国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TD-LTE綜合測(cè)試儀表關(guān)鍵模塊的研究與實(shí)現(xiàn)*

2011-06-03 09:14:40陳發(fā)堂楊林雨
電子技術(shù)應(yīng)用 2011年10期
關(guān)鍵詞:基帶載波鏈路

陳發(fā)堂,楊林雨

(重慶郵電大學(xué),重慶400065)

正交頻分復(fù)用技術(shù)[1](OFDM)由于頻譜利用率高、易于實(shí)現(xiàn)等優(yōu)點(diǎn),在現(xiàn)代無(wú)線通信領(lǐng)域得到了廣泛的應(yīng)用。在TD-LTE中,下行鏈路采用的就是OFDM技術(shù)。

TD-LTE物理下行鏈路需要進(jìn)行一系列的算法操作,其中IFFT變換是必不可少的。由于做FFT和IFFT變換會(huì)占用較多的資源,從目前的硬件處理速度來(lái)看,不可能完全靠DSP完成這些算法,所以在設(shè)計(jì)中一般采用DSP+FPGA的信號(hào)處理核心[2]。其中由DSP完成靈活多變和計(jì)算量不大的運(yùn)算,由FPGA完成快速和固定的較大計(jì)算量的運(yùn)算[3],這樣就可以同時(shí)發(fā)揮DSP和FPGA的優(yōu)點(diǎn)。本文基于TD-LTE無(wú)線終端綜合測(cè)試儀表項(xiàng)目的開(kāi)發(fā),提出了使用FPGA實(shí)現(xiàn)基帶信號(hào)發(fā)送的方案,并進(jìn)行了相關(guān)的研究。

1 OFDM調(diào)制原理

TD-LTE系統(tǒng)采用OFDMA作為下行鏈路的多址方式,如圖1所示。

1.1 子載波映射

子載波映射形式有集中式(Localized)[3]和分布式(Dis-

tributed)兩種。下行鏈路使用的是集中式映射形式。

在物理層下行鏈路中,經(jīng)過(guò)加擾、調(diào)制、層映射預(yù)編碼以及資源映射后,數(shù)據(jù)被映射到資源柵格中。從資源柵格讀取數(shù)據(jù)時(shí),假定數(shù)據(jù)從資源柵格中由下向上輸出為Data[],Data[-1]……Data[1],Data[0]。由于最終在中頻中要進(jìn)行IQ調(diào)制,在頻域上獲得相應(yīng)的帶寬,因此子載波的映射要滿足一定的方式。TD-LTE綜合測(cè)試儀中采用的子載波映射方式如圖2所示。圖中的子載波映射方式,保證了直流子載波Data[/2]的位置位于子載波映射的最底部,從而可滿足最終的頻域帶寬。

1.2 基帶信號(hào)生成

圖2 子載波映射方式

其中,0≤t<(NCP,l+N)×Ts,k(-)=k+/2」,k(+)=k+/2」-1,變量N等于 2 048在 Δf=15 kHz子載波間隔上,等于4 096在Δf=7.5 kHz子載波間隔。

式(1)可以看出,中間少了一個(gè)k=0的子載波,將k=0的直流子載波加進(jìn)去,但不發(fā)射信號(hào),資源元素為0。此時(shí)資源粒子序列發(fā)生變化,在中間添加了元素0,則式(1)可化為:

與標(biāo)準(zhǔn)IFFT函數(shù)公式比較,可將式(2)化為:

此時(shí)是沒(méi)有加CP的,但在做IFFT變換后需要加CP,根據(jù)不同的子載波間隔和不同的循環(huán)前綴類型,如表1所示。

表 1 循環(huán)前綴(CP)類型

2 硬件實(shí)現(xiàn)與優(yōu)化方案

2.1 基帶信號(hào)發(fā)送模塊的硬件實(shí)現(xiàn)

基帶信號(hào)發(fā)送在基帶板中最關(guān)鍵的部分是做IFFT變換,在硬件實(shí)現(xiàn)過(guò)程中涉及到與DSP以及中頻、射頻的接口問(wèn)題,所以圍繞IFFT變換,周圍還要增加一些必需的模塊。TD-LTE無(wú)線終端綜合測(cè)試儀表中基帶信號(hào)發(fā)送模塊的硬件實(shí)現(xiàn)如圖3所示。

2.1.1 McBSP接口設(shè)計(jì)

多通道緩沖串口(McBSP)提供了強(qiáng)大的同步串口通信機(jī)制,因此本設(shè)計(jì)McBSP用于DSP和FPGA間的通信。FPGA通過(guò)McBSP接口從DSP接收數(shù)據(jù)的基本時(shí)序,如圖4所示。

McBSP接口間傳輸?shù)男盘?hào)是幀同步信號(hào)(fsx)和32 bit的數(shù)據(jù)信號(hào)(dx)以及時(shí)鐘信號(hào)(clkx)。在本系統(tǒng)中采用的fsx和dx的延遲是兩個(gè)時(shí)鐘。FPGA中的McBSP接口通過(guò)移位寄存器和緩沖寄存器完成數(shù)據(jù)的接收,將串行的比特流轉(zhuǎn)換成32 bit寬的并行數(shù)據(jù)。

將McBSP接口接收的數(shù)據(jù)導(dǎo)入McBSP_READ模塊,在控制信息的控制下,對(duì)數(shù)據(jù)完成相應(yīng)的子載波映射后,存入兩片形成乒乓操作的RAM。

2.1.2 I2C接口設(shè)計(jì)

I2C總線協(xié)議規(guī)定,在 SDA上發(fā)送數(shù)據(jù),每個(gè)字節(jié)必須為 8 bit,首先傳輸?shù)氖亲止?jié)的最高位(MSB),每次傳輸?shù)淖止?jié)數(shù)不受限制。主機(jī)發(fā)送起始條件后,首先發(fā)送一個(gè)7 bit的從機(jī)地址,緊接著發(fā)送1 bit的數(shù)據(jù)傳輸方向位(R/W)以指示是由從器件讀取數(shù)據(jù)還是把數(shù)據(jù)寫入從器件。數(shù)據(jù)傳輸由主機(jī)產(chǎn)生的停止條件結(jié)束,完整的數(shù)據(jù)傳輸時(shí)序如圖5所示。

2.1.3 IFFT變換

IFFT變換是基帶信號(hào)發(fā)送的關(guān)鍵模塊,本系統(tǒng)使用的IFFT變換點(diǎn)數(shù)N等于2 048。IFFT的實(shí)現(xiàn)是調(diào)用IPcore[5],通過(guò)對(duì)表2中幾種算法的綜合比較,最終采用的是Pipelined stresming I/O型,可以滿足連續(xù)數(shù)據(jù)流的處理,且速度較快,但是會(huì)比突發(fā)類型(Burst)占用更多的資源。

表2 幾種算法的評(píng)估

2.1.4 系統(tǒng)定時(shí)模塊的設(shè)計(jì)

系統(tǒng)定時(shí)(TIMER)是整個(gè)系統(tǒng)重要的模塊。主要功能是以系統(tǒng)時(shí)鐘122.88 MHz為基準(zhǔn),對(duì)LTE系統(tǒng)的幀以及時(shí)隙定時(shí)。一方面通過(guò)發(fā)送子幀中斷和幀中斷信號(hào)控制DSP子幀以及幀的發(fā)送;另一方面要對(duì)FPGA中的DDR2 SDRAM進(jìn)行控制,進(jìn)而完成對(duì)TX模塊的控制,以保證基帶信號(hào)的發(fā)送滿足標(biāo)準(zhǔn)中的規(guī)定。

2.1.5 中頻、射頻模塊

TX模塊后的數(shù)據(jù)進(jìn)入中頻,在中頻進(jìn)行IQ調(diào)制,之后對(duì)IQ調(diào)制后的數(shù)據(jù)進(jìn)行CIC插值,以122.88 MHz的D/A采樣速率輸出,在頻域上將信號(hào)調(diào)制到中心頻率為30.72 MHz,帶寬為所需的相應(yīng)帶寬。在射頻(RF)中,進(jìn)行混頻操作,將數(shù)據(jù)調(diào)到2.4 GHz的載波上。之后通過(guò)天線發(fā)送數(shù)據(jù)。

2.2 硬件實(shí)現(xiàn)中的優(yōu)化方案

2.2.1 系統(tǒng)設(shè)計(jì)優(yōu)化

表3 上下行配置

由于基帶信號(hào)的發(fā)送需要滿足多種帶寬的需求,相應(yīng)的子載波數(shù)和子載波映射的位置都會(huì)不同,因此本系統(tǒng)中提出了將DSP的控制信息通過(guò)I2C總線傳到FPGA中,這樣FPGA收到控制信息后,在McBSP_READ模塊中進(jìn)行相應(yīng)的子載波映射操作,并將映射后的數(shù)據(jù)送到RAM中。

同時(shí)無(wú)線幀的發(fā)送也要滿足相應(yīng)的上下行鏈路配置,如表3所示。FPGA通過(guò)I2C總線接收DSP的控制信息后,控制TX模塊進(jìn)行相應(yīng)的發(fā)送控制。

2.2.2 存儲(chǔ)資源優(yōu)化

由于IFFT連續(xù)變換后的數(shù)據(jù)量很大,如果用RAM存儲(chǔ)數(shù)據(jù),則會(huì)占用很多的FPGA邏輯資源,而基帶板中DDR2 SDRAM空間很大。故在本系統(tǒng)中,IFFT變換后通過(guò)MIG接口將數(shù)據(jù)導(dǎo)入DDR2 SDRAM中,這樣可以節(jié)省很多邏輯資源,DDR2 DRAM存儲(chǔ)模型如圖6所示。之后通過(guò)系統(tǒng)定時(shí)(TIMER)對(duì)DDR2 SDRAM的數(shù)據(jù)讀取進(jìn)行控制,將數(shù)據(jù)發(fā)送到TX模塊中。

3 硬件平臺(tái)搭建與測(cè)試

3.1 下載代碼到芯片中進(jìn)行實(shí)際測(cè)試結(jié)果[6]

用Verilog HDL編寫 testbench仿真驗(yàn)證無(wú)誤后,用ISE10.1將FPGA程序下載到基帶板上的XILINX XC5VSX95T芯片中,然后使用CCS軟件將DSP的相應(yīng)程序下載到TMS320C6455ZTZ芯片中。本硬件平臺(tái)中DSP發(fā)送 25個(gè)資源塊(RB),在 DSP中設(shè)置軟復(fù)位,對(duì)FPGA進(jìn)行復(fù)位控制。用chipscope觀察的從TX模塊輸出信號(hào)波形如圖7所示。

圖7中,tx_flag信號(hào)為高電平時(shí)表示輸出I_DATA_OUT和Q_DATA_OUT有效,I_DATA_OUT是IFFT變換后的實(shí)部,Q_DATA_OUT是虛部。

3.2 中頻信號(hào)在頻譜儀中的捕捉

基帶板的數(shù)據(jù)通過(guò)FPGA的引腳發(fā)送到中頻板中,在中頻板中進(jìn)行IQ調(diào)制,將頻譜搬移到中心頻率30.72 MHz上,且?guī)捈s為 5 MHz,中心頻率在 30.72 MHz上,帶寬約為4.5 MHz,幅度在-25 DBm,已滿足需求。

本文介紹了TD-LTE下行鏈路OFDM調(diào)制,并重點(diǎn)介紹了子載波映射和基帶信號(hào)生成的原理。然后基于TD-LTE無(wú)線終端綜合測(cè)試儀表的開(kāi)發(fā),提出了本系統(tǒng)中的基帶信號(hào)發(fā)送設(shè)計(jì)流程。具體介紹了McBSP模塊、系統(tǒng)定時(shí)模塊、IFFT變換、DDR2 SDRAM等關(guān)鍵模塊,然后在系統(tǒng)設(shè)計(jì)思路和硬件資源上提出了優(yōu)化方案。在仿真正確后,基于基帶板和中頻板,使用chipscope實(shí)際捕捉波形。最后在中頻板中通過(guò)頻譜儀分析了頻譜,進(jìn)一步驗(yàn)證了FPGA實(shí)現(xiàn)基帶信號(hào)發(fā)送的正確性。

[1]沈嘉.3GPP長(zhǎng)期演進(jìn)(LTE)技術(shù)原理與系統(tǒng)設(shè)計(jì)[M].北京:人民郵電出版社,2008:143-154.

[2]李小文,李貴勇,陳賢亮,等.第三代移動(dòng)通信系統(tǒng)、信令及實(shí)現(xiàn)[M].北京:人民郵電出版,2003.

[3]3GPP TS 36.211 v8.7.0:Physical channels and modulation(release 8)[S].2009.

[4]3GPP TS 36.212 v8.7.0:Physical channels and modulation(release 8)[S].2009.

[5]Xilinx fast fourier transform V6.0 user guide.2008.

[6]夏宇聞.Verilog數(shù)字系統(tǒng)設(shè)計(jì)教程.北京航空航天大學(xué)出版社[M],2003.

猜你喜歡
基帶載波鏈路
家紡“全鏈路”升級(jí)
天空地一體化網(wǎng)絡(luò)多中繼鏈路自適應(yīng)調(diào)度技術(shù)
應(yīng)急廣播系統(tǒng)中副載波的構(gòu)建與應(yīng)用
2014年LTE基帶收益占蜂窩基帶收益50%以上
AIS基帶信號(hào)的接收與處理
基于3G的VPDN技術(shù)在高速公路備份鏈路中的應(yīng)用
數(shù)字基帶系統(tǒng)的System View仿真設(shè)計(jì)
低壓載波通訊測(cè)試儀的開(kāi)發(fā)與應(yīng)用
基于FPGA的WSN數(shù)字基帶成形濾波器設(shè)計(jì)
基于最優(yōu)化搜索的迭代載波同步算法
北票市| 荆门市| 海城市| 双流县| 和顺县| 彰化县| 瑞丽市| 嘉善县| 龙胜| 平舆县| SHOW| 大理市| 娄烦县| 克山县| 汤原县| 上栗县| 麻江县| 琼结县| 乃东县| 仲巴县| 砚山县| 宣汉县| 开平市| 沅陵县| 定安县| 乡城县| 涟水县| 乌鲁木齐县| 鄂伦春自治旗| 鄢陵县| 林口县| 台南县| 婺源县| 花莲县| 利辛县| 陇川县| 淳安县| 元阳县| 壤塘县| 平昌县| 德阳市|