李 萍,劉 永,劉 絨
(西安鐵路職業(yè)技術學院,陜西西安710006)
在剪力墻結構和框架-剪力墻結構中,連接墻肢與墻肢、墻肢與框架柱的梁稱為連梁。連梁是剪力墻肢之間的傳力紐帶。連梁的強度、剛度、延性及耗能能力對聯(lián)肢剪力墻的抗震性能有很大影響[1]。在框架-剪力墻結構和框架-核心筒結構中常用的跨高比(連梁凈跨與其截面高度之比)為0.5~2.5之間的小跨高比連梁,在地震作用下屬于兩端受轉動約束的反對稱彎曲的深梁,其剪彎比(作用剪力與彎矩之比)很大[2]。
文獻[3]提出沿連梁截面高度配置三層封閉箍筋的新配筋方案取代普通配筋方案中的一層封閉箍筋,并做了三個試件的探索性試驗。試驗結果表明,該配筋方案能有效提高小跨高比連梁的抗震性能。本文作者也運用ANSYS有限元程序,對這種連梁進行非線性有限元模擬,分析連梁具有較好的延性和耗能能力[4]。為了進一步了解新配筋方案小跨高比連梁的受力及變形性能,本文對不同混凝土強度下的新配筋方案連梁進行非線性有限元分析,探討混凝土強度對小跨高比連梁受力性能的影響。
為了研究混凝土強度對新配筋方案小跨高比連梁受力性能的影響,本文模擬3個剪壓比不同的試件[5](剪壓比分別為0.15,0.2,0.25),試件配筋情況見表1。取剪力墻結構上下層中間帶連梁部分作為計算模型,連梁的尺寸為ln×b×h=900 mm×100 mm×600 mm,試件尺寸及連梁配筋詳見圖1。
試件的混凝土材料分別選用C40、C30、C25、C20,混凝土的本構關系采用清華大學過鎮(zhèn)海研究的單向軸壓應力-應變曲線[6]。
表1 試件的剪壓比及配筋情況
圖1 連梁試件尺寸及配筋
在定義破壞面時,ANSYS程序中的Concrete材料破壞準則采用Willam-Warnke的五參數(shù)破壞準則。由此將混凝土的單軸本構關系轉化為三軸本構關系來進行計算。本文采用的參數(shù)如下:
鋼筋強度等級采用HPB235和HRB400兩種,采用雙線型隨動強化塑性選項。
鋼筋混凝土有限元模型中,混凝土與鋼筋的組合方式采用組合式模型,混凝土單元采用 Solid65,鋼筋單元采用Link8。
本文對混凝土連梁張開裂縫和閉合裂縫分別取0.35和0.75,關閉混凝土的壓碎開關。
本文劃分單元時,考慮到連梁試件的形狀很規(guī)則,因此在ANSYS程序中采用映射劃分單元,所有實體單元都是正六面體單元。上部端塊加載梁支座處加設40 mm厚的鋼墊板,以避免出現(xiàn)局壓破壞。
試件加載采用位移加載,即在加載型鋼梁的下端部施加一個水平位移,每次加載為2 mm,逐步增大,直到模型達到承載力強度為止。
有限元計算的試件荷載-位移曲線如圖2所示。由圖可見,試件彈性變形階段很短,荷載不大時進入彈塑性變形階段。隨荷載增大,最初的小裂縫成為貫通裂縫,曲線出現(xiàn)下降段。
圖2 試件荷載-位移曲線
小跨高比連梁不同混凝土強度等級時的承載力見表2,影響曲線見圖3(a)~圖3(c)和圖4。比較試件的荷載曲線圖可以看到隨著混凝土強度等級的增大,3個模型的屈服荷載和極限荷載都在增加。3個模型的極限荷載曲線基本呈直線增加,屈服荷載幾乎呈直線逐步增加。通過三個試件之間的比較可以發(fā)現(xiàn),CB-3極限承載力最大,其次是CB-2、CB-1。
表2 試件的承載力計算結果(單位:N)
小跨高比連梁不同混凝土強度等級下的極限位移和延性系數(shù)計算結果見表3,影響曲線見圖5~圖8。比較試件的延性系數(shù)曲線和極限位移曲線可以得出隨著混凝土強度等級的增大,極限位移逐漸增加,但是延性系數(shù)逐漸減小。通過三個試件之間的比較可以發(fā)現(xiàn),CB-3、CB-2、CB-1的延性是逐漸降低的。
表3 試件的極限位移和延性系數(shù)計算結果
通過改變混凝土強度等級對小跨高比連梁的有限元分析,可得以下初步結論:
(1)改變混凝土強度等級時,可以提高試件的屈服荷載和極限荷載,并且增幅明顯,但同時延性也會有所降低;
(2)三個試件 CB-1、CB-2、CB-3 之間比較,承載力都是CB-3最大,其次分別是 CB-2、CB-1;但是延性剛好是相反的順序。所以三個試件提高承載力是以降低延性為代價。
[1] 張斌斌.高層建筑剪力墻連系梁抗震性能的試驗研究[D].重慶:重慶大學,2001
[2] 傅劍平,趙杰林,曹云鋒,等.采用新配筋方案小跨高比抗震連梁的試驗研究[J].重慶建筑大學學報,2004,26(1)
[3] 梁興文,劉清山,李萍.新配筋方案小跨高比連梁抗震性能的試驗研究[J].建筑結構,2007(12)
[4] 李萍,梁興文,劉清山.小跨高比連梁新配筋方案的受力性能研究[J].工業(yè)建筑,2008(Z1)
[5] 過鎮(zhèn)海.混凝土的強度和本構關系[M].北京:中國建筑工業(yè)出版社,2004