陳衛(wèi)國
(1.湖南株洲縣第五中學(xué),湖南 株洲 412100;2. 貴州師范大學(xué) 物理與電子科學(xué)學(xué)院,貴州 貴陽 550001)
牛頓第二定律解電磁感應(yīng)中電容負(fù)載平行導(dǎo)軌模型
陳衛(wèi)國1,2
(1.湖南株洲縣第五中學(xué),湖南 株洲 412100;2. 貴州師范大學(xué) 物理與電子科學(xué)學(xué)院,貴州 貴陽 550001)
根據(jù)理想“平行導(dǎo)軌模型”的物理特點,基于電磁感應(yīng)規(guī)律,運用牛頓第二定律,對電磁感應(yīng)中的電容負(fù)載平行導(dǎo)軌模型的各種情況進(jìn)行了計算,計算出了各種情況下的金屬導(dǎo)桿運動的數(shù)學(xué)表達(dá)式。結(jié)果與實踐吻合。
牛頓第二定律;物理模型;電容;電磁感應(yīng)
在勻強磁場B中,導(dǎo)體棒在除安培力外的外力F作用下以初速度 0v沿光滑平面導(dǎo)軌運動,此時有電流流過導(dǎo)體棒,磁場將阻礙棒的運動,棒的運動方程[1]為: BIlFma -=
該方程對于不同的阻抗都是適用的,而感生電壓和流過導(dǎo)體棒中的電流的關(guān)系不同導(dǎo)致不同的結(jié)果。
1.1 阻抗為純電容的不受外力的理想單導(dǎo)桿
圖1,水平放置的平行光滑導(dǎo)軌,間距為l,其間有勻強磁場B。導(dǎo)軌一端接有電容器C且系統(tǒng)不再有電阻,在導(dǎo)軌上垂直于導(dǎo)軌放有金屬桿ab,質(zhì)量為m且與導(dǎo)軌接觸良好,所有接觸處均光滑,現(xiàn)給金屬桿以平行導(dǎo)軌方向的初速度 0v,試確定金屬桿的最終運動情況。
圖1 阻抗為純電容的理想單導(dǎo)桿1
解:根據(jù)公式 BIlFma -= ,桿在水平方向除安培力外的外力為0,有
得 0=a 桿最終做勻速運動
如果:開始時電容器有 UC= Blv0并且其極性與ab產(chǎn)生的電動勢的極性相同,則ab將始終以速度 v0做勻速直線運動
1.2 阻抗為純電容的受外力的理想單導(dǎo)桿
圖2,如果(1.1)節(jié)中金屬桿開始靜止且電容足夠大,現(xiàn)給它施加恒定的平行導(dǎo)軌向右的外力F,試確定金屬桿最終運動情況。
圖2 阻抗為純電容的理想單導(dǎo)桿2
解:根據(jù)公式 ma = F-BIl,金屬桿在外力作用下,任何時刻有 F -Bil=ma
2.1 阻抗為純電容的不受外力的理想雙導(dǎo)桿
圖3,水平放置的平行光滑導(dǎo)軌,間距為l,其間有勻強磁場B,在導(dǎo)軌上垂直于導(dǎo)軌放有金屬桿ab、cd,cd中間接電容C,二桿質(zhì)量分別為1m、2m 且與導(dǎo)軌接觸良好,所有接觸處均無摩檫,現(xiàn)給金屬桿ab以平行導(dǎo)軌方向的初速度0v,試確定ab、cd金屬桿的最終運動情況。
圖3 阻抗為純電容的理想雙導(dǎo)桿1
質(zhì)心勻速,故:ab、cd最終勻速運動。
(1)如果:開始電容器有 uC= Blv0,則ab一直以v0勻速運動,而cd靜止。
2.2 阻抗為純電容的受外力的理想雙導(dǎo)桿
圖4,如果(2.1)節(jié)中金屬桿開始靜止,現(xiàn)給它施加恒定的平行導(dǎo)軌向右的外力F,試確定金屬桿最終運動情況。
圖4 阻抗為純電容的理想雙導(dǎo)桿2
以cd為參照系,ab相對cd加速度為 aaa Δ=-21
對ab: F-Bil=m1(Δa) 即 :F-B[B Cl(Δa)]l=m1(Δa)
對ab、cd根據(jù)牛頓第二定律列方程有:
電磁感應(yīng)中的平行導(dǎo)軌模型[6],接不同的負(fù)載,其上的導(dǎo)體棒將有不同的運動形式。接容抗時對電容器充電,其中導(dǎo)體棒只要有電流,則始終受安培力,可以針對具體物理過程靈活運用牛頓第二定律及同一直線矢量合成[7]方法確定桿的運動狀態(tài)。
[1]彼特?納德,吉拉?哈涅克,肯?瑞利.200道物理學(xué)難題[M].北京:北京理工大學(xué)出版社,2000,196-197.
[2]David P.Taylor Vector video[J].Phys,Teach,2001,39:14.
[3]Roche J.What is momentum[J].Eur J Phys,2006, (9):1019-1036.
[4]舒幼生,胡望雨,陳秉乾.物理學(xué)難題集萃[M].北京:高等教育出版社,1997,633.
[5]周衍柏.理論力學(xué)教程[M].北京:高等教育出版社,1999, 19-24, 113.
[6]余雷. 物理學(xué)創(chuàng)新思維[M]. 貴陽:貴州民族出版社, 2005, 187-191.
[7]陳衛(wèi)國.坐標(biāo)法解“人船模型”[J].河北北方學(xué)院學(xué)報(自然科學(xué)版),2008, (6):17.
(責(zé)任編校:劉志壯)
A solution of “parallel tracks model with capacitance loading in electromagnetic induction ” by using Newton Second Law
CHEN Wei-guo12
(1. The Fifth middle school of Zhuzhou county, Hunan Zhuzhou 412100,China; 2. School of Physics and Electronic Science, Guizhou Normal University, Guizhou Guiyang 550001,China)
According to physical character of ideal parallel tracks model in electromagnetic induction, based on law of electromagnetic induction, Newton second law has been used to set down all sorts of problems about parallel tracks model with capacitance loading and maths expressions have been derived. Expressions are in good agreement with the data from experiment.
Newton Second Law; Physics model; Capacitance; Electromagnetic induction
C633
A
1673-2219(2010)12-0023-03
2010-05-06
貴州師范大學(xué)研究生科研研究基金重點資助項目(200803)。
陳衛(wèi)國(1973-),男,湖南株洲人,碩士研究生,研究方向為物理課程與教學(xué)論。