国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

桂北泗里口老堡組硅質(zhì)巖的常量、稀土元素特征及成因指示①

2010-09-04 09:59:54常華進(jìn)儲(chǔ)雪蕾馮連君黃晶張啟銳
沉積學(xué)報(bào) 2010年6期
關(guān)鍵詞:陸源硅質(zhì)碎屑

常華進(jìn) 儲(chǔ)雪蕾 馮連君 黃晶 張啟銳

(1.青海師范大學(xué)生命與地理科學(xué)學(xué)院西寧810008;2.青藏高原環(huán)境與資源教育部重點(diǎn)實(shí)驗(yàn)室西寧810008; 3.中國(guó)科學(xué)院地質(zhì)與地球物理研究所北京100029)

桂北泗里口老堡組硅質(zhì)巖的常量、稀土元素特征及成因指示①

常華進(jìn)1,2,3儲(chǔ)雪蕾3馮連君3黃晶3張啟銳3

(1.青海師范大學(xué)生命與地理科學(xué)學(xué)院西寧810008;2.青藏高原環(huán)境與資源教育部重點(diǎn)實(shí)驗(yàn)室西寧810008; 3.中國(guó)科學(xué)院地質(zhì)與地球物理研究所北京100029)

桂北泗里口老堡組為一套埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期(大約550~540 Ma)深水盆地沉積的硅質(zhì)巖。它們的SiO2含量普遍高(平均93.8%);Al2O3含量為0.17%~4.92%,沿剖面自下而上明顯增加,上部超過2%;Al/(Al+ Fe+Mn)比值多高于0.42;Fe/Ti比值大都小于16.3;Al2O3/(Al2O3+Fe2O3)比值多高于0.4,剖面上部樣品的比值為0.8~0.9;Y/Ho比值為26.4~36.9,中、下部樣品較高(多高于32),上部樣品的比值接近地殼值(27);Eu/Eu*平均值為1.0,正異常不明顯。剖面下部樣品的∑REE含量低(15.9×10-6~27.1×10-6),具有與現(xiàn)代海水相近的REE配分,沒有正的Eu異常,不同于海底的熱液流體和與其有關(guān)的碧玉的REE配分;中部樣品的∑REE含量為26.2× 10-6~49.4×10-6,由于所含陸源碎屑的增加,REE配分變得平坦,但仍有海水REE的某些特征;上部樣品的∑REE含量為40.5×10-6~59×10-6,顯示與平均頁巖相似的平坦的REE配分,但∑REE含量?jī)H為平均頁巖的大約1/4~1/3。這些常量和稀土元素特征表明,海底熱液和陸源碎屑都不可能成為泗里口老堡組硅質(zhì)巖的重要物源。埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期華南深水盆地厚層硅質(zhì)巖沉積反映了這一時(shí)期大氣高CO2濃度,大量陸源化學(xué)風(fēng)化的硅質(zhì)流入海洋和大量生物的降解可能是造成這些硅質(zhì)巖形成的基本原因。

硅質(zhì)巖埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期老堡組元素成因

埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期(約550~540 Ma),中國(guó)南方盆地的深水區(qū)沉積了一套硅質(zhì)巖,普遍具有富有機(jī)碳和V、U、Mo等氧化還原敏感元素相對(duì)富集的特征,它與早寒武世沉積的黑色頁巖一起共稱為黑色巖系。已經(jīng)有學(xué)者[1~15]對(duì)該時(shí)期硅質(zhì)巖進(jìn)行了研究,但目前對(duì)這套硅質(zhì)巖的成因和物質(zhì)來源等問題還存在爭(zhēng)議,有持熱液成因觀點(diǎn)的[4,5,7,9,13],也有認(rèn)為是生物成因或認(rèn)為生物作用對(duì)硅質(zhì)巖形成具有重要意義的[2,6,10~12],還有認(rèn)為物質(zhì)來源于大陸風(fēng)化的[12]。厘清這套硅質(zhì)巖的成因和物質(zhì)來源問題,對(duì)于探討這一時(shí)期海洋環(huán)境以及某些沉積礦產(chǎn)(如U、Ni、Mo等礦床及石油、天然氣)的形成具有理論和現(xiàn)實(shí)意義。

沉積的硅質(zhì)巖中一些常量元素(如Al和Ti)和稀土元素(REE)在成巖或后期交代作用中保持不變[16,17]。它們,特別是REE作為重要的地球化學(xué)指示可應(yīng)用于硅質(zhì)巖的巖石成因和沉積環(huán)境的研究,以及相關(guān)的構(gòu)造活動(dòng)、海洋古地理的研究[17~24]。筆者擬從廣西北部泗里口剖面老堡組硅質(zhì)巖的常量元素和REE地球化學(xué)特征入手,探討埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期中國(guó)南方深水盆地沉積的硅質(zhì)巖的物質(zhì)來源、成因及地質(zhì)意義。

1 地質(zhì)背景

中國(guó)南方中上揚(yáng)子地臺(tái)的基底是中、高級(jí)變質(zhì)的太古宇和古元古界以及淺變質(zhì)的中元古界,基底形成以后中揚(yáng)子地區(qū)進(jìn)入了相對(duì)穩(wěn)定的地臺(tái)發(fā)展階段[2,3,25]。從埃迪卡拉紀(jì)開始,中上揚(yáng)子區(qū)沉積物由陸緣碎屑為主轉(zhuǎn)變?yōu)樘妓猁}巖、硅質(zhì)巖的配置,沉積相帶由北向南依次展布為碳酸鹽臺(tái)地—過渡帶—深海盆地(圖1a)。早寒武世早期區(qū)內(nèi)繼承了埃迪卡拉紀(jì)的巖相古地理格局,廣泛沉積了磷塊巖、含磷質(zhì)結(jié)核黑色頁巖以及碳質(zhì)頁巖,直接覆蓋在燈影組的白云巖和與之層位相當(dāng)?shù)纳钏嗬媳そM的硅質(zhì)巖之上。

圖1 泗里口剖面位置、區(qū)域地質(zhì)簡(jiǎn)圖(a),以及剖面圖和采樣位置(b)Fig.1Geological sketch map and location(a),lithological profile and samples positions(b)of the Silikou section

泗里口老堡組硅質(zhì)巖剖面位于廣西北部三江侗族自治縣的西南部,屬于盆地相(圖1a)。在泗里口剖面,地層自下而上由埃迪卡拉系陡山沱組、老堡組以及下寒武統(tǒng)的清溪組組成(圖1b),它們都是深水沉積的產(chǎn)物[26]。由于缺乏同位素定年的對(duì)像,老堡組的年代只能通過地層對(duì)比確定,下界年齡大致相當(dāng)燈影組底界的550 Ma[27,28],上界跨入寒武紀(jì)[13,29],估計(jì)約為540 Ma。下伏的陡山沱組硅質(zhì)頁巖和上覆的清溪組黑色頁巖都與老堡組硅質(zhì)巖整合接觸(圖1b)。泗里口剖面的老堡組硅質(zhì)巖厚約169 m,巖性變化不大,均為黑(灰)色硅質(zhì)巖,僅上部局部夾少量碳質(zhì)頁巖或碳質(zhì)硅質(zhì)頁巖。老堡組硅質(zhì)巖具有水平細(xì)紋層理,部分層位富含微古植物化石[30],層面起伏不平,具瘤狀構(gòu)造。

2 樣品采集與分析測(cè)試

筆者在泗里口剖面自下而上系統(tǒng)地采集了未風(fēng)化蝕變的新鮮硅質(zhì)巖樣品(圖1和表1),樣品編號(hào)中的數(shù)字指示在剖面上的真厚度(距老堡組底界,以米為單位)。共完成13塊樣品的化學(xué)分析。在化學(xué)分析之前,筆者對(duì)每塊樣品進(jìn)行了破碎,仔細(xì)地挑選出新鮮、無次生巖脈的巖石碎塊,均粉碎成200目以下的粉末。

稱取2~3g粉末樣品置于烘箱中,在105℃下烘2h后取出,待冷卻后放入干燥器中備用。精確稱取上述烘干的樣品0.5 g倒入已恒重的小瓷坩堝中,然后將盛有樣品的坩堝放入馬弗爐,在1 000℃高溫下灼燒1h;取出樣品,冷卻到一定溫度放入干燥器中,30 min后恒重并記錄;將上述處理好的樣品與5.0 g的四硼酸鋰(Li2B4O7)粉末混合均勻,放入鉑金坩堝中,在1 100℃高溫下將其熔化制備成均勻的玻璃片。在中國(guó)科學(xué)院地質(zhì)與地球物理研究所礦產(chǎn)資源重點(diǎn)實(shí)驗(yàn)室的日本島津公司XRF1500型X射線熒光光譜儀上進(jìn)行主成分測(cè)試。采用中國(guó)國(guó)家?guī)r石標(biāo)準(zhǔn)樣GSR-2、GSR-4和GSR-5對(duì)數(shù)據(jù)進(jìn)行校正。分析精度優(yōu)于±5%,數(shù)據(jù)見表1。

精確稱取40 mg粉末樣品置于Teflon溶樣罐中,加入0.5 ml的8 mol/L HNO3、1 ml濃HF,加蓋,超聲振蕩15min,然后開蓋在130~150℃的電熱板上蒸至近干;加入0.5 ml的8 mol/L HNO3、0.5 ml濃HClO4,在200℃的電熱板上蒸至近干;加入0.5 ml的8 mol/L HNO3、1 ml濃HF于200℃保溫5d;開蓋,蒸至近干,加入2 ml的8 mol/L HNO3加蓋于150℃保溫5h;開蓋再次蒸至近干,加入2 ml的8 mol/L HNO3加蓋于150℃保溫5h;開蓋,將溶液轉(zhuǎn)移到50 ml容量瓶中,加入1 ml的500×10-9In內(nèi)標(biāo),用1% HNO3稀釋至刻度。處理好的樣品溶液在中國(guó)科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室的Finnigan MAT產(chǎn)ICP—MS上測(cè)試完成,采用PAAS[31]來標(biāo)準(zhǔn)化,分析精度優(yōu)于±3%,數(shù)據(jù)見表1。 Ce/Ce*、Pr/Pr*、Eu/Eu*和Y/Y*比值采用Bau等的公式計(jì)算[32]:Ce/Ce*=CePAAS/(0.5LaPAAS+0.5 PrPAAS);Pr/Pr*=PrPAAS/(0.5CePAAS+0.5NdPAAS); Eu/Eu*=EuPAAS/(0.67SmPAAS+0.33TbPAAS);Y/Y*=YPAAS/(0.5DyPAAS+0.5HoPAAS)。Gd/Gd*比值采用Bolhar等的公式計(jì)算[33]:Gd/Gd*=GdPAAS/(2TbPAAS-DyPAAS)。

表1 泗里口硅質(zhì)巖常量元素(wt.%)和REE數(shù)據(jù)(10-6)Table 1Major(wt%)and rare earth elements(10-6)analysis for Silikou chert

3 分析結(jié)果和討論

3.1 常量元素的地球化學(xué)特征

泗里口老堡組硅質(zhì)巖的SiO2含量高,為89.4%~97.7%,平均93.8%。該剖面下部樣品的SiO2含量很高,為97%左右。中、上部含量相對(duì)于下部稍低,但基本都高于90%。硅質(zhì)巖的Al2O3含量為0.17%~4.92%,平均1.71%。下部含量很低,均低于0.73%;中部基本在1%~2%之間;上部含量較高,在4%~5%左右。SiO2和Al2O3含量數(shù)據(jù)顯示,泗里口剖面老堡組中、下部受陸源碎屑(包括粘土礦物)的影響很小,上部受它們的影響相對(duì)較大,但和平均頁巖的各項(xiàng)指標(biāo)相比仍是低的,表明這種影響可能是有限的。

硅質(zhì)巖中的常量元素,如Al、Fe、Mn等元素的含量常常被用來區(qū)分硅質(zhì)巖的成因類型及構(gòu)造沉積環(huán)境。Bostrom[34]在研究了現(xiàn)代熱水沉積物和古代類似沉積物之后指出,熱水成因的硅質(zhì)巖明顯富Si、Fe、Mn,而貧Al、Ti等,同時(shí)提出可以用Al/(Al+Fe+ Mn)、Fe/Ti比值來區(qū)分熱水沉積物和一般海水沉積物,當(dāng)它們的比值分別小于0.35和大于20時(shí)被認(rèn)為屬于熱水成因。Adachi等[35]和Yamamoto[36]通過系統(tǒng)地研究熱水沉積和硅質(zhì)生物沉積的硅質(zhì)巖差別,提出了實(shí)用的Al—Fe—Mn三角成因判別圖解(圖2)。此外,Al2O3/(Al2O3+Fe2O3)比值[17,20]也是判斷硅質(zhì)巖成因和構(gòu)造環(huán)境的一個(gè)良好指標(biāo),洋中脊硅質(zhì)巖一般小于0.4,大洋盆地硅質(zhì)巖一般為0.4~0.7,大陸邊緣硅質(zhì)巖一般為0.5~0.9。

泗里口硅質(zhì)巖的Al/(Al+Fe+Mn)比值為0.22~0.87,除剖面下部的兩個(gè)樣品(SLK-8和SLK-16)的比值小于0.35外,其余均高于0.42??赡鼙砻髁似拭娴撞康膬蓚€(gè)樣品受到熱液的影響,而其他樣品(幾乎)沒有受到熱液的影響。這在Al—Fe—Mn三角圖解[35,36]也有直觀表現(xiàn),即剖面下部樣品SLK-8和SLK-16落入熱水沉積硅質(zhì)巖區(qū)(A),而其他樣品則分布在此區(qū)域之外,其中有7個(gè)樣品分布在生物硅質(zhì)巖區(qū)(圖2)。

圖2 泗里口硅質(zhì)巖的Al—Fe—Mn圖解(據(jù)Adachi等[35]和Yamamoto[36])Fig.2Triangle diagram of Al—Fe—Mn of Silikou chert(after Adachi,et al.1986,and Yamamoto,1987)

由于Mn容易在成巖或后期交代過程中發(fā)生遷移[17,37],應(yīng)用Al/(Al+Fe+Mn)比值可能會(huì)產(chǎn)生差錯(cuò)。這樣,可以運(yùn)用Al2O3/(Al2O3+Fe2O3)[17,20]和Fe/Ti[34]比值來評(píng)估熱液和陸源碎屑物質(zhì)的影響。泗里口硅質(zhì)巖樣品的Al2O3/(Al2O3+Fe2O3)比值為0.27~0.9,其中剖面下部樣品SLK-8和SLK-16的比值均為0.27,可能指示了熱液的影響;上部3個(gè)樣品(SLK-128、SLK-138和SLK-149)的比值分別為0.9,0.82和0.79,可能暗示沉積于大陸邊緣,受陸源碎屑影響較大;中部樣品的比值范圍在0.49~0.76,表明其沉積于盆地環(huán)境。另外,樣品的Fe/Ti比值為2.57~36.4,其中下部SLK-8、SLK-16和SLK-27三個(gè)樣品的比值是高的(分別為29、25.7和36.4),和上述Al2O3/(Al2O3+Fe2O3)比值一樣可能暗示了熱液影響的存在;其他樣品的比值都小于17。泗里口硅質(zhì)巖樣品的Al/(Al+Fe+Mn)、Al2O3/(Al2O3+ Fe2O3)和Fe/Ti比值一致顯示,剖面下部的樣品可能受到熱液的影響,上部樣品可能受到陸源碎屑的影響。

3.2REE地球化學(xué)特征

海相沉積的硅質(zhì)巖主要化學(xué)組成是SiQ2,硅質(zhì)通常有3個(gè)可能的來源:陸源碎屑、生物遺體的硅和水成來源(hydrogenous)的硅[38,39]。除陸源碎屑外,海水中溶解的硅質(zhì)沉淀,根據(jù)其來源和成因又可分為熱水成因、生物成因(生物體提供硅或造成硅質(zhì)巖沉淀)和化學(xué)成因(通過河流搬運(yùn)到海洋的溶解的硅化學(xué)沉淀)。一般來講,海水的REE含量很低,且具有明顯的左傾和負(fù)Ce異常的配分特征[33],化學(xué)或生物成因的硅質(zhì)巖應(yīng)繼承了海水的REE特征。如果是熱液或熱水成因的硅質(zhì)巖,由于水/巖相互作用,會(huì)具有明顯的正Eu異常,如洋中脊的硅質(zhì)巖[40]。陸源碎屑含有比海水高得多的REE,只要有少量碎屑物質(zhì)加入,硅質(zhì)巖中的REE含量便明顯增加,且會(huì)與PAAS的REE配分相似。因此,通過沉積硅質(zhì)巖的REE特征分析能夠提供其成因和物質(zhì)來源方面的信息。根據(jù)硅質(zhì)巖的REE特征和配分形態(tài),可以將泗里口剖面老堡組樣品大致分成三個(gè)組(圖3a,b,c)。

圖3 泗里口硅質(zhì)巖PAAS[31]標(biāo)準(zhǔn)化的REE配分圖解Fig.3PAAS[31]-normalized REE distribution diagram of Silikou chert

剖面下部4個(gè)樣品(SLK-8~SLK-40)為第一組(圖3a)。它們的REE總量(∑REE)為15.9×10-6~27.1×10-6,比平均頁巖PAAS(184.8×10-6)低很多;具有明顯虧損的LREE和MREE(LaN/YbN為0.1~0.38;GdN/YbN為0.3~0.55),正的La異常(LaN/CeN為1.24~2.35),中等負(fù)的Ce異常(0.34~0.74),正的Gd(1.04~1.29)和Y(1.17~1.4)異常;Eu/Eu*值為0.9~0.95,沒有正Eu異常。這些都與現(xiàn)代缺氧盆地(黑海和薩尼克灣)海水的稀土配分型式非常相似[41,42],只是Ce異常比現(xiàn)代開闊大洋氧化的海水要弱一些[43,44],而與海底熱液流體及與熱液有關(guān)的碧玉的REE特征明顯不同(圖4)。低的總稀土含量和與現(xiàn)代海水相似的REE+Y型式表明這些硅質(zhì)巖樣品保存了古海水的化學(xué)特征。

剖面中部6個(gè)樣品(SLK-51~SLK-117)為第二組(圖3b)。它們的∑REE為26.2×10-6~49.4× 10-6,平均37.1×10-6;具有正的La異常(LaN/CeN為1.53~1.81),中等負(fù)的Ce異常(0.59~0.64),弱的正Eu異常(0.89~1.28,平均1.12),正的Gd (1.01~1.16)和Y(1.21~1.44)異常;LaN/YbN為0.64~1.1;GdN/YbN為0.49~0.65。它們具有和平均頁巖較為相似的平坦配分形態(tài),但是總稀土含量仍比平均頁巖(184.8×10-6)低很多,反映混入了少量陸源碎屑物質(zhì)。個(gè)別樣品弱的正Eu異常也許是受了海底熱液影響,但這種影響還是比較弱的。

第三組(圖3c)即剖面上部3個(gè)樣品(SLK-128~SLK-149)。它們的∑REE為40.5×10-6~59× 10-6;具有正的La異常(LaN/CeN為1.31~1.74),中等負(fù)的Ce異常(0.61~0.81),沒有正Eu異常(0.86~0.96),沒有Gd異常(0.95~1.0),沒有或具有弱的正Y異常(0.95~1.12);LaN/YbN為0.92~1.94; GdN/YbN為0.71~1.19。它們也具有平坦的配分形態(tài),但總稀土含量也比平均頁巖低。同第二組樣品相比,它們的Ce負(fù)異常和Y正異常都要小些,表明剖面上部樣品的陸源碎屑比例比中部高。這可能是受海退(海平面下降)影響[45],泗里口剖面老堡組地層自下而上陸源碎屑物質(zhì)明顯增加。即使是含碎屑物質(zhì)較多的第三組樣品,其總稀土含量?jī)H大致相當(dāng)于PAAS的1/4~1/3,因此在這組硅質(zhì)巖中陸源碎屑組分仍是次要的。

3.3 討論

3.3.1 熱液流體和陸源碎屑的影響

現(xiàn)代大洋深部氧化的海水和像黑海那樣缺氧盆地的深部水體都不具有Eu的異常,只有海底熱液和與海底熱液活動(dòng)有關(guān)的碧玉顯示正的Eu異常(圖4)。熱液流體的正Eu異常是熱液與巖漿或圍巖中的斜長(zhǎng)石交代的結(jié)果[46]。從海底煙囪中流出熱液沉淀的沉積物具有顯著的正Eu異常和弱的或沒有Ce的負(fù)異常[40],而且LREE相對(duì)一般海水(典型的LREE虧損型)要略顯富集[20]。通常的海水和生物、化學(xué)成因的硅質(zhì)巖都不會(huì)具有明顯的正Eu異常,這是區(qū)分它們與熱液和熱液成因硅質(zhì)巖的主要地球化學(xué)指標(biāo)。

圖4 現(xiàn)代大洋海水(包括北太平洋深部海水[44],南大西洋[43],黑海[42],薩尼克灣[41])、海底熱液流體(大西洋中脊處樣品、東太平洋洋中隆處樣品以及Lau Basin樣品[46]的平均值)和與海底熱液硫化物礦床有關(guān)的碧玉[47]的PAAS[31]標(biāo)準(zhǔn)化的REE圖解。Fig.4PAAS[31]-normalized REE diagram showing representative compositions for modern seawater(North Pacific Deep Water[44],South Atlantic Ocean[43],Black Sea[42]and Saanich Inlet[41]),deep-sea hydrothermal fluids (average of Mid-Atlantic Ridge samples,East Pacific Rise samples and Lau Basin samples)[46]and jasper related to seafloor-hydrothermal sulfide deposits[47].

泗里口硅質(zhì)巖樣品一般不具有明顯的正Eu異常,剖面中部個(gè)別樣品具有弱的正Eu異常,可能受到弱的熱液影響,但總體來看不應(yīng)歸于熱液成因。另一方面,泗里口硅質(zhì)巖的Al/(Al+Fe+Mn)、Al2O3/ (Al2O3+Fe2O3)和Fe/Ti比值反映剖面下部有的樣品可能落入熱液成因的范圍。這與埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期盆地深部水體普遍缺氧[14,15]且富鐵[48]有關(guān),這樣的深海海水Fe2+、Mn2+含量相對(duì)高,使得深水沉積的硅質(zhì)巖中Al/(Al+Fe+Mn)和Al2O3/ (Al2O3+Fe2O3)比值降低且Fe/Ti比值升高,從而顯示出熱液成因的特征。新元古代“雪球地球”以來,海洋經(jīng)歷了從硫化向氧化轉(zhuǎn)變的過渡時(shí)期,很長(zhǎng)時(shí)間深海都是缺氧、富鐵的[48],在這樣水體中沉積的硅質(zhì)巖會(huì)繼承水體富Fe和Mn的特征,這是造成Al/(Al +Fe+Mn)、Al2O3/(Al2O3+Fe2O3)和Fe/Ti等指標(biāo)誤判的原因。判別是否熱液成因的最重要指標(biāo)是是否具有突顯的正Eu異常。在湘北、湘西等地,一些學(xué)者在晚震旦世和早寒武世的海相地層層序中發(fā)現(xiàn)熱液或熱水成因的硅質(zhì)巖及海底煙筒[5,7,9,13]。一般這些硅質(zhì)巖沉積在外陸架或斜坡相,與板內(nèi)拉張和盆地?cái)嘞葑饔糜嘘P(guān)[3],分布受沉積地區(qū)的構(gòu)造控制。我們不否認(rèn)局部地區(qū)熱液成因硅質(zhì)巖的存在,但像桂北泗里口剖面這樣產(chǎn)在盆地相的老堡組硅質(zhì)巖,明顯缺乏正的Eu異常,整體來看不可能是熱液成因的硅質(zhì)巖。這不排除某段老堡組硅質(zhì)巖沉積時(shí)可能受到熱液影響,例如剖面中部某些樣品具有弱的正Eu異常。

盆地相沉積的硅質(zhì)巖由于遠(yuǎn)離陸地,受搬運(yùn)來的陸源碎屑影響較小。由于陸源碎屑(包括粘土礦物)具有比海水高得多的REE組成,在硅質(zhì)巖中,少量陸源碎屑的加入便能顯著地影響其REE等化學(xué)組成,這和碳酸鹽巖系統(tǒng)相似[49,50]。泗里口剖面上部第三組樣品的∑REE比中、下部樣品高,Y/Ho比值也靠近頁巖的平均值(27),REE配分顯示出和PAAS相似的平坦型,而且它們的Al2O3含量也相對(duì)較高(為2.5%~5%),Al2O3/(Al2O3+Fe2O3)比值也高于0.7,都指示剖面上部的硅質(zhì)巖受陸源碎屑的影響大些。

與上部樣品不同,剖面下部第一組和中部第二組樣品的Al2O3含量較低,Al2O3/(Al2O3+Fe2O3)比值低于0.7,∑REE也較低,而Y/Ho比值較高。PAAS標(biāo)準(zhǔn)化的下部樣品的REE配分(圖3a)具有和海水相似的左傾特征,而與一般頁巖平坦型的REE配分不同。Mclennan[31]認(rèn)為受陸源碎屑影響很小的自生沉積礦物保存了其沉積時(shí)海水的REE特征,所以第一組硅質(zhì)巖受陸源碎屑的影響很小。中部第二組樣品的REE配分雖顯平坦,但它們?nèi)员憩F(xiàn)出一些海水的特征,如Ce負(fù)異常、Gd正異常、Y正異常等,少量陸源碎屑的加入使REE配分變得平坦。這些硅質(zhì)巖為隱晶質(zhì)或微晶質(zhì)(圖5),鏡下觀察也沒有發(fā)現(xiàn)交代殘余結(jié)構(gòu),它們不是成巖作用期間硅質(zhì)交代的產(chǎn)物。

3.3.2 生物的影響

圖5 泗里口硅質(zhì)巖(樣品SLK-117)的掃描電子顯微鏡背散射圖片F(xiàn)ig.5Backscatter SEM image of Silikou chert (SLK-117)

硅質(zhì)生物死后其軀體可能成為硅質(zhì)巖的物質(zhì)來源。生物成因硅質(zhì)巖在顯生宙比較普遍,在埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期尚不清楚。趙國(guó)連[6]認(rèn)為在皖南浙西上震旦統(tǒng)硅質(zhì)巖的聚沉過程中生物起了重要作用,不僅提供了硅質(zhì),也促進(jìn)了硅質(zhì)巖的沉淀。唐世榮等[2]研究湘、川晚震旦世硅質(zhì)巖發(fā)現(xiàn)了大量的放射蟲、海綿骨針等生物結(jié)構(gòu),提出生物及其降解產(chǎn)物對(duì)硅質(zhì)巖的形成具有不可忽視的作用。陳孝紅等[51]在湘西留茶坡組頂部硅質(zhì)巖中發(fā)現(xiàn)了文德帶藻類(Vendotaenides)的生物碎片,并有異地埋藏的海綿骨針,認(rèn)為生物來源的硅質(zhì)可能是該地區(qū)留茶坡組頂部硅質(zhì)來源之一,而且生物對(duì)這些硅質(zhì)巖的形成起了重要作用。Guo等[10]研究貴州松桃留茶坡組也指出生物體可能提供了硅質(zhì)。最近,Love等[52]在研究阿曼南部Salt Basin的新元古代—寒武紀(jì)的Huqf Supergroup時(shí),發(fā)現(xiàn)在635 Ma之前已經(jīng)存在海綿(demosponges),并延續(xù)了大約100 Ma進(jìn)入早寒武世。因此,埃迪卡拉紀(jì)海洋可能已經(jīng)存在硅礦化的后生動(dòng)物,為生物成因硅質(zhì)巖創(chuàng)造條件。但是,到目前為止在中國(guó)南方的埃迪卡拉系海相地層中沒有確鑿硅礦化的后生動(dòng)物化石被發(fā)現(xiàn),上述文獻(xiàn)要不是時(shí)代不準(zhǔn)確,要不就是化石還存在爭(zhēng)議。同樣,桂北泗里口剖面老堡組硅質(zhì)巖中也沒有硅礦化生物化石被確定,在這一時(shí)期由生物及生物降解來提供大量的硅質(zhì)目前還是個(gè)謎。不過,富有機(jī)碳的老堡組硅質(zhì)巖告訴我們埃迪卡拉紀(jì)末期浮游(微)生物非常繁盛,這些生物群落死亡、下沉和降解。產(chǎn)生的有機(jī)懸浮物在異養(yǎng)細(xì)菌作用下,與水中溶解的氧化劑(O2、SO2-4)發(fā)生反應(yīng)形成HNO[37]3和H2S(細(xì)菌硫酸鹽還原作用,BSR)[53,54],有利于硅質(zhì)的沉淀。生物降解對(duì)硅質(zhì)巖的形成具有不可忽視的作用,從這個(gè)角度來看老堡組硅質(zhì)巖也具有生物成因。

3.3.3 泗里口老堡組硅質(zhì)巖的成因

桂北泗里口老堡組硅質(zhì)巖受陸源碎屑的影響十分有限,這些硅質(zhì)巖既不是成巖作用期間硅質(zhì)交代的產(chǎn)物,也不是熱液成因的,也沒有確鑿的證據(jù)表明生物為其形成提供了大量的硅質(zhì)。那么,它們是如何形成的呢?值得注意的是,埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期大氣CO2濃度達(dá)到了顯生宙以來最高的濃度[55]。大氣中高CO2含量會(huì)導(dǎo)致大陸的化學(xué)風(fēng)化非常強(qiáng)烈,大量的堿質(zhì)、重碳酸根、硫酸鹽和硅質(zhì)(即溶解的SiO2)會(huì)通過河流被帶入到海洋中。正如全球海相碳酸鹽巖的87Sr/86Sr長(zhǎng)期變化曲線所指示的[56],埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期大陸的化學(xué)風(fēng)化特別強(qiáng)烈,洋中脊擴(kuò)張和海底熱液活動(dòng)相對(duì)較弱。在這樣的地質(zhì)背景下我們不難解釋為什么中國(guó)南方的碳酸鹽臺(tái)地會(huì)有大量的碳酸鹽巖(白云巖和石灰?guī)r)形成,而在深水的斜坡和盆地相形成了大量的硅質(zhì)巖。這些深水沉積的硅質(zhì)巖沿NE—SW向延綿上千千米。根據(jù)我們對(duì)泗里口剖面老堡組硅質(zhì)巖的常量、稀土元素特征的分析,不排除有陸源碎屑的加入,也不排除海底熱液局部活動(dòng)提供了一些硅質(zhì),但深水沉積的硅質(zhì)巖其硅質(zhì)主要來源于這一時(shí)期加強(qiáng)的大陸化學(xué)風(fēng)化。生物和有機(jī)質(zhì)可能對(duì)硅質(zhì)巖的沉淀起了重要作用。

4 結(jié)論

形成于埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期深水盆地的老堡組硅質(zhì)巖受海底熱液的影響小。剖面上部受陸源碎屑影響稍大,下部的硅質(zhì)巖幾乎沒有受到陸源碎屑的影響。桂北泗里口剖面老堡組硅質(zhì)巖的物質(zhì)主要來源于河流搬運(yùn)到海洋中的溶解SiO2。這與埃迪卡拉紀(jì)—寒武紀(jì)過渡時(shí)期大氣高CO2濃度,大陸化學(xué)風(fēng)化作用強(qiáng)烈是一致的。強(qiáng)烈的化學(xué)風(fēng)化造成大量堿質(zhì)、硅質(zhì)和營(yíng)養(yǎng)物流入海洋,造成浮游(微)生物繁盛。浮游(微)生物死亡、降解,改變了海水的pH值,造成大量的硅質(zhì)巖沉淀在深水盆地中。

致謝中國(guó)科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室李禾和靳新娣分別指導(dǎo)完成了常量元素和REE的分析測(cè)試,審稿人對(duì)本文的修改提供了建設(shè)性意見,在此表示衷心的感謝!

References)

1伊海生,彭軍,夏文杰.揚(yáng)子?xùn)|南大陸邊緣晚前寒武紀(jì)古海洋演化的稀土元素記錄[J].沉積學(xué)報(bào),1995,13(4):131-137[Yi Haisheng,Peng Jun,Xia Wenjie.The late Precambrian paleo-ocean evolution of the Southeast Yangtze continental margin REE record[J].Acta Sedimentologica Sinica,1995,13(4):131-137]

2唐世榮,王東安,李任偉.湘川地區(qū)震旦—寒武系硅巖的有機(jī)巖石學(xué)研究[J].沉積學(xué)報(bào),1997,15(1):54-59[Tang Shirong,Wang Dong’an,Li Renwei.Organic petrology of the Cambrian-Sinian chert from the Xiangchuan region[J].Acta Sedimentologica Sinica,1997,15(1):54-59]

3陳孝紅,汪嘯風(fēng),毛曉冬.湘西地區(qū)晚震旦世黑色巖系地層層序、沉積環(huán)境與成因[J].地球?qū)W報(bào),1999,20(1):87-95[Chen Xiaohong,Wang Xiaofeng,Mao Xiaodong.Sequence stratigraphy and depositional environments of the late Sinian-early Cambrian black rock series in western Hunan and its origins[J].Acta Geoscientia Sinica,1999,20(1):87-95]

4彭軍,伊海生,夏文杰.湘黔桂地區(qū)晚前寒武紀(jì)層狀硅質(zhì)巖地球化學(xué)特征及成因[J].地質(zhì)地球化學(xué),1999,27(4):33-39[Peng Jun,Yi Haisheng,Xia Wenjie.Origin and geochemical characteristics of late Precambrian bedded silicalites in Hunan,Guizhou and Guangxi[J].Geology-Geochemistry,1999,27(4):33-39]

5彭軍,夏文杰,伊海生.湘西晚前寒武紀(jì)層狀硅質(zhì)巖的熱水沉積地球化學(xué)標(biāo)志及其環(huán)境意義[J].巖相古地理,1999,19:29-37[Peng Jun,Xia Wenjie,Yi Haisheng.Geochemical characteristics and depositional environments of the Late Precambrian bedded siliceous rocks in western Hunan[J].Sedimentary Facies and Palaeogeography,1999,19:29-37]

6趙國(guó)連.生物作用在二氧化硅聚集沉淀過程中的意義——以皖南浙西的硅質(zhì)巖為例[J].沉積學(xué)報(bào),1999,17(1):30-37[Zhao Guolian.The influence of biogenic procession on the accumulation and precipitation of silica-An example from south of Anhui and west of Zhejiang[J].Acta Sedimentologica Sinica,1999,17(1):30-37]

7彭軍,伊海生,夏文杰.揚(yáng)子板塊東南大陸邊緣上震旦統(tǒng)熱水成因硅質(zhì)巖的地球化學(xué)標(biāo)志[J].成都理工學(xué)院學(xué)報(bào),2000,27:8-14[Peng Jun,Yi Haisheng,Xia Wenjie.Geochemical criteria of the upper Sinian hydrothermal chert on the southeast continental margin of the Yangtze Plate[J].Journal of Chengdu University of Technology,2000,27:8-14]

8彭軍,徐望國(guó).湘西上震旦統(tǒng)層狀硅質(zhì)巖沉積環(huán)境的地球化學(xué)標(biāo)志[J].地球化學(xué),2001,30:293-298[Peng Jun,Xu Wangguo.Geochemical characteristics of depositional environment of the Upper Sinian bedded siliceous rocks in western Hunan[J].Geochimica,2001,30:293-298]

9江永宏,李勝榮.湘、黔地區(qū)前寒武—寒武紀(jì)過渡時(shí)期硅質(zhì)巖生成環(huán)境研究[J].地學(xué)前緣,2005,12:622-629[Jiang Yonghong,Li Shengrong.A study of the fluid environment of silicalite of transitional Precambrian-Cambrian age in Hunan and Guizhou Provinces[J].Earth Science Frontiers,2005,12:622-629]

10Guo Q J,Shields G A,Liu C Q,et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254:194-216

11胡杰.桂東北較深水相前寒武紀(jì)之交的硅質(zhì)微生物巖[J].微體古生物學(xué)報(bào),2008,25(3):291-305[Hu Jie.The cherty microbolite in the deeper water facies during the Precambrian-Cambrian transitional period in Northeast Guangxi Province,China[J].Acta Micropalaeontologica Sinica,2008,25(3):291-305]

12常華進(jìn),儲(chǔ)雪蕾,馮連君,等.湖南安化留茶坡硅質(zhì)巖的REE地球化學(xué)特征及其意義[J].中國(guó)地質(zhì),2008,35:879-887[Chang Huajin,Chu Xuelei,F(xiàn)eng Lianjun,et al.REE geochemistry of the Liuchapo chert in Anhua County,Hunan[J].Geology in China,2008,35:879-887]

13Chen D Z,Wang J G,Qing H R,et al.Hydrothermal venting activities in the Early Cambrian,South China:Petrological,geochronological and stable isotopic constraints[J].Chemical Geology,2009,258:168-181

14常華進(jìn),儲(chǔ)雪蕾,馮連君,等.華南老堡組硅質(zhì)巖中草莓狀黃鐵礦——埃迪卡拉紀(jì)末期深海缺氧的證據(jù)[J].巖石學(xué)報(bào),2009,25:1001-1007[Chang Huajin,Chu Xuelei,F(xiàn)eng Lianjun,et al.Framboidal pyrites in cherts of the Laobao Formation,South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J].Acta Petrologica Sinica,2009,25:1001-1007]

15Chang H J,Chu X L,F(xiàn)eng L J,et al.Terminal Ediacaran anoxia in deep-ocean:Trace element evidence from cherts in the Liuchapo Formation,South China[J].Science in China:Series D,2009,52: 807-822

16Murray R W,Buchholtz Ten Brink M R,Gerlach D C,et al.Rare earth,major,and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis[J].Geochimica et Cosmochimica Acta,1992,56:2657-2671

17Murray R W.Chemical criteria to identify the depositional environment of chert:General principles and applications[J].Sedimentary Geology,1994,90:213-232

18Shimizu H,Masuda A.Cerium in chert as an indication of marine environment of its formation[J].Nature,1977,266:346-348

19Murray R W,Tenbrink M R B,Jones D L,et al.Rare earth elements as indicators of different marine depositional environments in chert and shale[J].Geology,1990,18:268-271

20Murray R W,Tenbrink M R B,Gerlach D C,et al.Rare earth,major,and trace elements in chert from the Franciscan complex and Monterey group,Californian:Assessing REE sources to fine-grained marine sediments[J].Geochimica et Cosmochimica Acta,1991,55:1875-1895

21Ding L,Zhong D.Rare earth elements and Ce anomalies in the chert of the Paleo-Tethys Ocean,Changning-Menglian belt,western Yunnan[J].Science in China:Series B,1995,25:93-100

22Armstrong H A,Owen A W,F(xiàn)loyd J D.Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone,southern Scotland:Implications for origin and significance to the Caledonian Orogeny[J].Journal of the Geological Society,1999,156:549-560

23Owen A W,Armstrong H A,F(xiàn)loyd J D.Rare earth elements in chert clasts as provenance indicators in the Ordovician and Silurian of the Southern Uplands of Scotland[J].Sedimentary Geology,1999,124: 185-195

24Chen D Z,Qing H R,Yan X,et al.Hydrothermal venting and basin evolution(Devonian,South China):Constraints from rare earth ele-ment geochemistry of chert[J].Sedimentary Geology,2006,183: 203-216

25汪建國(guó),陳代釗,王清晨,等.中揚(yáng)子地區(qū)晚震旦世-早寒武世轉(zhuǎn)折期臺(tái)-盆演化及烴源巖形成機(jī)理[J].地質(zhì)學(xué)報(bào),2007,81 (8):1102-1109[Wang Jianguo,Chen Daizhao,Wang Qingchen,et al.Platform evolution and marine source rock deposition during the terminal Sinian to early Cambrian in the middle Yangtze region[J].Acta Geologica Sinica,2007,81(8):1102-1109]

26蒲心純,張繼慶,羅安屏,等.上揚(yáng)子區(qū)震旦世沉積巖沉積相及礦產(chǎn)[M].重慶:重慶出版社,1987[Pu Xinchun,Zhang Jiqing,Luo Anping,et al.Sedimentary Rocks,Sedimentary Facies and Minerals in Late Epoch of Sinian in Upper Yangtzi Region[M].Chongqing:Chongqing Publishing House,1987]

27Condon D,Zhu M,Bowring S,et al.U-Pb Ages from the Neoproterozoic Doushantuo Formation,China[J].Science,2005,308:95-98

28湖南省地質(zhì)礦產(chǎn)局.湖南省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1988[Hunan Bureau of Geology and Mineral Resources.Regional Geology of Hunan Province[M].Beijing:Geological Publishing House,1988,25-40]

29Zhu M Y,Zhang J M,Yang A H.Integrated Ediacaran(Sinian) chronostratigraphy of South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254:7-61

30廣西壯族自治區(qū)地質(zhì)礦產(chǎn)局.廣西壯族自治區(qū)區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1985[Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region.Regional Geology of Guangxi Zhuang Autonomous Region[M].Beijing:Geological Publishing House,1985]

31McLennan S M.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[C]∥Lipin B R,McKay G A,eds.Geochemistry and Mineralogy of Rare Earth Elements.Mineralogical Society of America,Reviews in Mineralogy.1989:169-200

32Bau M,Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa[J].Precambrian Research,1996,79:37-55

33Bolhar R,Kamber B S,Moorbath S,et al.Characterisation of early Archaean chemical sediments by trace element signatures[J].Earth and Planetary Science Letters,2004,222:43-60

34Bostrom K.Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[C]∥Rona P A ed.Hydrothermal processes at seafloors spreading centers.New York:Plenum Press,1983:473-483

35Adachi M,Yamamoto K,Sugisaki R.Hydrothermal chert and associated siliceous rocks from the Northern Pacific:Their geological significance as indication of ocean ridge activity[J].Sedimentary Geology,1986,47:125-148

36Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks from the Franciscan and Shimanto Terranes[J].Sedimentary Geology,1987,52:65-108

37Tribovillard N,Algeo T J,Lyons T,et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology,2006,232:12-32

38Piper D Z.Seawater as the source of minor elements in black shales,phosphorites and other sedimentary-rocks[J].Chemical Geology,1994,114:95-114

39Piper D Z,Isaacs C M.Minor elements in Quaternary sediments from the Sea of Japan:a record of surface-water productivity and intermediate-water redox conditions[J].Geological Society of America Bulletin,1995,107:54-67

40German C R,Klinkhammer G P,Edmond J M,et al.Hydrothermal scavenging of rare earth elements in the ocean[J].Nature,1990,345:516-518

41German C R,Elderfield H.Rare earth elements in Saanich Inlet,British Columbia,a seasonally anoxic basin[J].Geochimica et Cosmochimica.Acta,1989,53:2561-2571

42German C R,Holliday B P,Elderfield H.Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J].Geochimica et Cosmochimica Acta,1991,55:3553-3558

43German C R,Masuzawa T,Greaves M J,et al.Dissolved rare earth elements in the Southern Ocean:cerium oxidation and the influence of hydrography[J].Geochimica et Cosmochimica Acta,1995,59: 1551-1558

44Alibo D S,Nozaki Y.Rare earth elements in seawater:Particle association,shale-normalization,and Ce oxidation[J].Geochimica et Cosmochimica Acta,1999,63:363-372

45薛耀松,周傳明.揚(yáng)子區(qū)早寒武世早期磷質(zhì)小殼化石的再沉積和地層對(duì)比問題[J].地層學(xué)雜志,2006,30:64-74[Xue Yaosong,Zhou Chuanming.Resedimentation of the early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrain boundary strata in the Yangtze region,Southern China[J].Journal of Stratigraphy,2006,30:64-74]

46Douville E,Bienvenu P,Charlou J L,et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta,1999,63:627-643

47Slack J F,Grenne T,Bekker A,et al.Suboxic deep seawater in the late Paleoproterozoic:Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits,central Arizona,USA[J].Earth and Planetary Science Letters,2007,255:243-256

48Canfield D E,Poulton S W,Knoll A H,et al.Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J].Science,2008,321:949-952

49Taylor S R,McLennan S M.The Continental Crust:Its Cmposition and Eolution[M].Oxford:Blackwell,1985

50Webb G E,Kamber B S.Rare earth elements in Holocene reefal microbialites:A new shallow seawater proxy[J].Geochimica et Cosmochimica Acta,2000,64:1557-1565

51陳孝紅,汪嘯風(fēng).湘西地區(qū)晚震旦世-早寒武世黑色巖系的生物和有機(jī)質(zhì)及其成礦作用[J].華南地質(zhì)與礦產(chǎn),2000,(1):16-23[Chen Xiaohong,Wang Xiaofeng.Biota and organic matter in late Sinian and early Cambrian black rock series of West Hunan and their significance to metallization[J].Geology and Mineral Resources ofSouth China,2000,(1):16-23]

52Love G D,Grosjean E,Stalvies C,et al.Fossil steroids record the appearance of Demospongiae during the Cryogenian period[J].Nature,2009,457:718-721

53Thamdrup B,Canfield D E.Pathways of carbon oxidation in continental margin sediments off central Chile[J].Limnology and Oceanography,1996,41:1629-1650

54Jiang G Q,Kaufman A J,Christie-Blick N,et al.Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surface-to-deep ocean δ13C gradient[J].Earth and Planetary Science Letters,2007,261:303-320

55Berner R A.A model for atmospheric CO2over Phanerozoic time[J].American Journal of Science,1991,291:339-376

56Shields G,Veizer J.Precambrian marine carbonate isotope database: Version 1.1[J].Geochemistry,Geophysics,Geosystems,2002,3: 1031

The Major and REE Geochemistry of the Silikou Chert in Northern Guangxi Province

CHANG Hua-jin1,2,3CHU Xue-lei3FENG Lian-jun3HUANG Jing3ZHANG Qi-rui3
(1.School of Life and Geography Sciences,Qinghai Normal University,Xining 810008; 2.Key Laboratory of Qinghai-Xizang Plateau Environment and Resources(Qinghai Normal University),Ministry of Education,Xining 810008; 3.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing,100029)

The Silikou chert in Northern Guangxi Province was deposited in a terminal Ediacaran to early Cambrian (about 550~540 Ma)deep ocean basin.It has high SiO2concentration(average 93.8%).Al2O3content ranges from 0.17%to 4.92%and increases from the lower to the upper section which is more than 2%.Al/(Al+Fe+Mn) and Fe/Ti ratios for most of the chert are more than 0.42 and less than 16.3,respectively.Al2O3/(Al2O3+Fe2O3) ratios for most of the chert exceeds 0.4 and the ratios are 0.8~0.9 for chert in the upper section.Y/Ho ratios(26.4~36.9)are high(more than 32)for chert in the lower and middle section,and are similar to that of the upper crust(27)for chert in the upper section.It has no positive Eu anomalies(average 1.0)for the chert samples.REE concentrations for chert in the lower section(15.9×10-6~27.1×10-6)are low relative to PAAS,which are similar to that of the seawater but hydrothermal fluids or jasper related to seafloor-hydrothermal sulfide deposits.Although REE patterns for chert in the middle section become flat since the increase of terrigenous detrital input,they have low REE concentrations(26.2×10-6~49.4×10-6)and seawater characteristics.REE concentrations for chert in the upper section range from 40.5×10-6to 59×10-6and they have flat REE patterns that are similar to PAAS,yet REE concentrations are just 1/4~1/3 of the PAAS.The major and rare earth elements characteristics of the Silikou chert suggest hydrothermal fluids and terrigenous detrital input were not main sources of the silica.In fact,huge amounts of dissolved silica derived from chemical weathering due to high CO2concentration in the atmosphere and degradation of organic matter were the basic cause for the basinal chert in South China.

chert;Ediacaran-Cambrian transition period;the Laobao Formation;element;petrogenesis

book=6,ebook=519

常華進(jìn)男1980年出生博士沉積地球化學(xué)E-mail:changhj@163.com。

P534.31;P595

A

1000-0550(2010)06-1098-10

①國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):40532012,40873007,40603021)和中國(guó)科學(xué)院知識(shí)創(chuàng)新工程項(xiàng)目(編號(hào):KZCX3-SW-141)資助。

2009-09-27;收修改稿日期:2009-11-20

猜你喜歡
陸源硅質(zhì)碎屑
放學(xué)
硅質(zhì)巖研究進(jìn)展與思考*
Sweet Carrots甜甜的胡蘿卜
一種具有塑料碎屑收集機(jī)構(gòu)的水磨床
廣西資興高速硅質(zhì)巖單面山地質(zhì)災(zāi)害分布規(guī)律及防治對(duì)策研究
陸源有機(jī)碳對(duì)萊州灣浮游動(dòng)物能量貢獻(xiàn)的初步研究
控制陸源污染,保護(hù)海洋環(huán)境
清潔攪拌機(jī)的小妙招
伴侶(2018年2期)2018-02-28 20:38:24
求友聲的變奏
西湖(2017年5期)2017-05-12 16:40:09
渤中X油田沙一段生物碎屑白云巖井場(chǎng)識(shí)別方法
錄井工程(2017年4期)2017-03-16 06:10:28
嘉兴市| 阆中市| 铜鼓县| 阿拉尔市| 南京市| 神池县| 体育| 景德镇市| 读书| 新安县| 元阳县| 桐乡市| 娄底市| 冀州市| 万年县| 荆州市| 岑溪市| 蕉岭县| 儋州市| 元谋县| 仁怀市| 丹棱县| 卢氏县| 睢宁县| 伊宁市| 高台县| 加查县| 阜南县| 米林县| 光泽县| 清镇市| 濮阳县| 东乌| 云和县| 新丰县| 彭水| 贺兰县| 成安县| 开鲁县| 河东区| 安多县|