資源大國(guó),稀土材料的開發(fā)具有重要的戰(zhàn)略意義。相圖作為材料設(shè)計(jì)的“地圖”,對(duì)稀土材料的開發(fā)具有重要的指導(dǎo)意義。因此,有效地利用稀土二元合金的實(shí)驗(yàn)相圖及熱力學(xué)性能等相關(guān)信息,開展相圖的熱力學(xué)計(jì)算并建立稀土合金的熱力學(xué)設(shè)計(jì)系統(tǒng),實(shí)現(xiàn)稀土合金的成分與組織的精確設(shè)計(jì),將是一項(xiàng)具有重要理論價(jià)值的研究工作。
相圖計(jì)算的CALPHAD技術(shù)[2]是通過建立熱力學(xué)模型來計(jì)算體系的相圖和熱力學(xué)性質(zhì),其特點(diǎn)是通過二元和三元等低組元系的實(shí)驗(yàn)數(shù)據(jù)為主建立的熱力學(xué)模型和多元系的少量關(guān)鍵實(shí)驗(yàn)數(shù)據(jù)相結(jié)合,可以預(yù)測(cè)實(shí)用多元合金的相平衡、熱力學(xué)性質(zhì)、組元的活度和蒸汽壓、相變驅(qū)動(dòng)力等合金的性質(zhì)等。CALPHAD方法[2]已經(jīng)成為多元合金設(shè)計(jì)的有效手段。
本研究利用CALPHAD方法,結(jié)合各種實(shí)驗(yàn)數(shù)據(jù)對(duì)Ag-RE (RE: Sc, Y, Nd, Sm, Gd, Tb, Ho, Er)、Bi-RE(RE: Nd, Tm, Er, Ho, Pr, Gd)、Cr-RE (RE: Ce, Nd, Sm,Lu)、Mn-RE (RE: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm,Yb, Lu)、Mo-RE (RE: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb,Dy, Ho, Er, Tm, Yb, Lu)、V-RE (RE: La, Ce, Pr, Nd, Ho,Lu)和Zn-RE (RE: Y, Ce, Pr, Nd, Sm)各二元系相圖進(jìn)行熱力學(xué)優(yōu)化與計(jì)算,獲得一組自洽合理的描述各相自由能的熱力學(xué)參數(shù),并結(jié)合其他相關(guān)稀土二元系相圖熱力學(xué)計(jì)算的文獻(xiàn)報(bào)道[3?12],初步建立 RE-X 二元合金相圖的熱力學(xué)數(shù)據(jù)庫。
液相和端際固溶體相的Gibbs自由能都是采用亞正規(guī)溶體模型[13]描述的,其摩爾Gibbs自由能表示為
式中:xi為φ相中組分i的摩爾分?jǐn)?shù);0G為純組分i的φ相摩爾Gibbs自由能;EG為φ相的摩爾過剩自由能,用Redlich-Kister多項(xiàng)式描述:
式中:nL表示二元相互作用參數(shù),可采用如下形式:
式中:a、b和c是待優(yōu)化的熱力學(xué)參數(shù)。
ΔmagG是磁性對(duì)Gibbs自由能的貢獻(xiàn),用如下等式描述:
本研究在計(jì)算Mn-RE各二元系相圖時(shí),考慮磁性自由能對(duì)相變的影響。
在RE-X二元系中存在氣相時(shí),采用理想氣體模型[14]來描述氣相的自由能。Ggas表示氣相自由能,用如下等式描述:
式中:xi為氣相中組分i的摩爾分?jǐn)?shù);P0為標(biāo)準(zhǔn)大氣壓;P為體系的實(shí)際壓力;0G為純組分i的氣相摩爾Gibbs自由能。
在RE-X體系中,線性化合物相采用通式AmBn表示,該類化合物相的Gibbs自由能采用亞點(diǎn)陣模型[15]來描述。其摩爾Gibbs自由能采用AmBn的亞點(diǎn)陣模型,表達(dá)式如下:
本研究利用相圖計(jì)算的CALPHAD方法[2],結(jié)合相平衡和熱力學(xué)性質(zhì)的相關(guān)實(shí)驗(yàn)數(shù)據(jù),對(duì)Ag-RE (RE:Sc[16], Y[17], Nd[18], Sm, Gd[18], Tb, Ho, Er)、Bi-RE (RE:Nd[19], Tm[19], Er, Ho, Pr, Gd)、Cr-RE (RE: Ce, Nd, Sm,Lu)、Mn-RE (RE: Pr[20], Nd, Sm[21], Eu, Tb, Dy[20], Ho[21],Er, Tm, Yb, Lu)、Mo-RE (RE: Sc, Y, La[22], Ce, Pr, Nd,Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu)、V-RE (RE: La, Ce,Pr, Nd, Ho, Lu)和Zn-RE (RE: Y[23], Ce[24], Pr[24], Nd[25],Sm[25])各二元系相圖進(jìn)行了熱力學(xué)優(yōu)化與計(jì)算,具體的工作是在 SUNDMAN等[2]開發(fā)的Thermo-Calc軟件上完成的。其中,液相和端際固溶體相的Gibbs自由能采用亞正規(guī)溶體模型來描述,金屬間化合物相的Gibbs自由能采用亞點(diǎn)陣模型來描述,而氣相的Gibbs自由能采用理想氣體模型來描述。計(jì)算結(jié)果與實(shí)驗(yàn)值取得了較好的一致性,得到一組合理的、用于描述RE-X各二元系中各相自由能的熱力學(xué)參數(shù)。
本課題組的最終研究目標(biāo)是建立稀土合金的熱力學(xué)設(shè)計(jì)系統(tǒng)。目前已初步建立RE-X二元合金相圖的熱力學(xué)數(shù)據(jù)庫。該數(shù)據(jù)庫可以提供相平衡及熱力學(xué)性質(zhì)等多種信息,例如穩(wěn)定和亞穩(wěn)相圖的計(jì)算、熱力學(xué)性質(zhì)(生成焓、Gibbs自由能、活度、熵等)的計(jì)算以及相分?jǐn)?shù)與體積分?jǐn)?shù)的計(jì)算等。同時(shí),RE-X二元系相圖的熱力學(xué)數(shù)據(jù)庫將為稀土合金三元及多元系合金相圖的熱力學(xué)計(jì)算提供重要的基礎(chǔ)熱力學(xué)參數(shù)。
圖1 RE-X二元系相圖的計(jì)算結(jié)果Fig.1 Calculated results of phase diagram in RE-X binary systems: (a) Ag-Sc system; (b) Ag-Nd system; (c) Mo-Ho system;(d) Mo-Eu system; (e) Mn-Sm system; (f) Mn-Tm system
利用本研究建立的RE-X二元合金相圖的熱力學(xué)數(shù)據(jù)庫,計(jì)算的部分RE-X二元系相圖如圖1所示。圖1(a)和(b)所示分別為Ag-Sc和Ag-Nd二元系相圖的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)。在Ag-Sc和Ag-Nd二元系中都存在多個(gè)線性化合物相,包含多個(gè)不變系反應(yīng),都呈現(xiàn)出比較復(fù)雜的相平衡關(guān)系,并利用該熱力學(xué)數(shù)據(jù)庫可以準(zhǔn)確地計(jì)算出Ag-Sc和Ag-Nd二元系的相平衡,本研究?jī)?yōu)化計(jì)算結(jié)果與實(shí)驗(yàn)值取得了較好的一致性。圖1(c)所示為Mo-Ho二元系的計(jì)算相圖,該體系中在高溫存在穩(wěn)定的液相兩相分離,并在2 517 ℃下發(fā)生偏晶反應(yīng)L2?L1+(Mo),圖1(c)中的虛線所示為計(jì)算的亞穩(wěn)液相兩相分離的相界限。圖1(d)所示為Mo-Eu二元系相圖的計(jì)算結(jié)果,在該體系中利用理想氣體模型對(duì)氣相的相界線進(jìn)行了計(jì)算,如圖1(d) 所示,該體系的相平衡關(guān)系可以通過熱力學(xué)計(jì)算得以準(zhǔn)確地再現(xiàn)。圖1(e)和(f)所示分別為Mn-Sm和Mn-Tm二元系相圖的計(jì)算結(jié)果,在計(jì)算Mn-Sm和Mn-Tm二元系相圖時(shí),考慮了磁性自由能的貢獻(xiàn),如圖1(e)和(f)所示,本研究?jī)?yōu)化計(jì)算的結(jié)果與實(shí)驗(yàn)值取得了較好的一致性。
利用本研究得到的RE-X二元系的熱力學(xué)參數(shù)計(jì)算的部分熱力學(xué)性質(zhì)如圖2(a)~(d)所示。圖2(a)所示為Mn-Sm二元系中化合物相在1 024 ℃的形成焓的計(jì)算結(jié)果(參考態(tài)為α-Mn和α-Sm)。圖2(b)所示為Ag-Nd二元系中化合物相在1 073 ℃時(shí)形成的Gibbs自由能的計(jì)算結(jié)果(參考態(tài)為液相Ag和液相Nd)。圖2(c)所示為Ag-Nd二元系中組元Ag和Nd在液相中的活度的計(jì)算結(jié)果(參考態(tài)為液相Ag和液相Nd)。圖2(d)所示為Zn-Y二元系中線性化合物相在500 ℃時(shí)形成熵的計(jì)算結(jié)果(參考態(tài)為α-Y和液相Zn)。由計(jì)算結(jié)果可見,該熱力學(xué)數(shù)據(jù)庫不僅可以很好地再現(xiàn)各個(gè)二元系的相平衡關(guān)系,也可以計(jì)算出各個(gè)體系中各相的不同的熱力學(xué)性質(zhì)。
圖2 RE-X 二元系熱力學(xué)性質(zhì)的計(jì)算結(jié)果Fig.2 Calculated results of thermodynamic properties in RE-X binary systems: (a) Calculated enthalpies of intermetallic compounds formation at 1 024 ℃ in Mn-Sm system; (b) Calculated Gibbs free energies of formation at 1 073 ℃ in Ag-Nd system;(c) Calculated activity of components at 1 073 ℃ in Ag-Nd system; (d) Calculated entropy of formation at 5 00 ℃ in Zn-Y system
利用本研究建立的RE-X二元合金相圖的熱力學(xué)數(shù)據(jù)庫,可以為稀土多元系合金相圖的熱力學(xué)優(yōu)化與計(jì)算提供重要的基礎(chǔ)熱力學(xué)參數(shù)。圖3所示為計(jì)算的Zn-Al-Ce[26]三元系在320 ℃時(shí)的等溫截面相圖,計(jì)算結(jié)果與實(shí)驗(yàn)點(diǎn)基本吻合。圖4所示為計(jì)算的Zn-CeAl2的垂直截面相圖與實(shí)驗(yàn)數(shù)據(jù)。可見,計(jì)算結(jié)果與大部分實(shí)驗(yàn)點(diǎn)吻合。
圖3 Zn-Al-Ce三元系在320 ℃等溫截面的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的比較[26]Fig.3 Comparison of calculated data of isothermal section of Zn-Al-Ce system at 320 ℃ with experimental data[26]
圖4 Zn-Al-Ce三元系Zn-CeAl2垂直截面的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的比較Fig.4 Comparison of calculated data of vertical section along Zn-CeAl2 of Zn-Al-Ce system with experimental data
圖5(a)和(b)所示分別為計(jì)算的Co-Mn-Pr[27]三元系在397 ℃和597 ℃時(shí)的等溫截面相圖。由于該三元系中僅有Co-Mn(597 ℃)及Co-Pr(397 ℃)側(cè)的部分實(shí)驗(yàn)信息,本研究利用3個(gè)基礎(chǔ)二元系的熱力學(xué)參數(shù),外推計(jì)算了整個(gè)成分范圍內(nèi)的相平衡。
圖5 Co-Mn-Pr三元系在不同溫度時(shí)等溫截面與實(shí)驗(yàn)數(shù)據(jù)的比較[27]Fig.5 Comparison of calculated data of isothermal section of Co-Mn-Pr ternary system at different temperatures with experimental data[27]: (a) 397 ℃; (b) 597 ℃
圖6(a)和(b)所示分別為僅利用基礎(chǔ)二元系的熱力學(xué)參數(shù)計(jì)算的Co-Mn-Dy[27]三元系在600 ℃和800 ℃時(shí)的等溫截面相圖。由于Co-Dy和Mn-Dy二元系中均存在多個(gè)線性化合物相,因此Co-Mn-Dy三元系的各等溫截面相圖較為復(fù)雜,其中均出現(xiàn)多個(gè)三相平衡區(qū)域。在圖6(b)中出現(xiàn)了較大范圍的液相區(qū)域,這說明Dy元素可明顯降低Co-Mn基合金的熔點(diǎn)。上述外推計(jì)算的結(jié)果需要進(jìn)一步的實(shí)驗(yàn)驗(yàn)證,但這些計(jì)算結(jié)果可為稀土合金相圖的進(jìn)一步研究和稀土材料的合金設(shè)計(jì)提供一定的理論參考。
圖6 計(jì)算的Co-Mn-Dy三元系在不同溫度時(shí)等溫截面[27]Fig.6 Calculated isothermal section of Co-Mn-Dy ternary system at different temperatures[27]: (a) 600 ℃; (b) 800 ℃
圖7 計(jì)算的Sn-Bi-Dy三元系在不同Dy含量時(shí)的垂直截面相圖Fig.7 Calculated vertical section diagrams at different Dy contents in Sn-Bi-Dy system: (a) x(Dy)=0.1%; (b) x(Dy)=0.2%;(c) x(Dy)=0.3%
圖7(a)~(c)所示分別為計(jì)算的Dy含量為0.1%、0.2%和0.3%(摩爾分?jǐn)?shù))時(shí)Sn-Bi-Dy三元系的垂直截面相圖。從計(jì)算結(jié)果可以看出,當(dāng)微量稀土元素Dy加到0.3%時(shí),液相先析出初晶相BiDy,然后再發(fā)生共晶反應(yīng),即由液相生成固溶體相β-Sn和(Bi)。
圖8 計(jì)算的Sn-Bi-Dy三元系的液相面Fig.8 Calculated liquidus project of Sn-Bi-Dy system
圖8所示為計(jì)算的Sn-Bi-Dy三元系的液相面和各個(gè)液相等溫線。從圖中發(fā)現(xiàn)兩個(gè)共晶反應(yīng),一個(gè)是(E1點(diǎn))在1 177.58 ℃時(shí)發(fā)生的L?α-Dy+Sn3Dy5+Bi3Dy5,其中反應(yīng)成分是x(Sn)=9.1%, x(Bi)=3.9%;另一個(gè)是(E2點(diǎn))在140.22 ℃時(shí)發(fā)生的L?BiDy+β-Sn+(Bi),其中反應(yīng)成分是x(Sn)=58.7%,x(Bi)=41.1%。把計(jì)算的Sn-Bi-Dy三元系低溫共晶反應(yīng)E2的反應(yīng)溫度(140.22℃)和計(jì)算的Sn-Bi二元系的共晶反應(yīng)溫度(140.6 ℃)比較,發(fā)現(xiàn)加入微量的稀土Dy(0.2%)基本沒有對(duì)共晶點(diǎn)處的反應(yīng)溫度產(chǎn)生影響。但是,從圖7(a)~(c)可看出,當(dāng)微量稀土元素Dy加到0.3%時(shí),液相先析出初晶相BiDy,然后再發(fā)生共晶反應(yīng),即由液相生成固溶體相β-Sn和(Bi),這將對(duì)焊料組織形態(tài)產(chǎn)生一定的影響。有研究結(jié)果顯示[28?30]:加入稀土可以細(xì)化焊料的組織,也將對(duì)焊料的鋪展面積和潤(rùn)濕性產(chǎn)生影響,這些有待于以后的實(shí)驗(yàn)研究中解決。
1) 本研究利用CALPHAD法,對(duì)Ag-RE (RE: Sc,Y, Nd, Sm, Gd, Tb, Dy, Ho, Er)、Bi-RE (RE: Nd, Tm, Er,Ho, Pr, Gd)、Cr-RE (RE: Ce, Nd, Sm, Lu)、Mn-RE (RE:Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu)、Mo-RE(RE: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm,Yb, Lu)、V-RE (RE: La, Ce, Pr, Nd, Ho, Lu)和Zn-RE(RE: Y, Ce, Pr, Nd, Sm)各二元系的相圖進(jìn)行熱力學(xué)優(yōu)化與計(jì)算,計(jì)算結(jié)果與實(shí)驗(yàn)值取得了較好的一致性,并初步建立RE-X二元合金相圖的熱力學(xué)數(shù)據(jù)庫。
2) 該熱力學(xué)數(shù)據(jù)庫將為稀土多元合金相圖的熱力學(xué)計(jì)算提供重要的基礎(chǔ)熱力學(xué)參數(shù),同時(shí)為稀土合金設(shè)計(jì)提供重要的理論指導(dǎo)。
REFERENCES
[1] 劉光華. 稀土材料與應(yīng)用技術(shù)[M]. 北京: 化學(xué)工業(yè)出版社,2005.LIU Guang-hua. Rare earth materials and applied technology[M].Beijing: Chemical Industry Press, 2005.
[2] SUNDMAN B, JANSSON B, ANDERSON J O. The Thermo-Calc databank system [J]. CALPHAD, 1985, 9:153?190.
[3] LI Z, SU X P, YIN F C, CHEN C T. On the thermodynamic assessment of the Ag-La system[J]. J Alloys and Compounds,2000, 299: 195?198.
[4] YIN F C, HUANG M , SU X P, ZHANG P, LI Z, SHI Y.Thermodynamic assessment of the Ag-Ce (silver-cerium)system[J]. J Alloys and Compounds, 2002, 334: 154?158.
[5] YIN F C, SU X P, LI Z, ZHANG P, HUANG M, SHI Y. On thermodynamic assessment of the Ag-Pr system[J]. J Alloys and Compounds, 2000, 307: 202?206.
[6] ZHANG L G, LIU H S, LIU L B, JIN Z P. Thermodynamic modeling of Ag-Eu system[J]. Journal of Central South University of Technology, 2007, 14: 123?126.
[7] ZHANG L G, MENG F G, LIU H S, LIU L B, JIN Z P.Thermodynamic assessment of the Ag-Yb system[J]. J Alloys and Compounds, 2008, 452: 304?306.
[8] LONG Z H, YANG Y J, JIN S, LIU H S, JIN Z P.Thermodynamic assessment of Ag-Dy and Ag-Er binary systems[J]. J Alloys and Compounds, 2010, 489: 146?151.
[9] GR?BNER J, PISCH A, SCHMID-FETZER R. Thermodynamic optimization of the systems Mn-Gd and Mn-Y using new experimental results[J]. J Alloys and Compounds, 2001, 317/318:433?437.
[10] PISCH A, SCHMID-FETZER R. Experimental study and thermodynamic assessment of phase equilibria in the Mn-Sc system[J]. Zeitschrift für Metallkunde, 1998, 89 (10): 700?703.
[11] TANG C Y, DU Y, ZHANG L J, XU H H, ZHU Z J.Thermodynamic assessment of the Ce-Mn system[J]. J Alloys and Compounds, 2007, 437(1/2): 102?106.
[12] QI H Y, HUANG G X, LIU R D, ZHANG K, LIU L B, JIN Z P.Thermodynamic optimization of La-Zn and La-Mg-Zn systems[J]. J Alloys and Compounds, 2010, 497(1/2): 336?343.
[13] REDLICH O, KISTER A T. Algebraic representation of thermodynamic properties and the classification of solutions[J].Ind Eng Chem, 1948, 40: 345?348.
[14] ZINKEVICH M, GEUPEL S, ALDINGER F. Thermodynamic assessement of the ternary systems Ga-Mg-O, Ga-Ni-O,Mg-Ni-O and extrapolation to the Ga-Mg-Ni-O phase diagram[J].J Alloys and Compounds, 2005, 393: 154?166.
[15] HILLERT M, STAFANSSON L I. The regular solution model for stoichiometric phase and ionic melts[J]. Acta Chem Scand,1970, 24: 3618?3626.
[16] LIU X J, WANG S L, WANG C P. Thermodynamic assessments of the Sc-M (M Ag B and Th) systems[J]. J Alloys and Compounds, 2009, 469: 186?192.
[17] WANG S L, WANG C P, LIU X J, ISHIDA K. Thermodynamic assessments of the Ag-Y and Sc-Y systems[J]. J Alloys and Compounds, 2009, 476: 187?192.
[18] WANG S L, WANG C P, LIU X J, ISHIDA K. Thermodynamic assessments of the Ag-Gd and Ag-Nd systems[J]. J Alloys and Compounds, 2009, 476: 245?252.
[19] WANG C P, ZHANG H L, TANG A T, PAN F S, LIU X J.Thermodynamic assessments of the Bi-Nd and Bi-Tm systems[J].J Alloys and Compounds, 2010, 502: 43?48.
[20] WANG C P, LIN Z, LIU X J. Thermodynamic assessments of the Dy-Mn and Mn-Pr systems[J]. J Alloys and Compounds,2009, 469: 123?128.
[21] WANG C P, ZHANG H L, WANG S L, LIN Z, LIU X J, TANG A T, PAN F S. Thermodynamic assessments of the Mn-Sm and Mn-Ho systems[J]. J Alloys and Compounds, 2009, 481:291?295.
[22] WANG C P, WANG J, LIU X J, OHNUMA I, KAINUMA R,ISHIDA K. Thermodynamic assessment of the Co-La and Mo-La systems[J]. J Alloys and Compounds, 2008, 453:174?179.
[23] LIU X J, WEN M Z, WANG C P, PAN F S. Thermodynamic assessments of the Zn-Y and Al-Zn-Y systems[J]. J Alloys and Compounds, 2008, 452: 283?290.
[24] WANG C P, CHEN X, LIU X J, PAN F S, ISHIDA K.Thermodynamic modeling of the Ce-Zn and Pr-Zn systems[J]. J Alloys and Compounds, 2008, 458: 166?173.
[25] LIU X J, CHEN X, WANG C P. Thermodynamic assessments of the Sm-Zn and Nd-Zn systems[J]. J Alloys and Compounds,2009, 468: 115?121.
[26] 陳 星. 部分鋅?稀土合金相平衡的熱力學(xué)計(jì)算[D]. 廈門:廈門大學(xué), 2007.CHEN Xing. Thermodynamic assessments of phase equilibria in some Zn-rare earth system[D]. Xiamen: Xiamen University,2007.
[27] 林 眾. Co-Mn-X (X: Ta, Pt, B, Dy, Pr)三元系相平衡的熱力學(xué)優(yōu)化與計(jì)算[D]. 廈門: 廈門大學(xué), 2008.LIN Zhong. Thermodynamic optimization and calculation of phase equilibria in the Co-Mn-X (X: Ta, Pt, B, Dy, Pr) ternary system[D]. Xiamen: Xiamen University, 2008.
[28] 袁宜耀. 稀土Ce對(duì)Sn基無鉛焊料的組織、性能及界面影響[D]. 昆明: 昆明理工大學(xué), 2008.YUAN Yi-yao. Effect of Ce on microstructure, properties and interface of Sn-based lead-free solder[D]. Kunming: Kunming University of Science and Technology, 2008.
[29] 袁宜耀, 孫 勇, 張秀蘭, 許 磊. 微量稀土元素對(duì)Sn-Ag-Sb系合金組織及焊料/Cu界面組織的影響[J]. 金屬功能材料,2008, 15(2): 33?36.YUAN Yi-yao, SUN Yong, ZHANG Xiu-lan, XU Lei. Effect of rare earth elements on microstructure and solder/Cu interfacial microstructure of Sn-Ag-Sb system[J]. Metallic Functional Materials, 2008, 15(2): 33?36.
[30] 任志遠(yuǎn), 范永蘋, 馬雙彥. 富鑭稀土對(duì)AZ91微觀組織和性能的影響[J]. 熱加工工藝, 2007, 36(8): 37?43.REN Zhi-yuan, FAN Yong-ge, MA Shuang-yan. Effect of La-rich RE on microstructure and properties of AZ91 magnesium alloy[J]. Material & Heat Treatment, 2007, 36(8):37?43.
Thermodynamic database of phase diagram in RE-X binary alloy systems
LIU Xing-jun1, ZHANG Hong-ling1, WANG Shu-liang1, WANG Cui-ping1, PAN Fu-sheng2,TANG Ai-tao2, ZHAO Dong-liang3
(1. College of Materials, Xiamen University, Xiamen 361005, China;2. College of Material Science and Engineering, Chongqing University, Chongqing 400045, China;3. Beijing General Iron and Steel Research Institute, Beijing 100081, China)
The thermodynamic assessments of phase diagrams in the Ag-RE (RE: Sc, Y, Nd, Sm, Gd, Tb, Ho, Er), Bi-RE(RE: Nd, Tm, Er, Ho, Pr, Gd), Cr-RE (RE: Ce, Nd, Sm, Lu), Mn-RE (RE: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu),Mo-RE (RE: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu), V-RE (RE: La, Ce, Pr, Nd, Ho, Lu) and Zn-RE(RE: Y, Ce, Pr, Nd, Sm) binary alloy systems were carried out by using calculation of phase diagrams (CALPHAD)method on the basis of the experimental data including thermodynamic properties and phase equilibria. The Gibbs free energies of the solution phases were described by the subregular solution model with Redlich–Kister equation, and those of the intermetallic compounds and gas phase were, respectively, described by sublattice model and ideal gas model. A consistent set of thermodynamic parameters were derived to describe the Gibbs free energies of each solution phase and intermetallic compound. The calculated phase diagrams and thermodynamic properties are in good agreement with the experimental data. The primary thermodynamic database of rare earth alloys is developed, which will provide important information including phase diagrams and various thermodynamic properties for development of rare earth alloy materials.
rare earth alloys; phase diagrams; thermodynamic modeling
TG 113.14
A
1004-0609(2011)04-0865-10
國(guó)家自然科學(xué)基金資助項(xiàng)目(50771087)
2010-06-20;
2010-09-20
王翠萍,教授,博士;電話:0592-2180606;E-mail: wangcp@xmu.edu.cn
(編輯 李艷紅)