王艷珍
數(shù)學是研究現(xiàn)實世界數(shù)量關系和空間形式的科學,在它產(chǎn)生和發(fā)展的歷史長河中。一直是和各種各樣的應用問題緊密相關的。數(shù)學模型是數(shù)學知識與數(shù)學應用的橋梁。研究和學習數(shù)學模型,能幫助學生探索數(shù)學的應用,產(chǎn)生對數(shù)學學習的興趣,對培養(yǎng)學生的創(chuàng)新意識和實踐能力,加強數(shù)學建模教學與學習對學生的智力開發(fā)具有深遠的意義。現(xiàn)就如何加強高中數(shù)學建模教學談幾點體會。
一、建立數(shù)學模型的實際意義
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內(nèi)容及方法后,這個實際問題就能用數(shù)學模型得到解決,這樣,學生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學模型的渴求,實踐意識,學完要在實踐中試一試。如新教材“三角函數(shù)”章前提出:有一塊以0點為圓心的半圓形空地,要在這塊空地上劃出一個內(nèi)接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關于點O對稱的點A、D的位置,可以使矩形面積最大?這是培養(yǎng)創(chuàng)新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數(shù)學模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學生的知欲,如不可挫傷學生的積極性,失去“亮點”。
這樣通過章前問題教學,學生明白了數(shù)學就是學習,研究和應用數(shù)學模型,同時培養(yǎng)學生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學,還可據(jù)市場經(jīng)濟的建設與發(fā)展的需要及學生實踐活動中發(fā)現(xiàn)的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數(shù)學,培養(yǎng)學生數(shù)學建模意識。
二、在教學中傳授學生初步的數(shù)學建模知識
中學數(shù)學建模的目的旨在培養(yǎng)學生的數(shù)學應用意識,掌握數(shù)學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數(shù)學建模中最基本的過程教給學生:利用現(xiàn)行的數(shù)學教材,向?qū)W生介紹一些常用的、典型的數(shù)學模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節(jié)中可引入哪些數(shù)學基本模型問題,如儲蓄問題、信用貸款問題可結(jié)合在數(shù)列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數(shù)學化的過程,給學生一些數(shù)學應用和數(shù)學建模的初步體驗。
在學習了二次函數(shù)的最值問題后,通過下面的應用題讓學生懂得如何用數(shù)學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經(jīng)過一段時間的經(jīng)營實踐,旅館經(jīng)理得到了一些數(shù)據(jù):每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,
每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價
[簡化假詞]
(1)每間客房最高定價為160元;
(2)設隨著房價的下降,住房率呈線性增長;
(3)設旅館每間客房定價相等。
[建立模型]
設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此問題轉(zhuǎn)化為:當時,y的最大值是多少?
利用二次函數(shù)求最值可得到當x=25即住房定價為135元時,y取最大值13668.75(元),
[討論與驗證]
(1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。
(2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。
三、培養(yǎng)學生的其他能力,完善數(shù)學建模思想
由于數(shù)學模型這一思想方法幾乎貫穿于整個中小學數(shù)學學習過程之中,小學解算術運用題中學建立函數(shù)表達式及解析幾何里的軌跡方程等都孕育著數(shù)學模型的思想方法,熟練掌握和運用這種方法,是培養(yǎng)學生運用數(shù)學分析問題、解決問題能力的關鍵,我認為這就要求培養(yǎng)學生以下幾點能力,才能更好的完善數(shù)學建模思想。
1.理解實際問題的能力。
2.洞察能力,即關于抓住系統(tǒng)要點的能力。
3.抽象分析問題的能力。
4.“翻譯”能力,即把經(jīng)過一生抽象、簡化的實際問題用數(shù)學的語文符號表達出來,形成數(shù)學模型的能力和對應用數(shù)學方法進行推演或計算得到注結(jié)果能自然語言表達出來的能力。
5.運用數(shù)學知識的能力。
6.通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1(1)
x2+y2+z2=1/3(2)
x3+y3+z3=1/9(3)
分析:本題若用常規(guī)解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯(lián)想各種知識,即可構造各種等價數(shù)學模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積(XYZ=1/27),由韋達定理,可構造一個一元三次方程模型。(4)x,y,z恰好是其三個根
t3-t2+1/3t-1/27=0(4)
總之,為了培養(yǎng)學生的建模意識,中學數(shù)學教師應首先需要提高自己的建模意識。