張炳奎 程宇琪 許秀峰
·綜述 /Review·
誘發(fā)電位在精神分裂癥中的相關應用及研究新進展
張炳奎 程宇琪 許秀峰
腦誘發(fā)電位有很多經(jīng)典成分,在精神分裂癥研究中有一些特征??咕癫∷幙赡軙φT發(fā)電位產(chǎn)生影響,但確切機制不清。誘發(fā)電位與腦神經(jīng)影像學聯(lián)合應用,更有可能清楚知道精神分裂癥患者腦結構和功能何處異常以及異常是如何發(fā)生的。
誘發(fā)電位 精神分裂癥 抗精神病藥 腦神經(jīng)影像
精神分裂癥的系統(tǒng)研究已有一百多年,但至今其病因和發(fā)病機制仍不明確。隨著電生理檢測技術的日益發(fā)展完善,腦誘發(fā)電位已成為研究精神分裂癥患者神經(jīng)感知覺活動過程的一種可靠檢查手段,為人們研究患者異常腦功能活動提供了一條途徑[1]。為了對腦誘發(fā)電位在精神分裂癥研究中有一個整體的了解,本文對誘發(fā)電位相關檢測項目和各成分特征、抗精神病藥物及電抽搐治療后其變化情況以及腦神經(jīng)影像學相關研究進行綜述。
事件相關誘發(fā)電位(event related potentials,ERP)ERP是大腦對接收到的刺激信息進行識別、判斷處理和做出反應過程中腦的神經(jīng)生物電活動,因此將其稱為“認知電位”。在實際應用中人們常將ERP稱為P300,易形成概念混淆;而ERP比P300包涵了更豐富的腦電成分,反映受試者選擇性注意、記憶和執(zhí)行功能等認知心理過程腦電的變化,與心理活動的關系較密切[2,3]。
P300的產(chǎn)生區(qū)域是內(nèi)側額葉和顳頂葉[4]。在精神分裂癥的研究中目前常用的觀察指標是P300的波幅與潛伏期[5,6]。多數(shù)研究發(fā)現(xiàn)精神分裂癥患者P300波幅降低,且與持續(xù)的陰性癥狀、注意缺陷相關[1],精神分裂癥一級親屬中也有波幅降低[7],提示P300可能是伴隨疾病的遺傳標志。Zhang等[8]通過對精神分裂癥患者以喹硫平治療16周前后的觀察,發(fā)現(xiàn)超過50%的患者P300波幅升高,同時精神癥狀和認知功能也有改善,提示P300波幅隨癥狀而變,可能是狀態(tài)標志。多數(shù)研究發(fā)現(xiàn)精神分裂癥患者P300潛伏期延長,少數(shù)發(fā)現(xiàn)潛伏期前移縮短,但研究結果尚未完全一致。Bramon等[9]發(fā)現(xiàn)神經(jīng)調(diào)節(jié)蛋白-1是P300潛伏期的一個重要影響因素,并推斷神經(jīng)調(diào)節(jié)蛋白-1可能通過影響白質(zhì)神經(jīng)纖維髓鞘完整性,破壞神經(jīng)纖維連接來致使神經(jīng)傳導速度減慢,提示精神分裂癥者的白質(zhì)纖維髓鞘可能受損。P300波幅是素質(zhì)標志還是狀態(tài)標志還需要進一步研究。
Kutas等[10]1980年最先報道N400。研究提示精神分裂癥患者N400的波幅減小,潛伏期延長[11],其機制還有待進一步的研究;另一項研究顯示精神分裂癥患者陽性癥狀與N400異常表現(xiàn)關系更密切[12],證實了精神分裂癥患者的詞義記憶提取過程和語言產(chǎn)生過程可能受到損傷。Condray等[13]對37例住院精神分裂癥患者與34例健康對照組進行了比較研究,檢測了患者經(jīng)氟哌啶醇治療前后的N400、神經(jīng)心理測試和紅細胞膜多不飽和脂肪酸,結果顯示N400與反應速度、視覺注意等認知功能相關,未治療者N400詞語啟動過程與紅細胞膜總不飽和脂肪酸、花生四烯酸水平和精神癥狀相關。作者由此推斷精神分裂癥的語言障礙可能與神經(jīng)元細胞膜脂類代謝障礙有關。
關聯(lián)性負變(contingent negative variation,CNV)是在1964年由Walt和Cooper等發(fā)現(xiàn)。精神分裂癥患者CNV的特征主要是潛伏期異常,波幅降低,并且個體之間波形變異大,這種變異可能是神經(jīng)發(fā)育過程中的缺陷導致的[14]。由于精神分裂癥患者的注意力存在一定的障礙,在此測試時患者按鍵反應配合困難,因此應用受到限制。
失匹配負波(mismatch negtativity,MMN)經(jīng)典的測試方法是用產(chǎn)生P300的Oddball模式,分為主動和被動兩種模式。與P300相比,MMN無需被試者在試驗過程中主動辨認偏差刺激,反映被試者對標準刺激和偏差刺激的自動識別過程[15]。這一測試可以消除被試者因注意障礙而不配合進行測試的干擾,在精神分裂癥研究中可以消除患者注意力障礙的影響,因此具有一定的應用前景。研究主要發(fā)現(xiàn)精神分裂癥患者MMN的特征是潛伏期延長和波幅降低。在氯氮平治療的過程中MMN的波幅與氯氮平的劑量成正相關,潛伏期與氯氮平的劑量成負相關,即治療后潛伏期縮短,波幅增高[16];但是另外一項研究顯示,在首發(fā)精神分裂癥急性期MMN波幅與對照組無差異,在治療后復發(fā)急性期MMN波幅較未治療前和對照組兩者都減?。?7]。這提示MMN可能是精神分裂癥的狀態(tài)標志,可以用來評估療效。Wynn等[18]觀察MMN與患者的社會功能(工作、獨立生活、社會和家庭網(wǎng)絡)的關系,發(fā)現(xiàn)MMN與較好的工作和獨立生活密切相關,這為研究社會認知功能的神經(jīng)基礎提供了一種手段。
刺激相關誘發(fā)電位是指與特定刺激直接相關聯(lián)的腦誘發(fā)電位,包含了多個指標,主要有聽覺誘發(fā)電位(auditory evoked potential,AEP)、視覺誘發(fā)電位(visual evoked potential,VEP)和體感誘發(fā)電位(somatosensory evoked potential,SEP)。
AEP中較常見的是感覺門控P50。P50在精神分裂癥患者主要表現(xiàn)為感覺門控抑制減弱[19,20],但精神癥狀與之關聯(lián)性?。?1]。 Martin 等[22]發(fā)現(xiàn) 15 號染色體 α-7 乙酰膽堿尼古丁受體基因與P50潛伏期的抑制有一定的關聯(lián);Keri等[23]發(fā)現(xiàn)首發(fā)精神分裂癥者P50的抑制和神經(jīng)調(diào)節(jié)蛋白-1誘導的蛋白激酶B磷酸化減少一致,提示P50是精神分裂癥的一個素質(zhì)標志。但也有研究發(fā)現(xiàn)首發(fā)年輕精神分裂癥患者(17~29歲)的P50與其健康同胞和對照組的P50的差異沒有統(tǒng)計學意義[20,24]。 可能需要用精神分裂癥的內(nèi)表型[25]這一概念來解釋上述不一致。在精神分裂癥患者的研究中主要觀察到VEP潛伏期縮短,波幅降低,波形變異大[2]。SEP多用于檢測神經(jīng)傳導通路功能狀態(tài)。謝斌等[26]報道精神分裂癥患者SEP潛伏期均較對照組明顯縮短,波幅僅Cz點有明顯增高,可能與精神分裂癥患者的攻擊行為有關,然而其機理仍然不清。
抗精神病藥物可以導致腦神經(jīng)元自動去極化失活,使神經(jīng)元放電頻率減少[27]。抗精神病藥物對腹側被蓋區(qū)多巴胺的神經(jīng)元激活是通過伏隔核、腹側蒼白球通路發(fā)揮作用[28]。因為腦區(qū)域神經(jīng)元細胞群的電位累加效應是腦電活動的基礎,由此可以推斷抗精神病藥物可能會對誘發(fā)電位產(chǎn)生影響。應用低分辨率電磁斷層掃描觀察P300電流密度圖像,發(fā)現(xiàn)經(jīng)奧氮平治療6個月后精神分裂癥患者左側顳上回P300電流密度增加[29];利培酮治療者頂葉P300波幅小,并且陰性癥狀患者的P300波幅減?。?0];喹硫平治療患者的P300波幅和潛伏期都減?。?1],氯氮平治療后患者的 MMN潛伏期縮短,波幅增高,P300波幅增高[32]。典型抗精神病藥物與非典型抗精神病藥對P50的影響無差異[33],提示抗精神病藥物對誘發(fā)電位有不同的影響。
通過對精神分裂癥患者大腦形態(tài)結構的檢測,發(fā)現(xiàn)精神分裂癥者存在大腦形態(tài)結構的改變[35-38],可能是誘發(fā)電位波幅和潛伏期發(fā)生改變的病理基礎,誘發(fā)電位中的部分指標的波幅降低原因之一可能是與患者額葉、顳葉腦灰質(zhì)容積減少有關[39]。MMN波幅變化與腦灰質(zhì)漸進減少的過程一致,是疾病變化的一個指標[40,41]。 Preuss 等[42]發(fā)現(xiàn)陰性癥狀較少的精神分裂癥患者的P300幅度與右側扣帶回容積成正相關;Blackwood等[43]發(fā)現(xiàn)P300潛伏期延長與左側扣帶皮質(zhì)區(qū)和左側杏仁核區(qū)面積縮小成負相關。在精神分裂癥患者的直系親屬中也同樣發(fā)現(xiàn)腦容積的減少,并且誘發(fā)電位也有一致的改變[44]。 Whitford 等[45]用 ERP 與擴散張量成像(diffusion tensor imaging,DTI)研究大腦半球白質(zhì)傳導時間發(fā)現(xiàn)精神分裂癥患者額葉神經(jīng)纖維傳導異常,神經(jīng)傳遞障礙。結構性成像觀察到的結果只是一種效應結果,且特異性不強,因此有一定的局限性,在精神分裂癥的研究和臨床應用中受到了限制。
腦功能影像檢查目前臨床常用的主要是功能磁共振成像(functional magnetic resonance imaging,fMRI),包括了灌注加權磁共振成像技術、彌散加權磁共振成像技術、磁共振波譜成像技術以及血氧水平依賴磁共振成像技術。把fMRI與誘發(fā)電位結合起來同時進行數(shù)據(jù)記錄,可以彌補fMRI的時間分辨不足和ERP的空間分辨缺陷。Jamadar等[46]用ERP和fMRI聯(lián)合觀察精神分裂癥患者在任務轉換測試中的表現(xiàn),發(fā)現(xiàn)患者通過激活背外側前額葉皮層和后頂葉皮層來補償執(zhí)行功能受損,以克服執(zhí)行工作任務完成困難,提示精神分裂癥患者大腦中存在一定的代償機制。Sehatpour等[47]用ERP和fMRI發(fā)現(xiàn)精神分裂癥患者整個知覺區(qū)域激活受損,背側感知覺區(qū)對知覺的初級處理受損,導致額葉激活受損,而額葉激活障礙又會影響海馬和腹側感知覺區(qū)的激活,這一網(wǎng)絡功能障礙是精神分裂癥腦功能異常的原因之一。這個結論與Leitman等[48]發(fā)現(xiàn)精神分裂癥患者存在感知覺初級處理障礙一致,但更全面。由此可以看出誘發(fā)電位與功能影像聯(lián)合應用,更利于闡明精神分裂癥患者腦功能是什么部位異常和怎樣異常的,這對闡明精神分裂癥腦功能異常過程更有意義。
誘發(fā)電位提供了一種了解腦功能的方法,腦結構和功能成像使得人們可以直觀的觀察活體腦組織的結構和功能,誘發(fā)電位與腦成像聯(lián)合應用可以為研究者提供更全面的研究結果。相信今后隨著腦機接口技術的不斷發(fā)展,使得人們能提取、識別更多的腦誘發(fā)電位包涵的信息,與基因、蛋白組學等生化技術聯(lián)合應用,可以獲得更多有價值的研究成果,為探尋精神分裂癥腦功能異常開辟更廣闊的研究前景,使人們對正常人腦功能活動的認識成為可能。
1. Turetsky BI,Bilker WB,Siegel SJ,Kohler CG,Gur RE.Profile of auditory information-processing deficits in schizophrenia.Psychiatry Res,2009,165(1-2):27-37.
2. 沈漁邨.精神病學.第5版.北京.人民衛(wèi)生出版社,2009:193-198.
3. Bashore TR,van der Molen MW.Discovery of the P300:a tribute.Biol Psychol,1991,32(2-3):155-171.
4. Linden DE.The p300:where in the brain is it produced and what does it tell us.Neuroscientist,2005,11(6):563-576.
5. Molina V,Sanz J,Munoz F,Casado P,Hinojosa JA,Sarramea F,et al.Dorsolateral prefrontal cortex contribution to abnormalities of the P300 component of the event-related potential in schizophrenia.Psychiatry Res,2005,140(1):17-26.
6. Iguchi Y,Hashimoto I.Sequential information processing during a mental arithmetic is reflected in the time course of eventrelated brain potentials.Clin Neurophysiol,2000,111(2):204-213.
7. Bharath S,Gangadhar BN,Janakiramaiah N.P300 in family studies of schizophrenia:review and critique.Int J Psychophysiol,2000,38(1):43-54.
8. Zhang Y,Lehmann M,Shobeiry A,Hofer D,Johannes S,Emrich HM,et al.Effects of quetiapine on cognitive functions in schizophrenic patients:a preliminary single-trial ERP analysis.Pharmacopsychiatry,2009,42(4):129-134.
9. Bramon E,Dempster E,F(xiàn)rangou S,Shaikh M,Walshe M,F(xiàn)ilbey FM,et al.Neuregulin-1 and the P300 waveform—a preliminary association study using a psychosis endophenotype.Schizophr Res,2008,103(1-3):178-185.
10. Kutas M,Hillyard SA.Reading senseless sentences:brain potentials reflect semantic incongruity.Science,1980,207(4427):203-205.
11. Salisbury D.N400 to lexical ambiguity and semantic incongruity in schizophrenia.Int J Psychophysiol,2010,75(2):127-132.
12. Kreher DA,Goff D,Kuperberg GR.Why all the confusion?Experimental task explains discrepant semantic priming effects in schizophrenia under"automatic"conditions:evidence from Event-Related Potentials.Schizophr Res,2009,111(1-3):174-181.
13. Condray R,Yao JK,Steinhauer SR,van KDP,Reddy RD,Morrow LA.Semantic memory in schizophrenia:association with cell membrane essential fatty acids.Schizophr Res,2008,106(1):13-28.
14. Szendi I,Racsmany M,Cimmer C,Csifcsak G,Kovacs ZA,Szekeres G,et al.Two subgroups of schizophrenia identified by systematic cognitive neuropsychiatric mapping.Eur Arch Psychiatry Clin Neurosci,2010,260(3):257-266.
15. Patterson JV,Hetrick WP,Boutros NN,Jin Y,Sandman C,Stern H,et al.P50 sensory gating ratios in schizophrenics and controls:a review and data analysis.Psychiatry Res,2008,158(2):226-247.
16. Horton J,Millar A,Labelle A,Knott VJ.MMN responsivity to manipulations of frequency and duration deviants in chronic,clozapine-treated schizophrenia patients.Schizophr Res,2011,126(1-3):202-211.
17. Devrim-Ucok M,Keskin-Ergen HY,Ucok A.Mismatch negativity at acute and post-acute phases of first-episode schizophrenia.Eur Arch Psychiatry Clin Neurosci,2008,258(3):179-185.
18. Wynn JK,Sugar C,Horan WP,Kern R,Green MF.Mismatch negativity,social cognition,and functioning in schizophrenia patients.Biol Psychiatry,2010,67(10):940-947.
19. Sanchez-Morla EM,Garcia-Jimenez MA,Barabash A,Martinez-Vizcaino V,Mena J,Cabranes-Diaz,et al.P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia.Acta Psychiatr Scand,2008,117(4):313-318.
20. Brockhaus-Dumke A,Schultze-Lutter F,Mueller R,Tendolkar I,Bechdolf A,Pukrop R,et al.Sensory gating in schizophrenia:P50 and N100 gating in antipsychotic-free subjects at risk,firstepisode,and chronic patients.Biol Psychiatry,2008,64(5):376-384.
21. Santos JL,Sanchez-Morla EM,Aparicio A,Garcia-Jimenez MA,Villanueva C,Martinez-Vizcaino V,et al.P50 gating in deficit and nondeficit schizophrenia.Schizophr Res,2010,119(1-3):183-190.
22. Martin LF,Leonard S,Hall MH,Tregellas JR,F(xiàn)reedman R,Olincy A.Sensory gating and alpha—7 nicotinic receptor gene allelic variants in schizoaffective disorder,bipolar type.Am J Med Genet B Neuropsychiatr Genet,2007,144B(5):611-614.
23. Keri S,Beniczky S,Kelemen O.Suppression of the P50 evoked response and neuregulin 1-induced AKT phosphorylation in first-episode schizophrenia.Am J Psychiatry,2010,167(4):444-450.
24. de Wilde OM,Bour LJ,Dingemans PM,Koelman JH,Linszen DH.Failure to find P50 suppression deficits in young firstepisode patients with schizophrenia and clinically unaffected siblings.Schizophr Bull,2007,33(6):1319-1323.
25. Turetsky BI,Calkins ME,Light GA,Olincy A,Radant AD,Swerdlow NR.Neurophysiological endophenotypes of schizophrenia:the viability of selected candidate measures.Schizophr Bull,2007,33(1):69-94.
26. 謝斌,陳興時,馬金蕓,姜小琴,鄭瞻培.精神分裂癥患者攻擊行為與體感誘發(fā)電位.臨床精神醫(yī)學雜志,2001,11(2):65-67.
27. Grace AA.The depolarization block hypothesis of neuroleptic action:implications for the etiology and treatment of schizophrenia.J Neural Transm Suppl,1992,36:91-131.
28. Valenti O,Grace AA.Antipsychotic drug-induced increases in ventral tegmental area dopamine neuron population activity via activation of the nucleus accumbens-ventral pallidum pathway.Int J Neuropsychopharmacol,2010,13(7):845-860.
29. Higuchi Y,Sumiyoshi T,Kawasaki Y,Matsui M,Arai H,Kurachi M.Electrophysiological basis for the ability of olanzapine to improve verbal memory and functional outcome in patients with schizophrenia:a LORETA analysis of P300.Schizophr Res,2008,101(1-3):320-330.
30. Nieman DH,Koelman JH,Linszen DH,Bour LJ,Dingemans PM,de Visser BW O.Clinical and neuropsychological correlates of the P300 in schizophrenia.Schizophr Res,2002,55(1-2):105-113.
31. Park EJ,Han SI,Jeon YW.Auditory and visual P300 reflecting cognitive improvement in patients with schizophrenia with quetiapine:a pilot study.Prog Neuropsychopharmacol Biol Psychiatry,2010,4(4):674-680.
32. Pallanti S,Quercioli L,Pazzagli A.Effects of clozapine on awareness of illness and cognition in schizophrenia.Psychiatry Res,1999,86(3):239-249.
33. Sanchez-Morla EM,Santos JL,Aparicio A,Garcia-Jimenez MA,Villanueva C,Martinez-Vizcaino V,et al.Antipsychotic effects on auditory sensory gating in schizophrenia patients.Eur Neuro psychopharmacol,2009,19(12):905-909.
34. Griskova I,Dapsys K,Andruskevicius S,Ruksenas O.Does electroconvulsive therapy(ECT)affect cognitive components of auditory evoked P300.Acta Neurobiol Exp(Wars),2005,65(1):73-77.
35. Flashman LA,Green MF.Review of cognition and brain structure in schizophrenia:profiles,longitudinal course,and effects of treatment.Psychiatr Clin North Am,2004,27(1):1-18,vii.
36. van Haren NE,Hulshoff Pol HE,Schnack HG,Cahn W,Brans R,Carati I,et al.Progressive brain volume loss in schizophrenia over the course of the illness:evidence of maturational abnormalities in early adulthood.Biol Psychiatry,2008,63(1):106-113.
37. Nesvag R,Saetre P,Lawyer G,Jonsson EG,Agartz I.The relationship between symptom severity and regional cortical and grey matter volumes in schizophrenia.Prog Neuropsychopharmacol Biol Psychiatry.2009.33(3):482-490.
38. Molina V,Reig S,Sanz J,Palomo T,Benito C,Sarramea F,et al.Differential clinical,structural and P300 parameters in schizophrenia patients resistant to conventional neuroleptics.Prog Neuropsychopharmacol Biol Psychiatry,2008,32(1):257-266.
39. Kirino E.Mismatch negativity correlates with delta and theta EEG power in schizophrenia.Int J Neurosci,2007,117(9):1257-1279.
40. Salisbury DF,Kuroki N,Kasai K,Shenton ME,McCarley RW.Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia.Arch Gen Psychiatry,2007,64(5):521-529.
41. Rasser PE,Schall U,Todd J,Michie PT,Ward PB,Johnston P,et al.Gray matter deficits,mismatch negativity,and outcomes in schizophrenia.Schizophr Bull,2011,37(1):131-140.
42. Preuss UW,Zetzsche T,Pogarell O,Mulert C,F(xiàn)rodl T,Muller D,et al.Anterior cingulum volumetry,auditory P300 in schizophrenia with negative symptoms.Psychiatry Res,2010,183(2):133-139.
43. Blackwood DH,Young AH,McQueen JK,Martin MJ,Roxborough HM,Muir WJ,et al.Magnetic resonance imaging in schizophrenia:altered brain morphology associated with P300 abnormalities and eye tracking dysfunction.Biol Psychiatry,1991,30(8):753-769.
44. Tabares-Seisdedos R,Balanza-Martinez V,Pallardo Y,Salazar-Fraile J,Selva G,Vilela C,et al.Similar effect of family history of psychosis on Sylvian fissure size and auditory P200 amplitude in schizophrenic and bipolar subjects.Psychiatry Res,2001,108(1):29-38.
45. Whitford TJ,Kubicki M,Ghorashi S,Schneiderman JS,Hawley KJ,McCarley RW,et al.Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients:a combined ERP and DTI study.Neuroimage,2011,54(3):2318-2329.
46. Jamadar S,Michie P,Karayanidis F.Compensatory mechanisms underlie intact task-switching performance in schizophrenia.Neuropsychologia,2010,48(5):1305-1323.
47. Sehatpour P,Dias EC,Butler PD,Revheim N,Guilfoyle DN,F(xiàn)oxe JJ,et al.Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia:an integrated neuroimaging study.Arch Gen Psychiatry,2010,67(8):772-782.
48. Leitman DI,Sehatpour P,Higgins BA,F(xiàn)oxe JJ,Silipo G,Javitt DC.Sensory deficits and distributed hierarchical dysfunction in schizophrenia.Am J Psychiatry,2010,167(7):818-827.
Applications and new research findings about Event-Related Potentials in schizophrenia
Bingkui ZHANG,Yuqi CHENG,Xiufeng XU*
Department of Psychiatry,F(xiàn)irst Affiliated Hospital,Kunming Medical College,Kunming,Yunan 650032,China
There are many classical components in Event-Related Potentials(EVP)and some of these components show special characteristics in schizophrenia.The administration of antipsychotic medication can affect event-related potential in patients with schizophrenia but the precise mechanism for this effect is unknown.The combination of EVP and neuroimaging can help identify the specific location of abnormal structure and functioning in schizophrenia and it can also help specify the mechanism that has resulted in the identified abnormality.
Event-Related Potentials;Schizophrenia;Antipsychotic drugs;Brain neuroimaging
*Correspondence:xfxu2004@sina.com
10.3969/j.issn.1002-0829.2011.06.007
昆明醫(yī)學院第一附屬醫(yī)院精神科650032。通信作者:許秀峰,電子信箱:xfxu2004@sina.com