任振華,王淑艷,張穎,鄒春林,張愚
1 首都醫(yī)科大學(xué) 宣武醫(yī)院細(xì)胞治療中心,北京 100053
2 安徽醫(yī)科大學(xué) 人體解剖學(xué)教研室,合肥 230032
組織工程與細(xì)胞培養(yǎng)
慢病毒載體感染成年食蟹猴骨髓間充質(zhì)干細(xì)胞
任振華1,2,王淑艷1,張穎1,鄒春林1,張愚1
1 首都醫(yī)科大學(xué) 宣武醫(yī)院細(xì)胞治療中心,北京 100053
2 安徽醫(yī)科大學(xué) 人體解剖學(xué)教研室,合肥 230032
骨髓間充質(zhì)干細(xì)胞 (Mesenchymal stem cells,MSCs) 具有增殖和多向分化潛能,臨床應(yīng)用廣泛,近年來備受關(guān)注。另一方面,MSCs易于轉(zhuǎn)導(dǎo)和表達(dá)外源基因,是理想的基因工程細(xì)胞。非人靈長類 (NHPs) 和人類具有非常相近的遺傳背景,NHPs模型在評(píng)價(jià)藥物療效和移植治療等方面具有不可替代的價(jià)值。本研究采用密度梯度離心法分離成年食蟹猴骨髓單核細(xì)胞 (Marrow mononuclear cells,MNCs),貼壁培養(yǎng) MSCs。同時(shí)構(gòu)建表達(dá)綠色熒光蛋白 (Green fluorescent protein,GFP) 的慢病毒載體,感染成年食蟹猴MSCs。結(jié)果顯示,體外培養(yǎng)的成年食蟹猴MSCs均感染猴泡沫病毒 (Simian foamy virus,SFV),體外培養(yǎng)成年食蟹猴MSCs必須添加抗病毒藥物Tenofovir。但由于食蟹猴MSCs感染SFV,以及培養(yǎng)中添加了抗病毒藥物Tenofovir,慢病毒載體的感染效率明顯降低 (<10%)。本研究通過停用抗病毒藥,在細(xì)胞復(fù)蘇后6 d轉(zhuǎn)染慢病毒,可大幅提高慢病毒的感染效率 (>50%)。為成年食蟹猴MSCs作為基因工程細(xì)胞應(yīng)用于實(shí)驗(yàn)和臨床研究提供了技術(shù)保證。
食蟹猴骨髓間充質(zhì)干細(xì)胞,綠色熒光蛋白,慢病毒載體,猴泡沫病毒,轉(zhuǎn)導(dǎo)
Abstract:Mesenchymal stem cells (MSCs) have received considerable attention for various therapeutic approaches in recent years. MSCs are also easy to genetically modify to express therapeutic genes by using lentiviral vectors. Because of the similarities in genetics, physiology and metabolism between non-human primates (NHPs) and humans, NHPs models are invaluable for researching human disorders and for developing therapeutic strategies. Therefore, MSCs derived from NHPs could be a powerful tool for cell therapy and genetic engineering. Studies from captive and free-ranging adult NHPs show that up to 100% were infected with simian foamy virus (SFV). In this study, we found that all cultured MSCs derived from adult cynomolgus monkey were infected with SFV by RT-PCR. Therefore, antiviral drugs must be added in MSCs culture. However, because of SFV infection and additive antiviral drugs, the infection efficiency of the lentiviral vectors reduced significantly. In this study, we improved the infection efficiency by disabled antiviral drugs before lentiviral infection. It might be provide technical assistance for the culture of adult cynomolgus monkey MSCs as genetically engineered cells applied to clinical and experimental research.
Keywords: cynomolgus monkey mesenchymal stem cells, green fluorescent protein, lentiviral vectors, simian foamy viruses,transduction
骨髓間充質(zhì)干細(xì)胞 (MSCs) 是來自于骨髓的成體干細(xì)胞,因其具有增殖和多向分化潛能、造血支持、免疫調(diào)控等特點(diǎn)而備受關(guān)注[1-2]。MSCs在體外可分化成為脂肪、成骨、軟骨等中胚層的組織細(xì)胞。由于其良好的可塑性和不涉及倫理爭議,MSCs成為組織工程和細(xì)胞治療的最佳種子細(xì)胞[3-5]。在遺傳學(xué)上,MSCs易于轉(zhuǎn)導(dǎo)、表達(dá)外源基因[6]。不論是質(zhì)粒、還是病毒載體均可攜帶目的基因轉(zhuǎn)導(dǎo)MSCs,在體外長期、高效地表達(dá),而不影響干細(xì)胞的特性[7-9]。因此,MSCs是基因工程理想的靶細(xì)胞。
非人靈長類 (NHPs) 和人類具有非常相近的遺傳背景[10-11],實(shí)驗(yàn)顯示NHPs與人類MSCs具有相似的生物學(xué)特征[12]。NHPs模型在評(píng)價(jià)藥物療效和移植治療等方面具有不可替代的價(jià)值[13]。然而,研究顯示成年 NHPs感染猴泡沫病毒 (SFV) 高達(dá)100%[14],體外培養(yǎng)來自于NHPs的MSCs必須添加抗病毒藥物[15],這給MSCs慢病毒感染帶來了困難。本研究采用密度梯度離心法,分離培養(yǎng)成年食蟹猴MSCs,復(fù)蘇后的MSCs停用抗病毒藥,在停藥6 d后感染綠色熒光蛋白 (GFP) 慢病毒載體,大幅提高成年食蟹猴MSCs慢病毒感染效率,為食蟹猴MSCs作為基因工程細(xì)胞進(jìn)一步應(yīng)用于實(shí)驗(yàn)或臨床研究奠定了基礎(chǔ)。
1.1 材料
1.1.1實(shí)驗(yàn)動(dòng)物
實(shí)驗(yàn)動(dòng)物包括6只8~10歲健康成年食蟹猴和1只SFV陰性幼年食蟹猴,由廣西南寧靈康賽諾科生物科技有限公司提供,靈長類動(dòng)物按照國際實(shí)驗(yàn)動(dòng)物評(píng)估和認(rèn)證管理委員會(huì) (AAALAC) 的標(biāo)準(zhǔn)飼養(yǎng),動(dòng)物病原體檢疫和生物安全檢驗(yàn)合格。
1.1.2細(xì)胞和質(zhì)粒
293T細(xì)胞由北京大學(xué)生命科學(xué)院分子生物學(xué)實(shí)驗(yàn)室惠贈(zèng)。慢病毒載體轉(zhuǎn)移質(zhì)粒DUET101-GFP、包裝質(zhì)粒CMV△8.91和PMD.G由美國Johns Hopkins大學(xué)程臨釗教授惠贈(zèng)。
1.1.3實(shí)驗(yàn)試劑
細(xì)胞培養(yǎng)試劑DMEM-F12、DMEM、OPTI-MEM、MSC-Qualified FBS、BSA、0.25%Trysin-EDTA、GlutaMAX?-I Supplement、N2、青鏈霉素等購自Invitrogen公司。Ficoll-Paque TM Plus單核細(xì)胞分離液購自 StemCell公司。堿性成纖維細(xì)胞生長因子(bFGF) 購自 R&D公司。轉(zhuǎn)染試劑 Lipofectamine 2000購自 Invitrogen公司。Polybrene、DMSO、Transferrin購自Sigma公司。潮霉素 (Hygromycin)購自 Roche公司。逆轉(zhuǎn)錄酶 SSII和 Trizol購自Invitrogen公司。rTaq酶購自TaKaRa公司,DNA mini kit購自 Qiagen公司。Tenofovir購自 LGM Pharmaceuticals公司。
1.2 實(shí)驗(yàn)方法
1.2.1食蟹猴MSCs培養(yǎng)
無菌條件下從食蟹猴髂骨嵴抽取5 mL骨髓,加入等體積的 DPBS稀釋,貼壁緩慢加入離心管內(nèi)盛有等體積的Ficoll分離液上,2 500 r/min離心20 min,小心吸取中間層細(xì)胞置于另一離心管中,PBS洗滌 2次,5×105cells/mL單核細(xì)胞種植在DMEM低糖培養(yǎng)基,包含10% FBS、1%青鏈霉素、1% GlutaMAX、20 ng/mL bFGF 和 10 μmol/L Tenofovir,5% CO2、37℃孵箱培養(yǎng),24 h后更換培養(yǎng)基,80%長滿后 0.25%胰酶消化傳代。體外培養(yǎng)擴(kuò)增 MSCs到一定數(shù)量后凍存,每毫升凍存液中細(xì)胞不應(yīng)低于106個(gè)細(xì)胞,異丙醇逐步降溫,?80℃過夜,轉(zhuǎn)移到液氮中保存。
1.2.2體外培養(yǎng)MSCs感染SFV
按照DNA提取試劑盒的操作步驟,提取食蟹猴MSCs基因組DNA。用Trizol裂解MSCs,提取RNA,Oligo(dT) 逆轉(zhuǎn)成cDNA。按照文獻(xiàn)報(bào)道[16-17],特異引物檢測體外培養(yǎng)的食蟹猴 MSCs感染 SFV的比例。引物序列包括:round 1:forward 5′-AGGATGGT GGGGACCAGCTA-3′;reverse 5′-GCTGCCCCTTG GTCAGAGTG-3′。round 2:forward 5′-CAGTGAA TTCCAGAATCTCTTC-3′;reverse 5′-CACTTATCCC ACTAGATGGTTC-3′。
1.2.3慢病毒載體包裝和濃縮
慢病毒包裝采用脂質(zhì)體介導(dǎo)的瞬時(shí)轉(zhuǎn)染法,293T細(xì)胞培養(yǎng)在高糖 DMEM 培養(yǎng)基,包含 10%FBS、1% Glutamine和1%青鏈霉素。將293T細(xì)胞傳代于多聚賴氨酸包被的培養(yǎng)皿,待細(xì)胞80%匯合后轉(zhuǎn)染。轉(zhuǎn)染過程中,首先將構(gòu)建好的編碼GFP的轉(zhuǎn)移質(zhì)粒 DUET101、包裝質(zhì)粒 CMV△8.91和PMD.G按一定比例溶于 OPTI-MEM 中,同時(shí)將Lipofectamine 2 000溶于等體積的OPTI-MEM中,室溫放置5 min。然后將兩者混合,輕柔混勻,室溫靜置20 min。用OPTI-MEM培養(yǎng)基更換293T細(xì)胞培養(yǎng)基后,加入轉(zhuǎn)染混合液。待轉(zhuǎn)染混合液培養(yǎng)8~12 h后,換成ITS培養(yǎng)基 (DMEM高糖培養(yǎng)基包含10 μg/mL Insulin、5 μg/mL Transferrin、1% Glutamine和1%青鏈霉素),分別于24 h和48 h后收集病毒上清,用0.45 μm濾器過濾細(xì)胞碎片,4℃保存。將病毒上清加入 Ultra-Plus 20濾膜,4℃、4 000× g離心20 min,所得濃縮病毒轉(zhuǎn)染293T細(xì)胞進(jìn)行滴度鑒定后,?80℃保存,用于下一步實(shí)驗(yàn)。
1.2.4慢病毒載體感染MSCs
將成年食蟹猴MSCs凍存管從液氮中取出,37℃迅速解凍,轉(zhuǎn)移入15 mL離心管中加入10 mL不含抗病毒藥物Tenofovir的MSCs培養(yǎng)基,1 000 r/min離心2 min。吸出上清,種植于含有或不含抗病毒藥物Tenofovir的MSCs培養(yǎng)基中。按1∶3傳代,用含有或不含抗病毒藥物Tenofovir的MSCs培養(yǎng)基繼續(xù)培養(yǎng) 2~6 d。等到細(xì)胞長滿 70%,更換新鮮培養(yǎng)基,根據(jù)GFP慢病毒滴度和細(xì)胞數(shù)量,分別于不同的時(shí)間點(diǎn) (2、4、6 d),按不同拷貝數(shù) (1、5、10、15) 加入病毒上清,同時(shí)按培養(yǎng)基體積加入8 μg/mL的polybrene。孵育20 h后棄去轉(zhuǎn)染液,加入新鮮培養(yǎng)基。繼續(xù)培養(yǎng)1周后,熒光顯微鏡觀察GFP陽性細(xì)胞,流式細(xì)胞儀計(jì)數(shù)慢病毒感染效率。SFV陰性食蟹猴MSCs作為對(duì)照。
1.3 統(tǒng)計(jì)分析
數(shù)據(jù)以x±s表示,SPSS16.0軟件進(jìn)行統(tǒng)計(jì)分析。采用單因素方差分析,P<0.05認(rèn)為差異有統(tǒng)計(jì)學(xué)意義。
2.1 成年食蟹猴MSCs培養(yǎng)
骨髓單核細(xì)胞 (MNCs) 以 2×105cells/cm2接種于25 cm2的培養(yǎng)瓶,48 h后更換培養(yǎng)基,2~4 d后出現(xiàn)增殖克隆,部分細(xì)胞呈紡錘形或多角形,大小長短不一。經(jīng)8~10 d培養(yǎng),細(xì)胞80%融合,細(xì)胞形態(tài)轉(zhuǎn)變成以長梭形為主,呈渦旋狀排列生長。胰酶消化傳代,當(dāng)細(xì)胞擴(kuò)增到一定數(shù)量后凍存。
2.2 慢病毒載體包裝和滴度檢測
GFP慢病毒載體DUET101包含2個(gè)啟動(dòng)子結(jié)構(gòu)EF1-α和PGK,分別驅(qū)動(dòng)GFP基因和潮霉素抗性基因 (圖1E)。慢病毒載體系統(tǒng)的3個(gè)質(zhì)粒DUET101、CMV8.91和PMD.G按一定比例共轉(zhuǎn)染293T細(xì)胞(圖1A、1B),收集感染后24 h,48 h的上清,濃縮后感染293T細(xì)胞 (圖1C),流式細(xì)胞儀計(jì)數(shù)GFP陽性細(xì)胞比例達(dá) 95% (圖 1D),計(jì)算病毒滴度為1×107TU/mL (TU,Transduction unit)。
圖1 慢病毒載體包裝及滴度檢測Fig.1 Package and titer detection of lentiviral vectors. (A)293T cells (Magnification, 100×). (B) Package of lentiviral vectors in 293T cells (20 h after lipofectin transfection,Magnification, 100×). (C) Detection of the lentiviral titer by infecting 293T cells with concentrated virus (Magnification,100×). (D) The percentage of GFP positive cells by flow cytometry. (E) Sketch map of lentiviral vectors encoding GFP.
2.3 成年食蟹猴MSCs感染猴泡沫病毒 (SFV)
研究報(bào)道3歲以上的非人靈長類 (NHPs) 感染猴泡沫病毒 (SFV) 比例高達(dá)100%[14]。與前人的報(bào)道一致[15],體外培養(yǎng)食蟹猴MSCs添加抗病毒藥物Tenofovir,避免出現(xiàn)因 SFV感染引起的細(xì)胞融合(圖2A)。而沒有添加抗病毒藥物Tenofovir,將出現(xiàn)大的融合細(xì)胞,細(xì)胞無法分裂增殖 (圖2B)。RT-PCR確認(rèn)出現(xiàn)融合細(xì)胞的MSCs感染SFV (圖2C)。結(jié)果顯示,隨機(jī)選擇的6只8~10歲健康成年食蟹猴均感染SFV,體外培養(yǎng)必須添加Tenofovir,否則不超過3代即出現(xiàn)大片融合細(xì)胞,無法繼續(xù)傳代培養(yǎng) (圖2D)。添加抗病毒藥物能繼續(xù)體外培養(yǎng),且能維持MSCs正常的細(xì)胞形態(tài)和增殖分化能力[15]。
圖2 成年食蟹猴MSCs感染SFVFig.2 SFV infection in cultured MSCs of adult cynomolgus monkey. (A) MSCs culture with Tenofovir (Magnification,200×). (B) The morphology of fusion cells were showed in MSCs culture without Tenofovir (Magnification, 200×). (C)RT-PCR reconfirmed MSCs infected with SFV. MSC (+) or (-)indicated the presence or absence of fusion cells in MSCs culture. (D) Adult cynomolgus monkey MSCs could be passaged for more than 10 with Tenofovir, and not more than passage 3 without Tenofovir.
2.4 成年食蟹猴MSC轉(zhuǎn)染慢病毒
SFV陰性的食蟹猴MSCs作為對(duì)照,檢測慢病毒感染食蟹猴MSCs效率。結(jié)果顯示,慢病毒MOI值為5和10,食蟹猴MSCs感染效率可達(dá)到80%以上 (圖3A)。在MOI值為10的條件下,隨著感染時(shí)間延長,感染效率逐漸提高,20 h后到達(dá)平臺(tái)水平,感染效率為85%左右 (圖3B)。
圖 3 不同拷貝數(shù)或感染時(shí)間條件下慢病毒感染 SFV陰性MSCs的效率Fig.3 Infection efficiency of SFV negative MSCs with lentiviral vectors at different MOI or infection times. (A) The percentage of GFP positive cells at different MOI (*P<0.05,
成年食蟹猴MSCs 均感染SFV,體外培養(yǎng)必須添加抗病毒藥物Tenofovir (圖4A、4F)。與SFV陰性MSCs感染效率比較 (圖3和圖4E、4J),SFV陽性MSCs由于感染SFV,以及培養(yǎng)添加的抗病毒藥物 Tenofovir,明顯降低慢病毒感染效率 (<10%)(圖4G和圖5)。因此,為了提高慢病毒的感染效率,在復(fù)蘇成年食蟹猴 MSCs后停用抗病毒藥物,分別于不同的時(shí)間點(diǎn),感染慢病毒 (圖 4H、4I和圖5),隨著停用時(shí)間的延長轉(zhuǎn)染效率相應(yīng)增加,停用 6 d后慢病毒轉(zhuǎn)染效率可達(dá)到50% (圖4I和圖5)。但另一方面,由于成年食蟹猴MSCs感染SFV,隨著停用抗病毒藥物時(shí)間的延長,會(huì)出現(xiàn)融合細(xì)胞 (平均超過8 d后),MSCs將無法繼續(xù)傳代培養(yǎng)。
圖4 停用抗病毒藥物Tenofovir后不同時(shí)間點(diǎn)慢病毒載體的感染效率Fig.4 Infection efficiency of SFV positive MSCs without Tenofovir with lentiviral vectors at different time point after recovery by fluorescence microscope. (A) and (F) SFV positive MSCs with or without Tenofovir in culture (Magnification, 200×). (B) and (G)The very low infection efficiency of SFV positive MSCs with Tenofovir (Magnification, 400×). (C) and (H) The infection efficiency of SFV positive MSCs without Tenofovir at 2 days after the recovery was about 15% (Magnification, 200×). (D) and (I) The infection efficiency of SFV positive MSCs without Tenofovir at 6 days after the recovery was more than 50% (Magnification, 200×). (E) and(J) As a control, lentiviral vectors infected SFV negative MSCs, and the infection efficiency was about 85% (Magnification, 100×).
圖5 流式細(xì)胞儀檢測停用抗病毒藥物Tenofovir不同時(shí)間點(diǎn)慢病毒載體的感染效率Fig.5 Infection efficiency of SFV positive MSCs without Tenofovir at different time point after the recovery of by flow cytometry (**P<0.01).
猴泡沫病毒 (SFV) 主要感染非人靈長類(NHPs),包括大猩猩、狒狒、猴等。SFV通過體液傳播,能感染經(jīng)常接觸 NHPs的人群或其他物種。雖然研究顯示捕獲的或野外的 3歲以上的 NHPs感染SFV比例高達(dá)100%[14],但至今尚未發(fā)現(xiàn)SFV對(duì)NHPs有致病性。SFV物種間的傳播會(huì)引起致病性的改變[18-19],但尚沒有確切的證據(jù)表明人類感染 SFV而致病[20]。與之前的研究一致,本研究發(fā)現(xiàn),體外培養(yǎng)8~10歲食蟹猴MSCs均感染SFV,體外培養(yǎng)擴(kuò)增MSCs必須添加抗病毒藥物。
慢病毒和 SFV均屬于逆轉(zhuǎn)錄病毒科,為 RNA病毒[21-22],病毒基因均包括gag、pol和env 3個(gè)基本結(jié)構(gòu)基因。目前,現(xiàn)有的慢病毒載體來源于多個(gè)物種,如HIV-1、2型和SIV等。對(duì)HIV來源的慢病毒載體構(gòu)建研究最廣泛和深入,它與一般的逆轉(zhuǎn)錄病毒載體不同的是,對(duì)分裂細(xì)胞和非分裂細(xì)胞均具有感染能力,可以將外源基因有效地整合到宿主染色體上,從而達(dá)到持久性表達(dá)[23]。本研究發(fā)現(xiàn),體外構(gòu)建的GFP慢病毒載體,感染293T細(xì)胞和食蟹猴MSCs效率分別高達(dá) 95%和85%以上,并能在體外持續(xù)表達(dá)。
MSCs可以自體取材,體外擴(kuò)增,可作為基因工程改造細(xì)胞,不存在免疫排斥,上述優(yōu)點(diǎn)使MSCs成為各種疾病基因治療中不可替代的重要載體[24-26]。研究顯示,MSCs作為基因工程細(xì)胞,易于接受外援基因。對(duì)比各種基因轉(zhuǎn)導(dǎo) MSCs的方法,慢病毒具有最高的感染效率,并能穩(wěn)定表達(dá)[27]。本研究發(fā)現(xiàn),成年食蟹猴MSCs均感染SFV,體外培養(yǎng)MSCs必須添加抗病毒藥物,但由于SFV感染和添加抗病毒藥物的影響,慢病毒感染效率非常低下。因此,為了提高慢病毒的感染效率,復(fù)蘇成年食蟹猴 MSCs后停用抗病毒藥物,停藥 6 d慢病毒轉(zhuǎn)染效率可達(dá)到50%,大幅提高SFV陽性MSCs的感染效率。另一方面,停用抗病毒的時(shí)間不宜過長,超過8 d后,MSCs會(huì)出現(xiàn)因SFV感染而引起的融合細(xì)胞,MSCs將無法繼續(xù)傳代培養(yǎng)。本研究解決了因SFV感染而引起的食蟹猴 MSCs慢病毒感染效率低下的問題,為食蟹猴 MSCs作為基因工程載體細(xì)胞應(yīng)用于實(shí)驗(yàn)和臨床研究提供了技術(shù)保證。
REFERENCES
[1] Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications.Gene Ther, 2008, 15(2): 109–116.
[2] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization.Int J Biochem Cell Biol, 2004, 36(4): 568–584.
[3] Agata H, Watanabe N, Ishii Y,et al. Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions.Biochem Biophys Res Commun, 2009, 382(2): 353–358.
[4] Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications.Curr Stem Cell Res Ther, 2006,1(3): 365–369.
[5] Krampera M, Pizzolo G, Aprili G,et al. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair.Bone, 2006, 39(4): 678–683.
[6] Bartholomew A, Patil S, Mackay A,et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietinin vivo.Hum Gene Ther,2001, 12(12): 1527–1541.
[7] Chan J, O’Donoghue K, de la Fuente J,et al. Human fetal mesenchymal stem cells as vehicles for gene delivery.Stem Cells, 2005, 23(1): 93–102.
[8] Lee K, Majumdav MK, Buyaner D,et al. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.Mol Ther, 2001,3(6): 857–864.
[9] Zhang XY, La Russa VF, Bao L,et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells.Mol Ther, 2002, 5(5Pt 1):555–565.
[10] Boffelli D, McAuliffe J, Ovcharenko D,et al.Phylogenetic shadowing of primate sequences to find functional regions of the human genome.Science, 2003,299(5611): 1391–1394.
[11] Dunbar CE. The use of nonhuman primate models to improve gene transfer into haematopoietic stem cells.J Intern Med, 2001, 249(4): 329–338.
[12] Izadpanah R, Joswig T, Tsien F,et al. Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques.Stem Cells Dev, 2005, 14(4):440–451.
[13] Inaba M, Adachi Y, Hisha H,et al. Extensive studies on perfusion method plus intra-bone marrow-bone marrow transplantation using cynomolgus monkeys.Stem Cells,2007, 25(8): 2098–2103.
[14] Jones-Engel L, Steinkraus KA, Murray SM,et al.Sensitive assays for simian foamy viruses reveal a high prevalence of infection in commensal, free-ranging Asian monkeys.J Virol, 2007, 81(14): 7330–7337.
[15] Lee CC, Ye F, Tarantal AF. Comparison of growth and differentiation of fetal and adult rhesus monkey mesenchymal stem cells.Stem Cells Dev, 2006, 15(2):209–220.
[16] Jones-Engel L, Engel GA, Schillaci MA,et al. Primate-tohuman retroviral transmission in Asia.Emerg Infect Dis,2005, 11(7): 1028–1035.
[17] Jones-Engel L, May CC, Engel GA,et al. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia.Emerg Infect Dis, 2008, 14(8): 1200–1208.
[18] Murray SM, Picker LJ, Axthelm MK,et al. Expanded tissue targets for foamy virus replication with simian immunodeficiency virus-Induced immunosuppression.J Virol, 2006, 80(2): 663–670.
[19] Cummins JE Jr, Boneva RS, Switzer WM,et al. Mucosal and systemic antibody responses in humans infected with Simian foamy virus.J Virol, 2005, 79(20): 13186–13189.
[20] Switzer WM, Bhullar V, Shanmugam V,et al. Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates.J Virol, 2004, 78(6):2780–2789.
[21] Neuman-Haefielin D. Foamy viruses.Intervirology, 1993,35: 196–207.
[22] Lai Z, Brady RO. Gene transfer into the central nervous systemin vivousing a recombinant lentivirus vector.JNeurosci Res, 2002, 67(3): 363–371.
[23] Chang LJ, Gay EE. The molecular genetics of lentiviral vectors--current and future perspectives.Curr Gene Ther,2001, 1(3): 237–251.
[24] Himes BT, Neuhuber B, Coleman C,et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord.Neurorehabil Neural Repair, 2006, 20(2): 278–296.
[25] Lee RH, Hsu SC, Munoz J,et al. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice.Blood, 2006, 107(5): 2153–2161.
[26] Gregory CA, Prockop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation.Exp Cell Res, 2005, 306(2): 330–335.
[27] McMahon JM, Conroy S, Lyons M,et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors.Stem Cells Dev, 2006, 15(1):87–96.
Improving infection efficiency of adult cynomolgus monkey mesenchymal stem cells with lentiviral vectors
Zhenhua Ren1,2, Shuyan Wang1, Ying Zhang1, Chunlin Zou1, and Y. Alex Zhang1
1Cell Therapy Center,Xuanwu Hospital,Capital Medical University,Beijing100053,China
2Department of Anatomy,Anhui Medical University,Hefei230032,China
Received:January 27, 2010;Accepted:March 26, 2010
Supported by:Scientific Project of Beijing Municipal Science & Technology Commission (No. D07050701350703).
Corresponding author:Y. Alex Zhang. Tel: +86-10-63184557; Fax: +86-10-83198889; E-mail: yaz@bjsap.org
北京市科委科技計(jì)劃 (No. D07050701350703) 資助。