李效宇,皇培培,王春雨
河南師范大學生命科學學院,新鄉(xiāng)453007
早期胚胎發(fā)育期暴露1-辛基-3-甲基咪唑離子液體后對金魚仔魚的氧化損傷
李效宇*,皇培培,王春雨
河南師范大學生命科學學院,新鄉(xiāng)453007
離子液體的生物毒性受到越來越多關(guān)注,但目前該方面的研究報道很少.采用溴化1-辛基-3-甲基咪唑離子液體([C8mim]Br)處理金魚胚胎,研究了金魚早期胚胎發(fā)育期暴露離子液體后對金魚仔魚的氧化損傷.通過預實驗獲得金魚胚胎(卵裂期)72小時半致死濃度(LC50)為209mg·L-1,根據(jù)該結(jié)果設(shè)計胚胎發(fā)育期離子液體的亞慢性暴露濃度為10.45mg·L-1、20.9mg·L-1、41.5mg·L-1、104.5mg·L-1.實驗結(jié)果表明,與對照組相比,低濃度離子液體處理組(10.45mg·L-1和20.9mg·L-1)超氧化物歧化酶活性顯著上升,高濃度處理組(41.55mg·L-1和104.55mg·L-1)極顯著下降.谷胱苷肽過氧化物酶活性除10.455mg·L-1處理組為不顯著上升外,其余3組均為顯著下降.4個處理組丙二醛含量均比對照組顯著增高,且呈現(xiàn)明顯的劑量-效應關(guān)系.該實驗結(jié)果表明,經(jīng)過胚胎發(fā)育期暴露離子液體后,[C8mim]Br對金魚仔魚組織抗氧化系統(tǒng)仍產(chǎn)生較強的氧化損傷并引起脂質(zhì)過氧化作用.因此,有必要研究離子液體對水生態(tài)系統(tǒng)中水生動物種群的影響,并對離子液體的生態(tài)安全做出科學評價.
離子液體;金魚;氧化損傷
傳統(tǒng)的化學反應和化合物分離過程由于涉及大量易揮發(fā)有機溶劑,容易對環(huán)境造成嚴重污染.近年來,一種新型綠色溶劑——離子液體引起人們的高度重視,有望成為傳統(tǒng)有機溶劑的替代者(顧浩等,2005).離子液體是指在室溫下呈液態(tài)的、由離子構(gòu)成的化學物質(zhì)(Brennecke and Maginn,2001;Sheldon,2001;Gathergood et al.,2004;韓金玉等,2005).離子液體具有很多特殊的化學性質(zhì),如不揮發(fā)、不易燃、導電性強、性質(zhì)穩(wěn)定等(Suarez et al.,1998;Welton,1999;Brennecke and Maginn,2001;Gathergood et al.,2004).另外,離子液體對許多無機鹽和有機物都有良好的溶解性(Gordon,2001;Couling et al.,2006).
雖然離子液體無揮發(fā)性不會造成大氣污染,但它們極易溶于水,所以在合成和應用過程中不免會流失到水中并對水環(huán)境造成污染.迄今為止,關(guān)于離子液體的生物毒性及其毒理學研究資料還相當缺乏(Ranke et al.,2004;2007),國內(nèi)外僅有少量的研究報道.Stepnowski等(1998)、Stock等(2004)首先研究了離子液體的生物毒性,證明離子液體對生物體及其細胞確實存在明顯的毒性.Latala等(2005)初步研究了咪唑類離子液體對兩種海藻(Oocystis submarina和Cyclotella meneghiniana)的毒性,發(fā)現(xiàn)在5~500μmol·L-1濃度范圍內(nèi)的離子液體處理均對海藻的個體生長、群體密度有很強的抑制作用.同時,Docherty和Kulpa(2005)通過實驗研究發(fā)現(xiàn)離子液體對培養(yǎng)的微生物有極明顯的生長抑制作用,而且其毒性影響隨著離子液體碳鏈的延長而增強.Pretti等(2006)用15種應用廣泛的離子液體對斑馬魚(Danio rerio)進行急性毒性處理,結(jié)果顯示被測離子液體的毒性強于甲醇、丙酮等幾種傳統(tǒng)有機溶劑,且使斑馬魚產(chǎn)生了明顯的畸形及行為異常.另外,近期Luo等(2008)、Li等(2009)還研究了離子液體對Daphnia和蛙的發(fā)育毒性.但總體看來,關(guān)于離子液體的生物毒性、毒性機理及其環(huán)境風險評價的研究僅有零星報道,多為離子液體的基礎(chǔ)生物毒性研究工作.
烷基取代的陽離子離子液體作為離子液體中的一大類,因其獨特的結(jié)構(gòu)與性能而一直是研究的重點.其中溴化1-辛基-3-甲基咪唑([C8mim]Br)是目前國內(nèi)外應用較廣泛的一類離子液體(Gathergood et al.,2004;顧浩等,2005;Ranke et al.,2007).關(guān)于[C8mim]Br對魚類胚胎和幼體的毒性及其機理方面的研究還未見相關(guān)報道.
金魚(Carassius auratus)具有豐富的生物學背景資料,分布廣泛而且易于飼養(yǎng)繁殖,胚胎收集方便.本實驗用溴化1-辛基-3-甲基咪唑離子液體([C8mim]Br)處理金魚胚胎,研究了金魚早期胚胎發(fā)育期暴露離子液體后對金魚仔魚的氧化損傷并初步探討[C8mim]Br對金魚胚胎和幼魚毒性的機理.
本實驗所用的離子液體為溴化1-辛基-3-甲基咪唑,呈淡黃色粘稠狀,其結(jié)構(gòu)如圖1所示,由河南師范大學化學與環(huán)境科學學院提供.
采集于新鄉(xiāng)市近郊某金魚養(yǎng)殖場,檢測無背景干擾.金魚卵為剛進行人工受精后吸水膨脹的受精卵,立即送到實驗室用于毒性實驗.
金魚卵在12cm×12cm培養(yǎng)皿中進行孵化,每皿100~120個,盛放無菌孵化液100mL,孵化液采用ISO(International Organization for Standardization,1999)推薦的人工配制稀釋水(每升蒸餾水中加入294mg CaCl2·2H2O,123mg MgSO4·7H2O,65mg NaHCO3,6mg KCl),硬度為200mg·L-1(以CaCO3計),pH為7.8±0.2,孵化溫度保持在20~22℃,溶氧不低于6mg·L-1,光暗比為16:8.孵化液每天更換1次.
通過預實驗獲得金魚胚胎(卵裂期)72h半致死濃度(LC50)為209mg·L-1,根據(jù)該結(jié)果設(shè)計4個濃度組,分別為10.45、20.90、41.5和104.5mg·L-1,每組3個平行,每平行100枚胚胎,并設(shè)空白對照組(不含離子液體的無菌孵化液).在卵裂期開始進行毒物處理,待仔魚孵出后(仔魚出膜)立即停止染毒.收集孵出仔魚,分別用自來水、蒸餾水和4℃磷酸緩沖液依次沖洗,將仔魚裝入離心管中,加入定量磷酸緩沖液,在冰浴條件下用內(nèi)切式勻漿機進行勻漿,得到10%組織勻漿液.將勻漿液用冷凍離心機于4℃離心.取上清液保存于-20℃?zhèn)溆?
幼魚組織SOD、GSH-Px活性,MDA、蛋白質(zhì)含量均用試劑盒測定,測定方法按試劑盒說明和要求進行.試劑盒購自南京建成生物工程公司.SOD活性定義為每mg組織蛋白在1mL反應液中SOD活性抑制率達50%時所對應的SOD量為1個SOD活力單位(U·mgPr-1).GSH-Px活性定義為每mg蛋白質(zhì)在每分鐘扣除非酶促反應使GSH濃度降低1μmol·L-1為1個酶活力(U·mgPr-1).MDA的含量定義為每mg蛋白中含MDA的納摩爾數(shù).
所有數(shù)據(jù)均采用SPSS11.5 for Windows軟件進行單因素方差分析(ANOVA),用最小顯著差數(shù)法(LSD)進行多重比較,同時還利用了Excel 2003進行分析作圖,數(shù)據(jù)結(jié)果用平均數(shù)±標準偏差表示.顯著性差異以p值表示,p<0.05(*)表示差異顯著;p<0.01(**)表示差異極顯著.
如圖2所示,4個處理組與對照組相比,除10.45mg·L-1組為顯著差異,其余3組均為極顯著差異.SOD活性在10.45mg·L-1和20.9mg·L-1組
呈現(xiàn)穩(wěn)步上升趨勢.但當離子液體濃度上升到41.5mg·L-1時,SOD活性反而下降,高濃度組104.5mg·L-1下降極顯著,呈明顯的活性抑制狀態(tài).
由圖3可見,與對照組相比,10.45mg·L-1組為不顯著上升,20.9mg·L-1、41.5mg·L-1和104.5mg·L-1組呈依次下降趨勢,且均具有極顯著差異.即隨著離子液體處理濃度的升高,GSH-Px活性抑制率升高.
與對照組相比,4個處理組金魚仔魚組織的MDA含量均呈現(xiàn)依次逐漸上升趨勢,而且具有明顯的劑量-效應關(guān)系.除10.45mg·L-1組為顯著差異,其余3組均為極顯著差異.說明[C8mim]Br對金魚仔魚產(chǎn)生了氧化損傷和脂質(zhì)過氧化作用.
咪唑類離子液體作為良好的溶劑,對無機物、有機物和高分子聚合物都有較強的溶解性,它們已被應用于化學化工等研究和應用領(lǐng)域(張保芳等,2006).Ranke等(2004)研究了咪唑類離子液體對細菌Vibrio fischeri的毒性作用,比較了不同碳鏈長度和陰離子對毒性大小的影響,并與4種常用的傳統(tǒng)溶劑甲醇、丙酮、乙腈和MTBE(甲基叔丁基醚)相應的EC50(半數(shù)效應濃度,Median Effect Concentration)值進行比較,結(jié)果發(fā)現(xiàn)離子液體對Vibrio fischer的毒性大于甲醇、丙酮和乙腈,毒性最小的離子液體其EC50與MTBE接近.
在長期的生物進化過程中,需氧生物發(fā)展了防御過氧化損害的系統(tǒng)——抗氧化防御系統(tǒng)(Antioxidant defense system),其組分包括抗氧化酶,如谷胱甘肽過氧化酶(GSH-Px)、超氧化物歧化酶(SOD),過氧化氫酶(CAT).抗氧化物,如谷胱甘肽(GSH)、維生素E(VE)、β-胡蘿卜素.逆境或化學毒物可以誘發(fā)生物體產(chǎn)生大量的活性氧(Reactive oxygen species,ROS),當ROS不能及時被機體內(nèi)抗氧化防御系統(tǒng)消除時,它們即可對生物體造成氧化損傷,如使細胞DNA鏈斷裂、脂質(zhì)過氧化、酶蛋白失活等,從而引起機體氧化脅迫(Oxidative stress)或氧毒性(孔繁翔,2000;陳瑗和周玫,2002).
SOD主要分布于細胞胞漿和線粒體的基質(zhì)中,是催化超氧陰離子自由基(O2-)發(fā)生歧化反應的一類金屬酶,是機體防御過氧化損害的關(guān)鍵酶之一.其基本功能是清除生物體內(nèi)過高濃度的超氧陰離子自由基,保持體內(nèi)自由基的代謝平衡.從而保持細胞正常的代謝不受破壞(陳瑗和周玫,2002).有研究表明,當生物體受到輕度逆境脅迫時,SOD活性往往升高;而當受到重度脅迫時,SOD活性則將被抑制,使生物體內(nèi)積累過量的ROS,從而導致對生物體的傷害(Liesivuori and Savolainen,1991;SkrzydlewskandFarbiszewski,1997).低濃度[C8mim]Br處理,誘導生物體內(nèi)產(chǎn)生少量自由基,這對SOD的活性起到誘導作用,使SOD活性升高以清除這些少量過剩的自由基.高濃度的離子液體處理組(40.5mg·L-1和104.5mg·L-1)的SOD活性明顯下降,可能是由于在高濃度[C8mim]Br的脅迫下,體內(nèi)的抗氧化防御系統(tǒng)已經(jīng)不能清除生物體內(nèi)產(chǎn)生的過量自由基,從而引起機體的氧化損傷,進而抑制了SOD活性.
GSH-Px是以H2O2作為底物催化形成H2O,消除H2O2(陳瑗和周玫,2002).已有研究表明,GSHPx活性可被低劑量毒物誘導升高(Morales et al.,2004).本試驗中10.45mg·L-1濃度組的GSH-Px活性升高,這是由于低濃度毒物的脅迫及誘導,使得GSH-Px活性升高以清除產(chǎn)生的自由基.其余濃度的GSH-Px活性都下降.這些結(jié)果與SOD活性變化基本相似.可以說明GSH-Px和SOD防御氧化脅迫的過程基本一致,而且二者通常協(xié)調(diào)配合消除自由基.
脂質(zhì)過氧化過程是一個產(chǎn)生自由基和自由基參與的鏈式反應,丙二醛(MDA)是脂質(zhì)過氧化的最終產(chǎn)物,常被用作脂質(zhì)過氧化的指示指標(陳瑗和周玫,2002;Morales et al.,2004).本實驗結(jié)果表明,丙二醛含量隨著[C8mim]Br濃度的增加而逐步上升,呈現(xiàn)顯著的劑量-效應關(guān)系.這說明隨著毒物濃度升高,體內(nèi)產(chǎn)生的ROS已經(jīng)不能完全被機體的抗氧化防御系統(tǒng)消除,從而引起氧化損傷程度加劇,導致MDA含量急劇增加.
從本實驗結(jié)果可見,[C8mim]Br在金魚胚胎發(fā)育早期開始暴露,盡管孵化后脫離了該離子液體的暴露,但仍然對金魚仔魚組織的抗氧化系統(tǒng)產(chǎn)生較強的毒害作用,引起較嚴重的氧化損傷并引發(fā)脂質(zhì)過氧化.本文實驗結(jié)果說明,[C8mim]Br對金魚胚胎和幼魚具有一定的毒性,而且產(chǎn)生這種毒性的機制可能與離子液體誘導產(chǎn)生的氧化損傷有關(guān).本實驗結(jié)果也提示,一旦該類離子液體在合成或使用的過程中流失到水環(huán)境中去,將對水生生態(tài)系統(tǒng)構(gòu)成一定的威脅.因此,有必要全面系統(tǒng)和深入地研究離子液體對水生動物的毒性,并依據(jù)這些毒理學實驗結(jié)果對離子液體的環(huán)境風險做出科學的評價.
Brennecke J F,Maginn E J.2001.Ionic liquids:Innovative fluids for chemical processing[J].AIChE Journal,47(11):2384-2389
Chen Y,Zhou M.2002.Medicine and Pathology of Free Radical[M].Beijing:People Hygiene Press,8-167
Couling D J,Bernot R J,Docherty K M,Dixon J K,Maginn E J.2006.Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling[J].Green Chemistry,8(1):82-90
Docherty K M,Kulpa C F.2005.Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids[J].Green Chemistry,7(4):185-189
Gathergood N,Garcia M T,Scammells P J.2004.Biodegradable ionic liquids:Part I.Concept,preliminary targets and evaluation[J].Green Chemistry,6(3):166-175
Gordon C M.2001.New developments in catalysis using ionic liquids[J].Applied Catalysis A:General,222(1-2):101-117
Gu H,Fang Y X,Zhang K.2005.Property and application of room temperature ionic liquid[J].Fine and Specialty Chemicals,13(7):10-11(in Chinese)
Han J Y,Huang X,Wang H,Wang Z W.2005.Progress in aharacteristicandapplicationofionicliquidasgreensolvent[J].Chemical Industry and Engineering,22(1):62-66(in Chinese)
International Organization for Standardization(ISO).1999.ISO 12890 Water quality-Determination of toxicity to embryos and larvae of fresh water fish-semi-static method[S].USA:Multiple.Distributed through American National Standards Institute(ANSI)
KlaassenCD.2001.PrinciplesofToxicology[M].USA:McGraw-Hill Professional Publishing,11-32
Kong F X.2000.Environmental Biology[M].Beijing:Higher Education Press,72-74(in Chinese)
Latala A,Stepnowski P,Nedzi M,Mrozik W.2005.Marine toxicity assessment of imidazolium ionic liquids:Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana[J].Aquatic Toxicology,73(1):91-98
Li X Y,Zhou J,Yu M,Wang J J,Pei Y C.2009.Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonicdevelopmentofthefrogRananigromaculata[J].Ecotoxicology and Environmental Safety,72(1):552-556
LiesivuoriJ,SavolainenH.1991.Methanolandformicacid toxicity:biochemical mechanisms[J].Pharmacology&Toxicology,69(3):157-163
Luo Y R,Li X Y,Chen X X,Zhang B J,Sun Z J,Wang J J.2008.The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna[J].Environmental Toxicology,23(6):736-744
MoralesAE,Pérez-JiménezA,HidalogMC,AbellánE,CardeneteG.2004.Oxidativestressandantioxidantdefenses after prolonged starvation in Dentex dentex liver[J].Comparative Biochemistry and Physiology.Toxicology&Pharmacology:CBP,139(1-3):153-161
Pretti C,Chiappe C,Pieraccini D,Gregori M,Abramo F,Monni G,Intorre L.2006.Acute toxicity of ionic liquids to the zebrafish(Danio rerio)[J].Green Chemistry,8(3):238-240
Ranke J,M?lter K,Stock F,Bottin-Weber U,Poczobutt J,Hoffmann J,Ondruschka B,Filser J,Jastorff B.2004.Biological effects of imidazolium ionic liquids with varying chain lengths in acuteVibriofischeriandWST-1cellviabilityassays[J].Ecotoxicology and Environmental Safety,58(3):396-404
Ranke J,Stolte S,St?rmann R,Arning J,Jastorff B.2007.Design of sustainable chemical products-theexampleofionic liquids[J].Chemical Reviews,107(6):2183-2206
Sheldon R.2001.Catalytic reactions in ionic liquids[J].Chemical Communication,23:2399-2407
Skrzydlewsk E,Farbiszewski R.1997.Antioxidant status of liver,erythrocytes,and blood serum of rats in acute methanol intoxication[J].Alcohol,14(5):431-437
Stepnowski P,Skladanowski A C,Ludwiczak A,Laczyńska E.2004.Evaluating the cytotoxicity of ionic liquids using human cell line HeLa.[J].Human&Experimental Toxicology,23(11):513-517
Stock F,Hoffmann J,Ranke J,St?rmann R,Ondruschka B,Jastorff B.2004.Effects of ionic liquids on the acetylcholinesterase:a structure-activity relationship consideration[J].Green Chemistry,6(6):286-290
Suarez P A Z,Einloft S,Dullius J E L,de Souza R F,Dupont J.1998.Synthesisandphysical-chemicalpropertiesofionic liquids based on 1-n-butyl-3-methylimidazolium cation[J].The Journal of Chemical Physics,95(7):1626-1639
Welton T.1999.Room-temperature ionic liquids.Solvents for synthesis and catalysis[J].Chemical Reviews,99(8):2071-2083
ZhangBF,PuM,ChenBH,LiuKH.2006.New environmental-friendmaterial-imidazoliumrbasedionicliquids[J].Journal of Materials Science and Engineering,24(1):165-168(in Chinese)
中文參考文獻
陳瑗,周玫.2002.自由基醫(yī)學基礎(chǔ)與病理生理[M].北京:人民衛(wèi)生出版社,8-167
顧浩,方巖雄,張焜.2005.室溫離子液體的性質(zhì)和應用[J].精細與專用化學品,13(7):10-11
韓金玉,黃鑫,王華,王占衛(wèi).2005.綠色溶劑離子液體的性質(zhì)和應用研究進展[J].化學工業(yè)與工程,22(1):62-66
孔繁翔.2000.環(huán)境生物學[M].北京:高等教育出版社,72-74張保芳,蒲敏,陳標華,劉坤輝.2006.一類新型綠色環(huán)保的介質(zhì)材料——咪唑類離子液體[J].材料科學與工程學報,24(1):165-168◆
Oxidative Stress of the Ionic Liquid 1-Octyl-3-Methylimidazolium Bromide on the Goldfish Larva Carassius auratus Hatching from the IL-treated Embryos
LI Xiao-yu*,HUANG Pei-pei,WANG Chun-yu
College of Life Science,Henan Normal University,Xinxiang 453007
The toxicity of ionic liquids(ILs)on organisms and environment has been concerned recently by scientists,but there have been only few reports available in literature until now.Oxidative stress of the ionic liquid 1-Octyl-3-methylimidazolium bromide([C8mim]Br)on Carassius auratus hatching from the treated embryos was evaluated in the present study.First,the 72h 50%lethal concentrations for[C8mim]Br in goldfish embryos Carassius auratus at the stage of cleavage were determined by preliminary acute toxicity tests.According to the results of acute toxicity tests,fish embryos at cleavage stage were exposed to 10.4,20.8,41.6 and 104mg·L-1of[C8mim]Br until their hatching stage.Superoxide dismutase,glutathione peroxidase and malondialdehyde content were examined.The results showed that superoxide dismutase activity of fish larva increased in the concentrations of 10.45mg·L-1and 20.9mg·L-1while it significantly decreased in the concentrations of 41.5mg·L-1and 104.5mg·L-1when compared with the control groups.Meanwhile,the activity of glutathione peroxidase was significantly decreased in all treatment groups except of the lowest concentration of 10.45mg·L-1.In addition,a persistent elevation of the malondialdehyde content in the treatment groups was noted with the increase of[C8mim]Br-exposure concentrations,showing a obvious dose-response relationship between the malondialdehyde content of fish larva and IL’s concentration.These results indicate that aqueous[C8mim]Br can cause impairment to Carassius auratus embryos and larva by inducing oxidative stress and the risk to aquatic ecosystem by ILs-leaking into water body has to been evaluated in the future.
ionic liquids;goldfish;oxidative stress
28 January 2009accepted19 March 2009
1673-5897(2010)1-100-05
R994.6
A
2009-01-28錄用日期:2009-03-19
國家自然科學基金(No.20573019;No.20573034);教育部留學回國人員科研啟動基金(No.[2006]331)
李效宇(1965—),男,教授;*通訊作者(Corresponding author),E-mail:lixiaoyu65@263.net
李效宇(1965—),男,博士,教授,博士生導師,現(xiàn)為河南師范大學生命科學學院教授.主要從事藍藻毒素和離子液體生態(tài)毒理學研究.承擔國家自然科學基金、河南省杰出青年基金等項目,在國內(nèi)外核心學術(shù)刊物上發(fā)表學術(shù)論文40余篇.