葉恭銀, 陳 洋, 田俊策, 彭于發(fā)
(1.浙江大學(xué)昆蟲(chóng)科學(xué)研究所,水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,農(nóng)業(yè)部農(nóng)業(yè)昆蟲(chóng)學(xué)重點(diǎn)實(shí)驗(yàn)室,杭州 310029;2.中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,植物病蟲(chóng)害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193)
至2010年,轉(zhuǎn)基因作物商業(yè)化種植已有15個(gè)年頭,其中當(dāng)年種植面積達(dá)到1.48億h m2,歷年累計(jì)種植面積首次突破了10億h m2[1]。目前商業(yè)化種植的轉(zhuǎn)基因抗蟲(chóng)作物大部分表達(dá)源自蘇云金桿菌(Bacill us thuringiensis Berliner,Bt)的殺蟲(chóng)蛋白基因。Bt是一種革蘭氏陽(yáng)性土壤芽胞桿菌,在形成芽胞時(shí),可產(chǎn)生一種或數(shù)種殺蟲(chóng)晶體蛋白又稱δ內(nèi)毒素,殺蟲(chóng)晶體蛋白對(duì)敏感昆蟲(chóng)有強(qiáng)烈的毒性,而對(duì)高等動(dòng)物和人無(wú)毒。隨著轉(zhuǎn)Bt基因抗蟲(chóng)作物進(jìn)入大規(guī)模商業(yè)化應(yīng)用階段,轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)生態(tài)環(huán)境可能造成的影響越來(lái)越受到人們的關(guān)注。迄今,國(guó)內(nèi)外有關(guān)轉(zhuǎn)Bt基因抗蟲(chóng)作物的生態(tài)安全性評(píng)價(jià)與研究多集中于:對(duì)非靶標(biāo)生物和生物多樣性的影響、基因漂移風(fēng)險(xiǎn)、對(duì)土壤微生物的影響、靶標(biāo)害蟲(chóng)產(chǎn)生抗性的風(fēng)險(xiǎn)及其治理等方面。本文就轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)非靶標(biāo)生物影響的評(píng)價(jià)研究進(jìn)展作一概述。
目前,已獲得的轉(zhuǎn)Bt基因抗蟲(chóng)作物主要有棉花[2-4]、玉 米[5-7]、水 稻[8-10]、大 豆[11-13]、煙 草[14-16]、番茄[17-19]、油菜[20-21]、茄子[22]和馬鈴薯[17,23]等。面對(duì)如此眾多的轉(zhuǎn)基因作物,若要完成對(duì)所有的非靶標(biāo)生物進(jìn)行安全性評(píng)價(jià)是不現(xiàn)實(shí)的,因此只有選擇部分可能暴露于Bt殺蟲(chóng)蛋白下的非靶標(biāo)生物作為安全性評(píng)價(jià)的對(duì)象。在評(píng)價(jià)對(duì)象的選擇上,可以參考在相關(guān)生境中用于常規(guī)毒性檢測(cè)和環(huán)境檢測(cè)的代表性生物[24-28]。目前用于安全性評(píng)價(jià)的非靶標(biāo)生物可分為3類:第一是非靶標(biāo)的植食者(如蚜蟲(chóng)、葉蟬、飛虱、盲蝽等),由于轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)這些非靶標(biāo)害蟲(chóng)可能具有未知的影響從而引起暴發(fā)成災(zāi)的可能性,因此對(duì)它們進(jìn)行安全性評(píng)價(jià)十分必要;第二是非靶標(biāo)的天敵(如花蝽、草蛉、瓢蟲(chóng)、蜘蛛、寄生蜂等),由于各種天敵在生物防治中的重要作用,對(duì)天敵的評(píng)價(jià)一直都沒(méi)停止;第三是非靶標(biāo)的經(jīng)濟(jì)或觀賞昆蟲(chóng)(如蜜蜂、家蠶和蝴蝶等),由于這些昆蟲(chóng)在經(jīng)濟(jì)或文化上所具有的特殊價(jià)值,轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)其是否安全一直以來(lái)也都是人們關(guān)注的焦點(diǎn)之一。
目前傳統(tǒng)化學(xué)農(nóng)藥對(duì)非靶標(biāo)生物的評(píng)價(jià)體系較為完善,其采用的層次檢測(cè)法(tiered testing)可以十分嚴(yán)格、有效的對(duì)農(nóng)藥的安全性做出判定[29]。盡管轉(zhuǎn)Bt基因抗蟲(chóng)作物表達(dá)的殺蟲(chóng)蛋白和化學(xué)農(nóng)藥不同,但轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)非靶標(biāo)生物安全性評(píng)價(jià)的方式和傳統(tǒng)的化學(xué)農(nóng)藥的風(fēng)險(xiǎn)評(píng)估方式相似[30]。因此,在現(xiàn)行的轉(zhuǎn)基因作物安全性評(píng)價(jià)的體系中也采用了類似層次遞進(jìn)的程序[31]。整個(gè)評(píng)價(jià)程序分為3個(gè)層次:室內(nèi)試驗(yàn)評(píng)價(jià)、室內(nèi)擴(kuò)展或半田間試驗(yàn)評(píng)價(jià)、田間試驗(yàn)評(píng)價(jià)。在室內(nèi)條件下可精確、有效地評(píng)價(jià)轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)非靶標(biāo)生物是否具有潛在的風(fēng)險(xiǎn),評(píng)估時(shí)使非靶標(biāo)生物暴露于田間Bt殺蟲(chóng)蛋白劑量的數(shù)倍含量的殺蟲(chóng)蛋白下以充分反映其潛在的影響。室內(nèi)試驗(yàn)通常以一種或一組可以容易評(píng)估且與種群增長(zhǎng)相關(guān)的生命周期參數(shù)(如存活率,發(fā)育歷期,體重和繁殖力等)作為評(píng)價(jià)指標(biāo),不過(guò)應(yīng)當(dāng)盡量避免選用與種群增長(zhǎng)沒(méi)有直接關(guān)系的參數(shù)[32]。如果在室內(nèi)條件下評(píng)價(jià)結(jié)果表明轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)非靶標(biāo)生物無(wú)有害作用則評(píng)價(jià)結(jié)束,并判定該轉(zhuǎn)基因作物對(duì)該非靶標(biāo)生物是無(wú)安全性風(fēng)險(xiǎn)的。如果室內(nèi)試驗(yàn)表明轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)非靶標(biāo)生物產(chǎn)生不利影響,則須進(jìn)入第2層室內(nèi)擴(kuò)展或半田間試驗(yàn)。以此類推做出評(píng)價(jià)判定或再進(jìn)入下一層直至最終可以做出安全性評(píng)價(jià)的判定。
目前,多數(shù)研究都表明Bt玉米、Bt棉花和Bt水稻對(duì)其田間的非靶標(biāo)節(jié)肢動(dòng)物群落的結(jié)構(gòu)、多樣性、豐富度和均勻度等參數(shù)都沒(méi)有影響。
在生態(tài)系統(tǒng)中,存在著錯(cuò)綜復(fù)雜的食物網(wǎng)。非靶標(biāo)植食者的種群數(shù)量對(duì)上一營(yíng)養(yǎng)階層的種群至關(guān)重要。就玉米而言,Rauschen等連續(xù)2年采用4種不同的調(diào)查方法對(duì)半翅目頸喙亞目昆蟲(chóng)在轉(zhuǎn)基因玉米MON810田間的多樣性和豐富度進(jìn)行了研究,發(fā)現(xiàn) 一 種 葉 蟬 [Zyginidia scutell aris (Herrich-Sch?ffer)]占所有捕獲種類的94%,并且在轉(zhuǎn)基因玉米田間與其非轉(zhuǎn)基因親本玉米田間的數(shù)量沒(méi)有顯著差異[33]。轉(zhuǎn)cr y1Ab 基因玉米[34]、轉(zhuǎn)cr y1F 基因玉米[35]對(duì)田間地上部分的非靶標(biāo)植食者的種群沒(méi)有影響;轉(zhuǎn)cry1Ab基因甜玉米在整個(gè)植物的生長(zhǎng)期對(duì)一些特殊的植食性昆蟲(chóng)的種群密度也沒(méi)有影響[36]。
從捕食者的角度來(lái)看,雖然不同的調(diào)查方法獲得的捕食性天敵的優(yōu)勢(shì)種不一樣且年度間也有變化,但是有關(guān)捕食者的豐富度在轉(zhuǎn)基因與非轉(zhuǎn)基因作物之間沒(méi)有差異[37]。又有報(bào)道,轉(zhuǎn)cry1Ab基因玉米田與非轉(zhuǎn)基因玉米田相比,其步甲和彈尾蟲(chóng)的物種多樣性和均勻度沒(méi)有顯著變化[38];在德國(guó)對(duì)轉(zhuǎn)cr y1Ab基因玉米田和非轉(zhuǎn)基因玉米田的地表節(jié)肢動(dòng)物進(jìn)行3年調(diào)查,發(fā)現(xiàn)在第1年轉(zhuǎn)基因玉米田蜘蛛和步甲的豐富度與其非轉(zhuǎn)基因玉米田相比有顯著差異,而其后的兩年內(nèi)轉(zhuǎn)基因玉米田和非轉(zhuǎn)基因玉米田的蜘蛛和步甲的豐富度不存在顯著差異;而第1年的差異可能是由于下雨過(guò)多而引起農(nóng)田小氣候變化所引起的[39]。這就表明氣候的變化本身比轉(zhuǎn)基因作物對(duì)田間生物的種群多樣性和均勻度的影響要顯著得多[38]。
也有一些研究結(jié)果與上述研究存在一些差異,如對(duì)cry1Ab基因玉米田間的蚜蟲(chóng)、葉蟬、毛蟲(chóng)和線蟲(chóng)的豐富度進(jìn)行了連續(xù)3年的調(diào)查,發(fā)現(xiàn)與非轉(zhuǎn)基因玉米田相比較,蚜蟲(chóng)的數(shù)量顯著增多,進(jìn)一步從特定種數(shù)量的角度分析,發(fā)現(xiàn)這種統(tǒng)計(jì)學(xué)上的差異是由于其中麥長(zhǎng)管蚜[Sitobion avenae (Fabricius)]的數(shù)量引起的,而其他3種主要蚜蟲(chóng):麥無(wú)網(wǎng)長(zhǎng)管蚜[Metopol ophiu m dir hodu m (Wal ker)]、禾谷縊管蚜(Rhopalosiphum padi L.)和馬鈴薯長(zhǎng)管蚜[Macrosiphu m euphorbiae (Tho mas)]的數(shù)量沒(méi)有顯著的變化;同時(shí)對(duì)蚜蟲(chóng)的年齡結(jié)構(gòu)進(jìn)行分析,發(fā)現(xiàn)轉(zhuǎn)基因田的蚜蟲(chóng)部分蟲(chóng)態(tài)的數(shù)量始終要多一些,其中轉(zhuǎn)基因田禾谷縊管蚜的有翅成蟲(chóng)、無(wú)翅成蟲(chóng)、若蟲(chóng),麥長(zhǎng)管蚜的無(wú)翅成蟲(chóng)、無(wú)翅4齡若蟲(chóng),馬鈴薯長(zhǎng)管蚜的有翅成蟲(chóng)、無(wú)翅成蟲(chóng)和無(wú)翅4齡若蟲(chóng)的數(shù)量顯著高于對(duì)照田,老熟若蟲(chóng)的數(shù)量尤其要高一些。但是轉(zhuǎn)基因玉米田與其對(duì)照相比,葉蟬的數(shù)量卻沒(méi)有差異。雖然蚜蟲(chóng)的數(shù)量有所不同,但是都沒(méi)有造成產(chǎn)量損失[40]。目前,前人的研究結(jié)果均認(rèn)為Bt玉米對(duì)田間節(jié)肢動(dòng)物群落的影響可以忽略。
Bt棉花對(duì)棉鈴蟲(chóng)的控制作用顯著,自商業(yè)化種植以來(lái)取得了巨大的經(jīng)濟(jì)效益[41]。Bt棉花對(duì)其非靶標(biāo)節(jié)肢動(dòng)物群落的影響與Bt玉米相似,目前大部分的研究都表明Bt棉花對(duì)非靶標(biāo)昆蟲(chóng)的種群密度[42-47]、多樣性[44,48-49]和豐富度[48,50-51]沒(méi)有影響。僅少數(shù)研究發(fā)現(xiàn)對(duì)個(gè)別物種有影響,如轉(zhuǎn)vip基因棉花上的B型煙粉虱[Bemisia tabaci(Gennadius)]的數(shù)量較多[52],轉(zhuǎn)cry1Ac基因棉田中的盲蝽從次要害蟲(chóng)變成棉田的主要害蟲(chóng)[53];而前者可能是因?yàn)檗D(zhuǎn)基因棉花與非轉(zhuǎn)基因棉花葉片上的絨毛差異所導(dǎo)致[52],后者則是因?yàn)檗D(zhuǎn)基因棉花的種植減少了農(nóng)藥的使用以及其他作物生境盲蝽的遷入,使得其在棉田的種群數(shù)量有所上升[53]。也有人認(rèn)為Bt棉田中節(jié)肢動(dòng)物的減少可能是因?yàn)轺[翅目昆蟲(chóng)作為獵物的減少而引起的,而非Bt棉花直接對(duì)非靶標(biāo)節(jié)肢動(dòng)物的影響[54]。
Bt水稻對(duì)田間非靶標(biāo)節(jié)肢動(dòng)物群落的影響已有數(shù)例報(bào)道[55-59]。Li等[57]認(rèn)為節(jié)肢動(dòng)物共位群的優(yōu)勢(shì)種、屬組成、共位群的優(yōu)勢(shì)分布,每個(gè)共位群的個(gè)體數(shù)量和兩個(gè)群落指數(shù)(Shannon-Weaver多樣性指數(shù)和優(yōu)勢(shì)集中性指數(shù))在轉(zhuǎn)基因田和非轉(zhuǎn)基因田之間沒(méi)有顯著差異。從其中任意物種來(lái)看,采用馬氏掛網(wǎng)和吸蟲(chóng)兩種方法調(diào)查結(jié)果都表明作為早稻的優(yōu)勢(shì)種白背飛虱[Sogatell a furcifer a (Hor váth)]占了飛虱總量的50%以上,而白背飛虱的種群密度在轉(zhuǎn)cry1Ab/cry1Ac基因水稻和其非轉(zhuǎn)基因親本水稻之間沒(méi)有差異[56]。與此類似,黃板取樣結(jié)果表明:葉蟬和飛虱的種類組成和密度在Bt水稻田和非Bt水稻田間沒(méi)有顯著差異,且葉蟬和飛虱的種群密度受取樣時(shí)間和取樣地點(diǎn)的影響,但是不受水稻品種的影響[55]。同樣,轉(zhuǎn)cr y1 Ac/sck雙基因抗蟲(chóng)水稻系‘MSA’、‘MSB’、‘MSA4’移栽后,對(duì)白背飛虱和褐飛虱[Nil apar vata l ugens (St?l)]的種群數(shù)量沒(méi)有影響,也沒(méi)有引起葉蟬數(shù)量的明顯變化[58]。此外,在休田期,對(duì)Bt水稻和非Bt水稻田彈尾蟲(chóng)的種群進(jìn)行了連續(xù)3年的調(diào)查,結(jié)果表明,地上居住的彈尾蟲(chóng)種類豐富,其中灰橄欖長(zhǎng)角跳蟲(chóng)(Entomobr ya griseoolivata)、球角跳蟲(chóng)(Hypogastr ur a matur a)和鉤圓跳蟲(chóng)(Bourletiell a christianseni)為優(yōu)勢(shì)種,并且種的構(gòu)成和豐富度在轉(zhuǎn)基因和非轉(zhuǎn)基因田間沒(méi)有顯著差異[59]。目前為止,認(rèn)為轉(zhuǎn)Bt基因抗蟲(chóng)水稻不會(huì)引起節(jié)肢動(dòng)物群落的變化和非靶標(biāo)害蟲(chóng)種群數(shù)量的上升。
轉(zhuǎn)Bt基因抗蟲(chóng)作物的非靶標(biāo)植食性昆蟲(chóng)包括蚜蟲(chóng)、葉蟬、飛虱、盲蝽等多種昆蟲(chóng)和螨類。已有研究結(jié)果表明,Bt水稻對(duì)褐飛虱的取食選擇性[60-61]、產(chǎn)卵選擇性[61]、生長(zhǎng)發(fā)育和存活率沒(méi)有影響[60];亦有發(fā)現(xiàn)Bt水稻對(duì)褐飛虱的取食是不利的[62],并且會(huì)降低褐飛虱[63]和稻薊馬[64]的產(chǎn)卵量,因此不會(huì)引起這類非靶標(biāo)植食性昆蟲(chóng)的田間暴發(fā)成災(zāi)。
蚜蟲(chóng)是多種捕食性天敵的獵物同時(shí)也是一些寄生性天敵的寄主,并且它分泌的蜜露為許多節(jié)肢動(dòng)物提供了重要的營(yíng)養(yǎng)。蚜蟲(chóng)對(duì)不同類型作物的選擇性會(huì)影響其后代的生長(zhǎng)發(fā)育和繁殖。在室內(nèi)對(duì)棉蚜(Aphis gossy pii Glover)在3種Bt棉花及其親本非轉(zhuǎn)基因棉花上的行為選擇研究,發(fā)現(xiàn)Bt棉花對(duì)棉蚜的行為沒(méi)有影響[65];同樣在溫室內(nèi)采用獨(dú)立籠子飼養(yǎng)棉蚜,有翅棉蚜對(duì)Bt棉花和它的非轉(zhuǎn)基因親本棉花的定殖沒(méi)有偏好性[66];Bt馬鈴薯對(duì)桃蚜[Myzus persicae(Sulzer)]的行為選擇沒(méi)有影響[67]。從生物學(xué)角度來(lái)看,大部分的研究都表明轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)蚜蟲(chóng)的生物學(xué)特性沒(méi)有顯著影響。如:取食轉(zhuǎn)基因棉花和非轉(zhuǎn)基因棉花的蚜蟲(chóng)產(chǎn)卵前期、產(chǎn)卵期、壽命、存活曲線和日產(chǎn)卵量等沒(méi)有顯著差異[66];實(shí)驗(yàn)室條件下,Bt玉米對(duì)麥長(zhǎng)管蚜的有翅后代的數(shù)量、無(wú)翅蚜的存活率、壽命、內(nèi)稟增長(zhǎng)率、周限增長(zhǎng)率和種群倍增時(shí)間都沒(méi)有顯著影響,并且無(wú)翅蚜的產(chǎn)卵前期和產(chǎn)卵期也沒(méi)有差異[68];Bt馬鈴薯對(duì)桃蚜若蟲(chóng)的發(fā)育時(shí)間、孤雌胎生蚜的壽命和平均產(chǎn)卵量都沒(méi)有影響[67]。
蚜蟲(chóng)是許多捕食性天敵的獵物,同時(shí)蚜蟲(chóng)的蜜露還為寄生性天敵提供營(yíng)養(yǎng),因此蚜蟲(chóng)體內(nèi)或者它的蜜露是否存在Bt殺蟲(chóng)蛋白一度成為研究的熱點(diǎn)。在取食Bt油菜的桃蚜體內(nèi)檢測(cè)到微量的Cry1Ab蛋白[69];在取食Bt玉米的禾谷縊管蚜體內(nèi)檢測(cè)到痕量Cr y1 Ab蛋白[70];而在取食Bt棉花的棉蚜體內(nèi)檢測(cè)不到Cry1 Ac蛋白[65];取食Bt玉米的麥長(zhǎng)管蚜體內(nèi)檢測(cè)不到Cry1Ab蛋白[68]。鑒于大部分的研究都表明在蚜蟲(chóng)體內(nèi)檢測(cè)不到Bt殺蟲(chóng)蛋白或者檢測(cè)到痕量的殺蟲(chóng)蛋白,因此認(rèn)為蚜蟲(chóng)作為捕食性天敵的獵物不會(huì)影響下一營(yíng)養(yǎng)階層的捕食者的生長(zhǎng)發(fā)育。而有研究表明3種轉(zhuǎn)基因棉花品種與其親本非轉(zhuǎn)基因品種上的蚜蟲(chóng)蜜露組成存在顯著差異[65],也有對(duì)玉米韌皮部汁液進(jìn)行了分析,發(fā)現(xiàn)不同玉米品系中的氨基酸含量不同,Bt玉米品系中的氨基酸含量要略高一些,這就有可能改變蚜蟲(chóng)對(duì)玉米植株的選擇性,導(dǎo)致Bt玉米上的蚜蟲(chóng)密度要略高一些但不顯著,以至于Bt玉米上的蜜露增多,為寄生蜂類提供了豐富的營(yíng)養(yǎng)[71]。
綜合以上研究結(jié)果認(rèn)為,多數(shù)轉(zhuǎn)Bt基因抗蟲(chóng)作物對(duì)蚜蟲(chóng)的行為和生長(zhǎng)發(fā)育等生物學(xué)影響是可以忽略的,而蚜蟲(chóng)作為第三營(yíng)養(yǎng)層的獵物或者營(yíng)養(yǎng)源亦不會(huì)對(duì)它們產(chǎn)生影響。
目前,對(duì)捕食性天敵的研究大部分集中在草蛉和瓢蟲(chóng)兩大類上。其中對(duì)草蛉的研究比較系統(tǒng)。早在1998年,Hilbeck等[72]發(fā)現(xiàn)以取食轉(zhuǎn)cr y1 Ab玉米的棉貪夜蛾[Spodopter a littor alis (Boisduval)]或者歐洲玉米螟[Ostrinia nubil alis (Hübner)]為獵物的普通草蛉[Chr ysoperl a car nea (Stephens)]的死亡率顯著增高。隨后,又發(fā)現(xiàn)將Cr y1 Ab或者Cr y2 A殺蟲(chóng)蛋白摻入人工飼料中飼喂普通草蛉,其死亡率也顯著增高[73]。這兩例研究引發(fā)了人們的思考,Bt玉米在田間對(duì)草蛉有沒(méi)有毒性,如果有毒性這種作用是直接的還是間接的。
就普通草蛉對(duì)獵物的選擇性進(jìn)行了一系列的試驗(yàn),普通草蛉對(duì)取食Bt玉米和常規(guī)玉米的棉貪夜蛾或者禾谷縊管蚜的選擇性沒(méi)有顯著差異;而在棉貪夜蛾和禾谷縊管蚜之間,普通草蛉更趨向于選擇取食禾谷縊管蚜[74]。Dutton等[70]對(duì)轉(zhuǎn)基因玉米上的3種植食性昆蟲(chóng)體內(nèi)的殺蟲(chóng)蛋白進(jìn)行了測(cè)定,殺蟲(chóng)蛋白濃度從高到低分別是二斑葉螨(Tetr anychus urticae Koch)、棉貪夜蛾和禾谷縊管蚜。當(dāng)飼喂普通草蛉上述3種植食性昆蟲(chóng)后,取食二斑葉螨和禾谷縊管蚜的普通草蛉的死亡率、發(fā)育歷期和體重沒(méi)有受到影響。相反,當(dāng)普通草蛉飼喂了棉貪夜蛾后,表現(xiàn)出了明顯的死亡率上升和發(fā)育延遲。二斑葉螨和棉貪夜蛾雖然體內(nèi)都含有Bt殺蟲(chóng)蛋白,但是對(duì)普通草蛉的影響卻不相同,作者因此推測(cè)可能是因?yàn)榈筒妒沉亢虰t殺蟲(chóng)蛋白的交互作用共同導(dǎo)致了普通草蛉取食棉貪夜蛾后所產(chǎn)生的負(fù)面效應(yīng)。至此,仍然認(rèn)為Bt殺蟲(chóng)可能對(duì)草蛉存在一些影響。
也有一些研究表明Bt作物對(duì)草蛉沒(méi)有影響。如:普通草蛉的捕食力和適應(yīng)性沒(méi)有受到Bt玉米的影響[75];取食Bt棉花上棉蚜的中華草蛉(Chr ysoperl a sinica Tjeder),其生長(zhǎng)和繁殖未見(jiàn)顯著不利影響[76]。Ro meis 等[77]則 認(rèn) 為 綠 草 蛉 (Chr ysopa nigricor nis Bur meister)的幼蟲(chóng)對(duì)Cry1 Ab不敏感,并且鱗翅目幼蟲(chóng)在田間不是綠草蛉的主要獵物,表達(dá)Cry1 Ab殺蟲(chóng)蛋白的轉(zhuǎn)基因玉米對(duì)綠草蛉的危險(xiǎn)可以忽略。2008年,對(duì)現(xiàn)行的轉(zhuǎn)基因作物安全性評(píng)價(jià)采用了類似層次遞進(jìn)的程序[31],得到眾人的認(rèn)可,在這個(gè)評(píng)價(jià)程序中,在室內(nèi)條件下采用該物種暴露于田間Bt殺蟲(chóng)蛋白的100倍劑量作為評(píng)價(jià)的標(biāo)準(zhǔn)。同年,有報(bào)道Cry1 Ac和Cry1Ab蛋白對(duì)普通草蛉沒(méi)有負(fù)面的影響[78]。目前,多數(shù)研究結(jié)果表明,Bt殺蟲(chóng)蛋白對(duì)草蛉沒(méi)有直接影響,而觀測(cè)到一些對(duì)草蛉的影響則是因?yàn)锽t殺蟲(chóng)蛋白對(duì)獵物質(zhì)量的影響而引起的間接影響。
蜘蛛是廣譜性捕食天敵,它能有效地控制很多害蟲(chóng),在生物防治中起著十分重要的作用[79-80],因此轉(zhuǎn)基因作物對(duì)它的影響也是人們關(guān)注的熱點(diǎn)之一[81]。在以稻縱卷葉螟[Cnaphal ocrocis medinalis(Gueneé)]為獵物的食物鏈中,雖然在稻縱卷葉螟和擬水狼蛛(Pir ata subpir aticus Boes.et Str.)體內(nèi)檢測(cè)到了Cry1 Ab蛋白,但擬水狼蛛的中腸不存在Cr y1 Ab的結(jié)合蛋白,且以取食Cr y1 Ab蛋白的稻縱卷葉螟為獵物的擬水狼蛛與那些以不含有Cr y1 Ab蛋白的稻縱卷葉螟為獵物的相比,它們的存活率和產(chǎn)卵量沒(méi)有顯著差異,盡管其發(fā)育時(shí)間顯著的延長(zhǎng)了,但Bt水稻對(duì)擬水狼蛛的田間種群密度沒(méi)有顯著的影響,因此Cry1Ab蛋白不會(huì)對(duì)該蜘蛛產(chǎn)生影響[82]。類似的結(jié)果隨后再次被報(bào)道,以取食轉(zhuǎn)cr y1 Ab基因水稻的褐飛虱為獵物的食蟲(chóng)溝瘤蛛[Ummeliata insecticeps (B?senber g & Strand)]的存活率、發(fā)育歷期和繁殖力與對(duì)照相比無(wú)任何顯著差異,同時(shí)3年2地的田間調(diào)查結(jié)果也表明Bt水稻對(duì)該蜘蛛的種群動(dòng)態(tài)無(wú)影響[83]。而褐飛虱的另一種天敵黑肩綠盲蝽(Cyrtor hinus lividipennis Reuter)取食以Bt水稻飼養(yǎng)的褐飛虱后也未見(jiàn)負(fù)面影響[60]。
寄生蜂包括內(nèi)寄生蜂和外寄生蜂。在自然條件下對(duì)靶標(biāo)和非靶標(biāo)害蟲(chóng)的調(diào)控作用不可忽視,且寄生蜂與寄主的特殊關(guān)系使其更容易暴露于Bt殺蟲(chóng)蛋白,因此轉(zhuǎn)基因植物對(duì)寄生蜂直接的或者間接的影響也成為研究的熱點(diǎn)。目前大多數(shù)研究結(jié)果表明,當(dāng)寄生蜂以取食了Bt作物的敏感靶標(biāo)害蟲(chóng)為寄主時(shí),寄生蜂受到不同程度的不利影響[84]。Vojtech等人[85]發(fā)現(xiàn)當(dāng)莎草黏蟲(chóng)盤絨繭蜂[Cotesia mar giniventris(Cresson)]寄生取食轉(zhuǎn)cr y1Ab基因玉米的棉貪夜蛾時(shí),寄生蜂的存活率、發(fā)育歷期和繭重都受到顯著的負(fù)面影響。以取食轉(zhuǎn)cr y1 Ab基因玉米的粉紅螟[Chilo partell us(Swinhoe)]為寄主時(shí),螟黃足盤絨繭蜂[Cotesia f l avipes(Cameron)]繭的鮮重和成蜂的干重與對(duì)照相比明顯下降。Baur和Boethel[86]研究發(fā)現(xiàn)轉(zhuǎn)cr y1Ac基因棉花對(duì)大豆夜蛾[Pseudopl usia incl udens(Wal ker)]的兩種寄生蜂,即莎草黏蟲(chóng)盤絨繭蜂和緣跳小蜂[Copidosoma f loridanu m (Ash mead)]均有不利影響,其中莎草黏蟲(chóng)盤絨繭蜂表現(xiàn)為發(fā)育延長(zhǎng)、壽命縮短和雌蟲(chóng)卵巢數(shù)減少,而緣跳小蜂則表現(xiàn)為成峰數(shù)量的減少。對(duì)棉鈴蟲(chóng)齒唇姬蜂(Campoletis chlorideae Uchida)的研究也得到類似的結(jié)果,以取食轉(zhuǎn)cr y1 Ac基因棉48 h的棉鈴蟲(chóng)[Helicover pa ar miger a (Hübner)]為寄主時(shí),該寄生蜂的發(fā)育歷期延長(zhǎng),繭和成蟲(chóng)重量都顯著下降。在對(duì)Bt馬鈴薯、Bt水稻和Bt花椰菜的研究中同樣發(fā)現(xiàn)Bt作物對(duì)寄生蜂有消極影響。當(dāng)寄主馬鈴薯甲蟲(chóng)[Leptinotarsa decemlineata (Say)]取食轉(zhuǎn)cr y3 Aa基因馬鈴薯時(shí),蚜繭蜂[Aphidius nigripes(Ash mead)]的存活率和成蜂大小與對(duì)照相比都有所下降[87]。姜永厚等[88]對(duì)二化螟絨繭蜂[Apanteles chilonis(Munakata)]進(jìn)行了研究,當(dāng)該寄生蜂寄生經(jīng)轉(zhuǎn)cr y1Ab基因水稻處理后的二化螟[Chilo sup pressalis (Walker)]時(shí),其寄生率顯著下降、結(jié)繭率顯著降低、繭長(zhǎng)顯著短于對(duì)照。雖然在取食轉(zhuǎn)cr y1 Ac基因、轉(zhuǎn)cr y1C 基因和轉(zhuǎn)cr y1 Ac/cr y1C基因花椰菜的菜青蟲(chóng)[Pieris r apae(L.)]體內(nèi)生長(zhǎng)的蝶蛹金小蜂(Pter omal us pupar u m L.)可以寄生正常的菜青蟲(chóng)且對(duì)后代沒(méi)有影響,但是與在正常菜青蟲(chóng)體內(nèi)生長(zhǎng)的蝶蛹金小蜂相比,其發(fā)育歷期延長(zhǎng),寄生率和成蟲(chóng)壽命顯著降低[89]。這些結(jié)果都是以對(duì)Bt作物敏感的寄主為實(shí)驗(yàn)材料完成的,取食Bt作物對(duì)這些寄主都會(huì)產(chǎn)生嚴(yán)重的負(fù)面影響(死亡率上升、發(fā)育歷期延長(zhǎng)、體重下降等)。而寄生蜂的生長(zhǎng)發(fā)育與寄主密切相關(guān),寄主質(zhì)量的改變將直接影響到寄生蜂[90]。因此,以上的研究表明Bt作物只是通過(guò)影響了寄主的質(zhì)量間接影響了寄生蜂。而隨著B(niǎo)t抗性小菜蛾[Plutella xylostella (L.)]的出現(xiàn),以其為研究材料的結(jié)果表明在轉(zhuǎn)cry1Ac基因油菜和轉(zhuǎn)cry1C基因花椰菜不影響寄主質(zhì)量的情況下對(duì)菜蛾盤絨繭蜂[Cotesia pl utellae(Kurdju mov)]和島嶼彎尾姬蜂[Diadeg ma insulare (Cresson)]均沒(méi)有影響[91-92]。
由于Bt蛋白專一性地針對(duì)某類昆蟲(chóng)如鱗翅目昆蟲(chóng),而不是專一性地針對(duì)某一種昆蟲(chóng),因此對(duì)同一類昆蟲(chóng)仍有產(chǎn)生影響的可能。如君王斑蝶(Danaus plexip pus L.)事件,Losey等[93]報(bào)道,在實(shí)驗(yàn)室中用沾有大量Bt玉米(N4640)花粉的馬利筋(Asclepias syriaca)葉片飼喂大斑蝶的幼蟲(chóng),死亡率高達(dá)44%,從而引發(fā)了Bt玉米環(huán)境風(fēng)險(xiǎn)的爭(zhēng)論。隨后的研究結(jié)論是,目前商業(yè)化栽培的Bt玉米雜種的花粉對(duì)大斑蝶種群的影響可忽略不計(jì)[94-98],其根據(jù)是:大部分雜種玉米花粉中Bt殺蟲(chóng)蛋白的表達(dá)量很低,在田間達(dá)不到急性毒性值,玉米散粉期與大斑蝶幼蟲(chóng)發(fā)生期很少重疊。帝王斑蝶減少的真正原因是農(nóng)藥的過(guò)度使用及墨西哥生境的破壞。Losey等的研究結(jié)果并不能代表田間實(shí)際狀況,因此安全性評(píng)價(jià)必須遵循層次檢測(cè)原則,在下結(jié)論之前必須謹(jǐn)慎嚴(yán)格的通過(guò)相應(yīng)層次的檢測(cè)。
蜜蜂是地球上數(shù)量豐富分布廣泛的傳粉昆蟲(chóng),且蜂蜜產(chǎn)品深受大眾喜愛(ài),因此它在各種安全性評(píng)價(jià)中作為一種重要的指示昆蟲(chóng)備受人們關(guān)注。目前針對(duì)Bt作物對(duì)蜜蜂的影響開(kāi)展了大量的研究,研究結(jié)果表明Bt作物對(duì)蜜蜂的存活率、成蜂壽命、取食行為、學(xué)習(xí)能力、過(guò)氧化物酶活性和腸道細(xì)菌群落都沒(méi)有影響[99-105]。同時(shí)田間調(diào)查結(jié)果顯示Bt作物對(duì)蜜蜂的物種豐富度和種群數(shù)量都沒(méi)有影響[36,106]。
家蠶是一種重要經(jīng)濟(jì)昆蟲(chóng),且在我國(guó)和一些亞洲國(guó)家水稻和桑林經(jīng)常相鄰種植,因此水稻花粉有可能飄落至桑葉從而影響家蠶。目前研究結(jié)果表明,在花粉高密度的情況下部分Bt水稻對(duì)家蠶有致死作用,但考慮到田間很難達(dá)到致死的高密度,因此Bt水稻對(duì)家蠶的作用可以忽略不計(jì)[107-108]。同時(shí),李文東等[109]用抗蟲(chóng)轉(zhuǎn)基因棉花粉處理的遼東櫟(Quercus liaotungensis Koidz.)葉片飼養(yǎng)柞蠶(Anther aea per nyi Guerin-Meneville),結(jié)果顯示,與非轉(zhuǎn)基因棉花粉處理相比柞蠶的死亡率、發(fā)育歷期以及食物利用率、食物轉(zhuǎn)化率、相對(duì)代謝速率、相對(duì)取食量和近似消化率等營(yíng)養(yǎng)指標(biāo)均無(wú)顯著差別。
過(guò)去十多年來(lái),國(guó)際國(guó)內(nèi)對(duì)于轉(zhuǎn)Bt基因作物的環(huán)境安全性評(píng)價(jià)已經(jīng)積累了大量的數(shù)據(jù)和經(jīng)驗(yàn),多數(shù)試驗(yàn)結(jié)果表明,對(duì)非靶標(biāo)生物沒(méi)有不利的影響。偶爾也有不同結(jié)論的報(bào)道,如Sch midt等報(bào)道Cr y1 Ab和Cr y3Bb對(duì)二星瓢蟲(chóng)[Adalia bipunctata(L.)]有負(fù)面影響[110]。該文章還被德國(guó)政府引用為禁止Bt玉米在德國(guó)種植的證據(jù)之一。然而進(jìn)一步考證認(rèn)為,該試驗(yàn)無(wú)論是在試驗(yàn)設(shè)計(jì)還是結(jié)果分析上都有問(wèn)題,其結(jié)論不能讓人信服[111]。另L?vei等稱通過(guò)分析大量的研究結(jié)果表明Cr y蛋白對(duì)非靶標(biāo)生物確實(shí)有不利影響,特別是寄生蜂,有66.1%的研究結(jié)果表明Bt作物對(duì)寄生蜂有不利的影響[112]。該文章發(fā)表后,Shelton等人對(duì)文章進(jìn)行分析研究后發(fā)現(xiàn)L?vei等人利用片面的數(shù)據(jù),通過(guò)不合理的分析方法得到錯(cuò)誤的結(jié)果,如將Bt蛋白通過(guò)對(duì)寄主或獵物的影響偷換為Bt蛋白對(duì)非靶標(biāo)生物的直接影響等[113]。因此,就目前研究結(jié)果來(lái)看,抗蟲(chóng)轉(zhuǎn)Bt基因作物對(duì)非靶標(biāo)生物并沒(méi)有直接的不利影響,對(duì)生態(tài)環(huán)境是安全的。目前開(kāi)發(fā)應(yīng)用的Bt基因數(shù)量相對(duì)較少,隨著越來(lái)越多的Bt基因和抗蟲(chóng)轉(zhuǎn)基因材料的開(kāi)發(fā),按照個(gè)案分析的原則對(duì)非靶標(biāo)生物影響的評(píng)價(jià)還是十分必要的。
[1] James C.2010 ISAAA report on global status of Biotech/GM crops[EB/OL].[2011-08-30].http:∥www.isaaa.or g.
[2] Sachs E S,Benedict J H,Taylor J F,et al.Pyra miding Cry1 A(b)insecticidal protein and terpenoids in cotton to resist tobacco bud wor m(Lepidoptera:Noctuidae)[J].Environ mental Ento mology,1996,25(6):1257-1266.
[3] Ada mczyk J J,Mascarenhas V J,Church G E,et al.Susceptibility of conventional and transgenic cott on bolls expressing t he Bacill us thuringiensis Cr y1 A(c)partial derivative-endotoxin to fall ar my wor m (Lepidoptera:Noct uidae)and beet ar my wor m(Lepidoptera:Noctuidae)injury[J].Jour nal of Agricultural Ento mology,1998,15(3):163-171.
[4] Liu T X,Li Y X,Greenber g S M.Effects of Bt cotton expressing Cry1 Ac and Cry2 Ab and non-Bt cotton on behavior,survival and develop ment of Trichopl usia ni (Lepidoptera:Noctuidae)[J].Cr op Protection,2006,25(9):940-948.
[5] Wiseman B R,Lynch R E,Plaisted D,et al.Eval uation of Bt transgenic sweet cor n hybrids f or resistance to cor n ear wor m and fall ar my wor m (Lepidoptera:Noct uidae)using a meridic diet bioassay[J].Journal of Entomological Science,1999,34(4):415-425.
[6] Bokonon-Ganta A H,Ber nal J S,Pietrantonio P V,et al.Survivorship and develop ment of fall ar my wor m,Spodoptera f r ugiper da (J.E.Smit h)(Lepidoptera:Noctuidae),on conventional and transgenic maize cultivars expressing Bacill us thuringiensis Cr y9C and Cry1 A(b)endotoxins[J].Inter national Jour nal of Pest Management,2003,49(2):169-175.
[7] Jehle J A,Nguyen H T.Expression of Cry3Bb1 in transgenic cor n MON88017[J].Jour nal of Agricult ural and Food Chemistr y,2009,57(21):9990-9996.
[8] Ye G Y,Yao H W,Shu Q Y,et al.High levels of stable resistance in transgenic rice wit h a cr y1 Ab gene fr o m Bacill us thuringiensis Berliner to rice leaff older,Cnaphalocrocis medinalis(Gueneé)under field conditions[J].Crop Pr otection,2003,22(1):171-178.
[9] Chen Y,Tian J C,Shen Z C,et al.Transgenic rice plants expressing a f used pr otein of Cr y1 Ab/Vip3 H has resistance to rice stem borers under laboratory and field conditions[J].Journal of Econo mic Ento mology,2010,103(4):1444-1453.
[10]Lin Y J,Yang Z,Chen H,et al.Develop ment and characterisation of transgenic rice expressing t wo Bacill us thuringiensis genes[J].Pest Management Science,2011,67(4):414-422.
[11]Stewart C N,Adang M J,All J N,et al.Genetic transf or mation,recovery,and characterization of fertile soybean transgenic f or a synt hetic Bacill us thuringiensis cr yl Ac gene[J].Plant Physiology,1996,112(1):121-129.
[12]Miklos J A,Alibhai M F,Bledig S A,et al.Characterization of soybean exhibiting high expression of a synt hetic Bacill us thuringiensis cr y1A transgene that confers a high degree of resistance to lepidopteran pests[J].Crop Science,2007,47(1):148-157.
[13]Mc Pherson R M,Mac Rae T C.Eval uation of transgenic soybean exhibiting high expression of a synthetic Bacill us thuringiensis cr y1 A transgene f or suppressing lepidopteran population densities and crop injury[J].Jour nal of Econo mic Ent o mology,2009,102(4):1640-1648.
[14]Huang Q M,Mao L Q,Huang W H,et al.Transgenic tobacco plants wit h a f ully synt hesized GFM Cr yIA gene pr ovide effective tobacco boll wor m (Heliothis ar migera)control[J].Acta Botanica Sinica,1998,40(3):228-233.
[15]Burgess E P J,Malone L A,Christeller J T,et al.Avidin expressed in transgenic tobacco leaves confers resistance to t wo noctuid pests,Helicover pa ar miger a and Spodopter a litur a[J].Transgenic Research,2002,11(2):185-198.
[16]Altosaar I,Gul bitti-Onarici S,Zaidi M A,et al.Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible pro moter(Ao PR1)isolated fro m Aspar agus of f icinalis to contr ol Heliot his virescens and Manduca sexta[J].Molecular Biotechnology,2009,42(3):341-349.
[17]Chan M T,Chen L J,Chang H H.Expression of Bacill us thuringiensis(Bt)insecticidal crystal protein gene in transgenic potato[J].Botanical Bulletin of Academia Sinica,1996,37(1):17-23.
[18]Mandaokar A D,Goyal R K,Shukla A,et al.Transgenic tomato plants resistant to fruit borer(Helicover pa ar migera Hübner)[J].Crop Protection,2000,19(5):307-312.
[19]Ku mar H,Ku mar V.To mato expressing Cr y1 A(b)insecticidal protein from Bacill us thuringiensis protected against tomato fr uit borer,Helicover pa ar miger a (Hübner)(Lepidoptera:Noct uidae)damage in t he laborator y,greenhouse and field[J].Crop Protection,2004,23(2):135-139.
[20]Stewart C N,Adang M J,All J N,et al.Insect contr ol and dosage effects in transgenic canola containing a synt hetic Bacill us thuringiensis cr y1 Ac gene[J].Plant Physiology,1996,112(1):115-120.
[21]Wei W,Le Y T,Stewart C N,et al.Expression of Bt Cr y1 Ac in transgenic oilseed rape in China and transgenic perfor mance of intraspecific hybrids against Helicover pa ar miger a larvae[J].Annals of Applied Biology,2007,150(2):141-147.
[22]Arpaia S,Mennella G,Onofaro V,et al.Production of transgenic eggplant(Sol anum melongena L.)resistant to Colorado potat o beetle(Leptinotarsa decemlineata Say)[J].Theoretical and Applied Genetics,1997,95(3):329-334.
[23]Chakrabarti S K,Ku mar M,Chi mote V,et al.Develop ment of Bt transgenic potatoes f or effective control of potato tuber mot h by using cr y1 Ab gene regulated by GBSS pr o moter[J].Cr op Pr otection,2010,29(2):121-127.
[24]American Society f or Testing and Materials(AST M).Standard guide f or selection of resident species as test organisms for aquatic and sedi ment toxicity tests[S].Document E1850.A-merican Society f or Testing and Materials AST M International,West Conshohocken,Pennsylvania,USA,2004.
[25]Barrett K L,Grandy N,Harrison E G,et al.Guidance document on regulatory testing procedures f or pesticides with nontar get art hr opods[R].Fro m t he ESCORT wor kshop(Eur opean Standar d Characteristics of Non-Target Art hropod Regulatory Testing).Society of Environ mental Toxicology and Chemistry Europe,Br ussels,Belgiu m,1994.
[26]Car o T M,O’Doherty G.On t he use of surrogate species in conservation biology[J].Conservation Biology,1999,13(4):805-814.
[27]Candolfi M,Bigler F,Campbell P,et al.Principles for regulatory testing and interpretation of semi-field and field studies wit h non-target art hr opods[J].Anzeiger Fur Schadlingskunde-Jour nal of Pest Science,2000,73(6):141-147.
[28]Duelli P,Obrist M K.Biodiversity indicators:the choice of values and measures[J].Agriculture Ecosystems & Environment,2003,98(1-3):87-98.
[29]Touart L W,Macioro wski A F.Infor mation needs f or pesticide registration in t he United States[J].Ecological Applications,1997,7(4):1086-1093.
[30]Hill R A,Sendashonga C.General principles f or risk assessment of living modified organisms:lessons from chemical risk assessment[J].Envir on mental Biosafety Research,2003,(2)81-88.
[31]Romeis J,Bartsch D,Bigler F,et al.Assessment of risk of insect-resistant transgenic cr ops t o nontar get art hropods[J].Nature Biotechnology,2008,26(2):203-208.
[32]Romeis J,Hell mich R L,Candolfi M P,et al.Recommendations f or t he design of laboratory st udies on non-target art hropods f or risk assess ment of genetically engineered plants[J].Transgenic Research,2011,20(1):1-22.
[33]Rauschen S,Eckert J,Schaarsch midt F,et al.An eval uation of met hods for assessing t he i mpacts of Bt-maize MON810 cultivation and pyret hr oid insecticide use on Auchenorr hyncha(plant hoppers and leaf hoppers)[J].Agricult ural and Forest Entomology,2008,10(4):331-339.
[34]Candolfi M P,Brown K,Gri mm C,et al.A faunistic approach to assess potential side-effects of genetically modified Bt-cor n on non-target arthropods under field conditions[J].Biocontrol Science and Technology,2004,14(2):129-170.
[35]Higgins L S,Babcock J,Neese P,et al.Three-year field monit oring of Cry1F,event DAS-empty set15empty set7-1,maize hybrids for nontarget art hropod effects[J].Envir on mental Entomology,2009,38(1):281-292.
[36]Rose R,Dively G P.Effects of insecticide-treated and lepidopteran-active Bt transgenic sweet cor n on t he abundance and diversity of art hr opods[J].Envir on mental Ent o mology,2007,36(5):1254-1268.
[37]de la Poza M,Pons X,F(xiàn)arinos G P,et al.Impact of far mscale Bt maize on abundance of predatory arthropods in Spain[J].Crop Protection,2005,24(7):677-684.
[38]Priestley A L,Br ownbridge M.Field trials to eval uate effects of Bt-transgenic silage cor n expressing t he Cr y1 Ab insecticidal toxin on non-target soil arthropods in northern New England,USA[J].Transgenic Research,2009,18(3):425-443.
[39]Toschki A,Hot hor n L A,Ross-Nickoll M.Effects of cultivation of genetically modified Bt maize on epigeic arthropods(Araneae;Carabidae)[J].Environ mental Ento mology,2007,36(4):967-981.
[40]Pons X,Lu mbierres B,Lopez C,et al.Abundance of non-target pests in transgenic Bt-maize:A far m scale st udy[J].Eur opean Jour nal of Ento mology,2005,102(1):73-79.
[41]張永軍,吳孔明,郭予元.轉(zhuǎn)Bt基因棉花殺蟲(chóng)蛋白含量的時(shí)空表達(dá)及對(duì)棉鈴蟲(chóng)的毒殺效果[J].植物保護(hù)學(xué)報(bào),2001,28(1):1-6.
[42]Sisterson M S,Antilla L,Carriere Y,et al.Effects of insect population size on evol ution of resistance to transgenic crops[J].Jour nal of Econo mic Ento mology,2004,97(4):1413-1424.
[43]Head G,Moar M,Eubanks M,et al.A multiyear,lar ge-scale co mparison of arthropod populations on co mmercially managed Bt and non-Bt cotton fields[J].Environ mental Ento mology,2005,34(5):1257-1266.
[44]Torres J B,Ruberson J R.Canopy-and gr ound-d welling predator y art hropods in co mmercial Bt and non-Bt cott on fields:Patterns and mechanisms[J].Environ mental Entomology,2005,34(5):1242-1256.
[45]Whitehouse M E A,Wilson L J,F(xiàn)itt G P.A co mparison of arthropod communities in transgenic Bt and conventional cotton in Australia[J].Envir on mental Ent o mology,2005,34(5):1224-1241.
[46]Cattaneo M G,Yaf uso C,Sch midt C,et al.Far m-scale evaluation of t he i mpacts of transgenic cotton on biodiversity,pesticide use,and yield[J].Pr oceedings of t he National Academy of Sciences of t he United States of America,2006,103(20):7571-7576.
[47]Torres J B,Ruberson J R.Abundance and diversity of grounddwelling arthropods of pest management i mportance in commercial Bt and non-Bt cotton fields[J].Annals of Applied Biology,2007,150(1):27-39.
[48]Sisterson M S,Biggs R W,Olson C,et al.Art hr opod abundance and diversity in Bt and non-Bt cotton fields[J].Environmental Ent o mology,2004,33(4):921-929.
[49]Shar ma H C,Pampapat hy G.Influence of transgenic cotton on the relative abundance and damage by target and non-target insect pests under different protection regi mes in India[J].Crop Pr otection,2006,25(8):800-813.
[50] Mellet M A,Schoeman A S.Effect of Bt-cotton on chrysopids,ladybir d beetles and t heir prey:Aphids and whiteflies[J].Indian Jour nal of Experi mental Biology,2007,45(6):554-562.
[51]Sisterson M S,Biggs R W,Manhardt N M,et al.Effects of transgenic Bt cotton on insecticide use and abundance of t wo generalist predators[J].Ento mologia Experi mentalis et Applicata,2007,124(3):305-311.
[52]Whitehouse M E A,Wilson L J,Constable G A.Target and non-tar get effects on t he invertebrate co mmunity of Vip cotton,a new insecticidal transgenic[J].Australian Journal of Agricult ural Research,2007,58(4):383-U315.
[53]Lu Y H,Qiu F,F(xiàn)eng H Q,et al.Species co mposition and seasonal abundance of pestiferous plant bugs(Hemiptera:Miridae)on Bt Cotton in China[J].Crop Protection,2008,27(3-5):465-472.
[54]Naranjo S E.Long-ter m assessment of the effects of transgenic Bt cott on on t he abundance of nontarget art hropod natural enemies[J]. Environ mental Ent o mology,2005,34 (5):1193-1210.
[55]Chen M,Ye G Y,Liu Z C,et al.Field assessment of the effects of transgenic rice expressing a f used gene of cr y1 Ab and cr y1 Ac fro m Bacill us t huringiensis Berliner on nontar get plant hopper and leaf hopper populations[J].Envir on mental Entomology,2006,35(1):127-134.
[56]Chen M,Liu Z C,Ye G Y,et al.Impacts of transgenic cr y1Ab rice on non-target planthoppers and their main predator Cyrtor hinus lividipennis(Hemiptera:Miridae)-A case st udy of t he co mpatibility of Bt rice wit h biological control[J].Biological Control,2007,42(2):242-250.
[57]Li F F,Ye G Y,Wu Q,et al.Art hr opod abundance and diversity in Bt and non-Bt rice fields[J].Envir on mental Entomology,2007,36(3):646-654.
[58]劉雨芳,賀玲,汪瓊,等.轉(zhuǎn)cr y1 Ac/sck基因抗蟲(chóng)水稻對(duì)稻田主要非靶標(biāo)害蟲(chóng)的田間影響評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科學(xué),2007,40(6):1181-1189.
[59]Bai Y Y,Yan R H,Ye G Y,et al.Effects of transgenic rice expressing Bacill us thuringiensis Cr y1 Ab pr otein on gr oundd welling collembolan co mmunity in post harvest seasons[J].Envir on mental Ento mology,2010,39(1):243-251.
[60]Ber nal C C,Aguda R M,Cohen M B.Effect of rice lines transf or med with Bacill us thuringiensis toxin genes on the bro wn plant hopper and its predator Cyrtor hinus lividipennis[J].Entomologia Experi mentalis et Applicata,2002,102(1):21-28.
[61]傅強(qiáng),王鋒,李冬虎,等.轉(zhuǎn)基因抗蟲(chóng)水稻MSA和MSB對(duì)非靶標(biāo)害蟲(chóng)褐飛虱和白背飛虱的影響[J].昆蟲(chóng)學(xué)報(bào),2003,46(6):697-704.
[62]陳茂,葉恭銀,姚洪渭,等.抗蟲(chóng)轉(zhuǎn)基因水稻對(duì)非靶標(biāo)害蟲(chóng)褐飛虱取食與產(chǎn)卵行為影響的評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科學(xué),2004,37(2):222-226.
[63]Chen Y,Tian J C,Wang W,et al.Bt rice expressing Cry1 Ab does not sti mulate an out break of its non-target her bivore,Nilapar vata l ugens[J/OL].Transgenic Research,2011:(DOI)10.1007/s11248-11011-19530-x.
[64]Akhtar Z R,Tian J C,Chen Y,et al.Impacts of six Bt rice lines on nontarget rice feeding t hrips under laboratory and field conditions[J].Environ mental Ento mology,2010,39(2):715-726.
[65]Lawo N C,Wackers F L,Ro meis J.Indian Bt cott on varieties do not affect t he perf or mance of cotton aphids[J/OL].PloS One,2009,4(3):e4804.
[66]Sujii E R,Togni P H B,Nakasu E Y T,et al.Impact of Bt cotton on t he population dyna mics of t he cotton aphid in greenhouse[J].Pesquisa Agropecuaria Brasileira,2008,43(10):1251-1256.
[67]Kalushkov P,Nedved O.Genetically modified potatoes expressing Cry3 A protein do not affect aphidophagous coccinellids[J].Journal of Applied Entomology,2005,129(8):401-406.
[68]Ramirez-Romero R,Desneux N,Chaufaux J,et al.Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera:Aphididae)and Cry1Ab toxin detection[J].Pesticide Biochemistry and Physiology,2008,91(2):110-115.
[69]Bur gio G,Lanzoni A,Accinelli G,et al.Evaluation of Bt-toxin uptake by t he non-target her bivore,Myzus persicae (Hemiptera:Aphididae),feeding on transgenic oilseed rape[J].Bulletin of Entomological Research,2007,97(2):211-215.
[70]Dutton A,Klein H,Romeis J,et al.Uptake of Bt-toxin by her bivores feeding on transgenic maize and consequences f or t he predator Chr ysoperl a car nea[J].Ecological Ento mology,2002,27(4):441-447.
[71]Faria C A,Wackers F L,Pritchar d J,et al.High susceptibility of Bt maize t o aphids enhances t he perfor mance of parasitoids of lepidopteran pests[J/OL].PLoS One,2007,2(7):e600.
[72]Hilbeck A,Bau mgartner M,F(xiàn)ried P M,et al.Effects of transgenic Bacill us thuringiensis corn-fed prey on mortality and develop ment ti me of i mmature Chr ysoperl a car nea (Neur optera:Chr ysopidae)[J].Envir on mental Ento mology,1998,27(2):480-487.
[73]Hilbeck A,Moar W J,Pusztai-Carey M,et al.Toxicity of Bacill us thuringiensis Cr y1 Ab toxin to t he predator Chr ysoperl a carnea (Neuroptera:Chrysopidae)[J].Environ mental Ento mology,1998,27(5):1255-1263.
[74]Hilbeck A,Meier M S.Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of i mmature Chr ysoperl a carnea(Neuroptera:Chrysopidae)[J].Basic and Applied E-cology,2001,2(1):35-44.
[75]Rodrigo-Si mon A,de Maagd R A,Avilla C,et al.Lack of detri mental effects of Bacill us thuringiensis cry toxins on the insect predator Chr ysoperl a carnea:a toxicological,histopathological,and biochemical analysis[J].Applied and Environ mental Microbiology,2006,72(2):1595-1603.
[76]董亮,萬(wàn)方浩,張桂芬,等.轉(zhuǎn)Bt基因抗蟲(chóng)棉對(duì)中華草蛉發(fā)育及繁殖的影響研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2003,11(3):16-18.
[77]Romeis J,Dutton A,Bigler F.Bacill us thuringiensis toxin(Cr y1 Ab)has no direct effect on lar vae of t he green lacewing Chr ysoperla car nea (Stephens)(Neur optera:Chr ysopidae)[J].Journal of Insect Physiology,2004,50(2-3):175-183.
[78]Lawo N C,Ro meis J.Assessing t he utilization of a car bohydrate f ood source and t he i mpact of insecticidal pr oteins on larvae of the green lacewing,Chr ysoperl a carnea[J].Biological Control,2008,44(3):389-398.
[79]Marc P,Canard A,Ysnel F.Spiders(Araneae)usef ul for pest li mitation and bioindication[J].Agriculture Ecosystems &Envir on ment,1999,74(1-3):229-273.
[80]Sy mondson W O C,Sunderland K D,Greenstone M H.Can generalist predators be effective biocontrol agents?[J].Annual Review of Ento mology,2002,47:561-594.
[81]Har wood J D.Interactions of Bacill us thuringiensis insecticidal crops with spiders(Araneae)[J].The Journal of Arachnology,2011,39:1-21.
[82]Chen M,Ye G Y,Liu Z C,et al.Analysis of Cr y1 Ab toxin bioaccu mulation in a f ood chain of Bt rice,an her bivore and a predator[J].Ecotoxicology,2009,18(2):230-238.
[83]Tian J C,Liu Z C,Chen M,et al.Laboratory and field assessments of prey-mediated effects of transgenic Bt rice on Ummeliata insecticeps (Araneida:Linyphiidae)[J].Environ mental Ent o mology,2010,39(4):1369-1377.
[84]Ro meis J,Meissle M,Bigler F.Transgenic cr ops expressing Bacill us thuringiensis toxins and biological control[J].Nature Biotechnology,2006,24(1):63-71.
[85]Vojtech E,Meissle M,Poppy G M.Effects of Bt maize on t he herbivore Spodoptera littor alis(Lepidoptera:Noctuidae)and t he parasit oid Cotesia mar giniventris(Hy menoptera:Braconidae)[J].Transgenic Research,2005,14(2):133-144.
[86]Baur M E,Boethel D J.Effect of Bt-cotton expressing Cry1 A(c)on t he survival and fecundity of t wo hy menopteran parasitoids(Braconidae,Encyrtidae)in t he laboratory[J].Biological Control,2003,26(3):325-332.
[87]Cloutier C,Ashouri A,Michaud D.Reco mbinant and classically selected factors of potato plant resistance t o t he Colorado potato beetle,Leptinotarsa decemlineata,variously affect the potat o aphid parasitoid Aphidius nigripes[J].Biocontr ol,2001,46(4):401-418.
[88]姜永厚,傅強(qiáng),程家安,等.轉(zhuǎn)Bt基因水稻表達(dá)的毒蛋白Cry1Ab在害蟲(chóng)及其捕食者體內(nèi)的積累動(dòng)態(tài)[J].昆蟲(chóng)學(xué)報(bào),2004,47(1):124-129.
[89]Chen M,Zhao J Z,Shelton A M,et al.Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera:Pieridae)and its pupal endoparasitoid Pteromal us pupar u m (Hy menoptera:Ptero malidae)[J].Transgenic Research,2008,17(4):545-555.
[90]Godfray H C J.Parasitoids[M].Princeton University Press,Princet on,USA,1994.
[91]Schuler T H,Denhol m I,Clark S J,et al.Effects of Bt plants on the develop ment and survival of the parasitoid Cotesia pl utellae(Hy menoptera:Braconidae)in susceptible and Bt-resistant lar vae of t he dia mondback mot h,Pl utell a xylostell a(Lepidoptera:Pl utellidae)[J].J Insect Physiol,2004,50(5):435-443.
[92]Chen M,Zhao J Z,Collins H L,et al.A critical assess ment of t he effects of Bt transgenic plants on parasitoids[J/OL].PLoS One,2008,3(5):e2284.
[93]Losey J E,Rayor L S,Carter M E.Transgenic pollen har ms monarch lar vae[J].Nature,1999,399(6733):214-214.
[94]Berenbau m M R,Zangerl A R,Mc Kenna D,et al.Effects of exposure t o event 176 Bacill us thuringiensis cor n pollen on monarch and black swallowtail cater pillars under field conditions[J].Proceedings of the National Academy of Sciences of t he United States of America,2001,98(21):11908-11912.
[95]Hell mich R L,Siegfried B D,Sears M K,et al.Monarch larvae sensitivity to Bacill us thuringiensis-purified proteins and pollen[J].Proceedings of the National Academy of Sciences of t he United States of America,2001,98(21):11925-11930.
[96]Ober hauser K S,Prysby M D,Mattila H R,et al.Te mporal and spatial overlap bet ween monarch larvae and cor n pollen[J].Proceedings of t he National Academy of Sciences of t he United States of America,2001,98(21):11913-11918.
[97]Sears M K,Hell mich R L,Stanley-Horn D E,et al.Impact of Bt cor n pollen on monarch butterfly populations:A risk assessment[J].Pr oceedings of t he National Acade my of Sciences of the United States of America,2001,98(21):11937-11942.
[98]Stanley-Horn D E,Dively G P,Hell mich R L,et al.Assessing t he i mpact of Cr y1 Ab-expressing cor n pollen on monarch butterfly larvae in field studies[J].Proceedings of the National Acade my of Sciences of t he United States of America,2001,98(21):11931-11936.
[99]Babendreier D,Kal berer N M,Romeis J,et al.Influence of Bt-transgenic pollen,Bt-toxin and protease inhibitor (SBTI)ingestion on develop ment of t he hypopharyngeal glands in honeybees[J].Apidologie,2005,36(4):585-594.
[100]Bailey J,Scott-Dupree C,Harris R,et al.Contact and oral t oxicit y to honey bees(Apis mellif er a)of agents registered f or use for sweet corn insect control in Ontario,Canada[J].Apidologie,2005,36(4):623-633.
[101]Liu B,Xu C G,Yan F M,et al.The i mpacts of the pollen of insect-resistant transgenic cotton on honeybees[J].Biodiversity and Conservation,2005,14(14):3487-3496.
[102]Babendreier D,Joller D,Ro meis J,et al.Bacterial co mmunity str uct ures in honeybee intestines and t heir response to t wo insecticidal proteins[J].FEMS Microbiology Ecology,2007,59(3):600-610.
[103]Dively G P,Rose R,Pettis J.Effects of Bt cor n pollen on honey bees:emphasis on pr otocol develop ment[J].Apidologie,2007,38(4):368-377.
[104]Liu B A,Shu C,Xue K,et al.The oral toxicity of the transgenic Bt plus Cp TI cotton pollen t o honeybees(Apis mellifer a)[J].Ecotoxicology and Environ mental Safety,2009,72(4):1163-1169.
[105]Han P,Niu C Y,Lei C L,et al.Use of an innovative T-t ube maze assay and the proboscis extension response assay to assess sublet hal effects of GM products and pesticides on lear ning capacity of t he honey bee Apis mellif er a L.[J].Ecotoxicology,2010,19(8):1612-1619.
[106]Hofs J L,Schoeman A S,Pierre J.Diversity and abundance of flower-visiting insects in Bt and non-Bt cotton fields of Maputaland(KwaZul u Natal Province,Sout h Africa)[J].Inter national Jour nal of Tr opical Insect Science,2008,28:211-219.
[107]Yao H W,Ye G Y,Jiang C Y,et al.Effect of the pollen of transgenic rice line,TT9-3 with a fused cr y1 Ab/cr y1 Ac gene from Bacillus thuringiensis Berliner on non-target domestic silkwor m,Bombyx mori Linnaeus(Lepidoptera:Bombyxidae)[J].Applied Entomology and Zoology,2006,41(2):339-348.
[108]Yao H W,Jiang C Y,Ye G Y,et al.Toxicological assessment of pollen fro m different Bt rice lines on Bombyx mori(Lepidoptera:Bo mbyxidae)[J].Envir on mental Ento mology,2008,37(3):825-837.
[109]李文東,吳孔明,王小奇,等.轉(zhuǎn)Cr y1 Ac和Cry1 A Cp TI基因棉花粉對(duì)柞蠶生長(zhǎng)發(fā)育影響的評(píng)價(jià)[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2003,11(5):488-493.
[110]Sch midt J E U,Braun C U,Whitehouse L P,et al.Effects of activated Bt transgene pr oducts(Cr y1 Ab,Cry3Bb)on i mmature stages of t he ladybir d Adalia bipunctata in laboratory ecotoxicity testing[J].Archives of Environ mental Contamination and Toxicology,2009,56(2):221-228.
[111]Ricroch A,Berge J B,Kuntz M.Is t he Ger man suspension of MON810 maize cultivation scientifically justified?[J].Transgenic Research,2010,19(1):1-12.
[112]Lovei G L,Andow D A,and Arpaia S.Transgenic insecticidal crops and natural enemies:A detailed review of laboratory studies[J].Environmental Entomology,2009,38(2):293-306.
[113]Romeis J,Shelton A M,Naranjo S E,et al.Setting the record straight:a rebuttal to an err oneous analysis on transgenic insecticidal crops and natural enemies[J].Transgenic Research,2009,18(3):317-322.