国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪因子與代謝相關(guān)脂肪性肝病及其相關(guān)肝癌的關(guān)系

2025-02-27 00:00:00張熠瀟孫建光蔣博文
臨床肝膽病雜志 2025年1期
關(guān)鍵詞:肝腫瘤

摘要: 隨著生活中不健康飲食結(jié)構(gòu)的出現(xiàn),代謝相關(guān)脂肪性肝?。∕AFLD)逐漸成為我國(guó)第一大慢性肝病,MAFLD相關(guān)肝癌的發(fā)生也逐漸增多。脂肪組織不僅具有能量?jī)?chǔ)存功能,而且其分泌的脂肪因子在MAFLD及其相關(guān)肝癌的發(fā)生發(fā)展中亦起到重要作用。脂肪因子作用機(jī)制相關(guān)研究為MAFLD的預(yù)防與治療提供了重要的幫助,大量研究顯示,脂肪因子的異常分泌不僅與MAFLD相關(guān),其在肝癌的發(fā)生發(fā)展中也發(fā)揮了重要作用。脂肪因子不僅在基因?qū)用姹徽{(diào)控,也可通過(guò)特定途徑與基因相互作用,共同調(diào)控MAFLD及其相關(guān)肝癌的炎癥、代謝、免疫、細(xì)胞增殖等病理生理過(guò)程。本文就脂肪因子與MAFLD及其相關(guān)肝癌關(guān)系的最新研究進(jìn)行綜述,以期為肝癌發(fā)病機(jī)制的進(jìn)一步研究提供新的方向。

關(guān)鍵詞: 代謝相關(guān)脂肪性肝?。?肝腫瘤; 脂肪因子類(lèi)

基金項(xiàng)目: 山東省重點(diǎn)研發(fā)計(jì)劃(2021CXGC010510)

Research advances in the association of adipokines with metabolic associated fatty liver disease and its associatedliver cancer

ZHANG Yixiao, SUN Jianguang, JIANG BowenThe First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250013, China

Corresponding author: SUN Jianguang, sdutcmsjg03@163.com (ORCID: 0009-0001-5251-341X)

Abstract: With the emergence of unhealthy dietary structures in people’s life, metabolic associated fatty liver disease (MAFLD)has gradually become the most important chronic liver disease in China, and there is also a gradual increase in the cases of MAFLD-associated liver cancer. Adipose tissue not only has the function of energy storage, but also secretes adipokines that play animportant role in the development and progression of MAFLD and its associated liver cancer. Studies on the mechanism ofadipokines have provided important help for the prevention and treatment of MAFLD, and a large number of studies have shownthat the abnormal secretion of adipokines is associated with MAFLD and plays an important regulatory role in the development andprogression of liver cancer. Adipokines are not only regulated at the gene level, but they can also interact with genes throughspecific pathways to co-regulate pathophysiological processes such as inflammation, metabolism, immunity, and cell proliferationin MAFLD and its associated liver cancer. This article reviews the latest studies on the association of adipokines with MAFLD andits associated liver cancer, in order to provide new directions for further research on the pathogenesis of liver cancer.

Key words: Metabolism-Associated Fatty Liver Disease; Liver Neoplasms; Adipokines

Research funding: Shandong Province Key R amp; D Program (2021CXGC010510)

最新研究[1] 顯示,肝癌死亡率居全球癌癥死亡的第4位,且具有明顯的地區(qū)與性別差異。2020年我國(guó)肝癌死亡率為 17. 2/10 萬(wàn),仍處亞洲最高[1] 。除肝炎病毒感染以外,酗酒、黃曲霉素及代謝相關(guān)脂肪性肝?。╩etabolism-associated fatty liver disease, MAFLD)等代謝因素也是引起肝癌的重要因素[2] 。在臨床工作中,部分肝臟惡性腫瘤病因不甚明確,臨床將其稱(chēng)為隱源性肝癌,為排除性診斷,目前尚無(wú)統(tǒng)一的指南及共識(shí)。早期研究[3] 顯示,隱源性肝硬化及肝癌的發(fā)生與非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)有密切關(guān)系,NAFLD的定義強(qiáng)調(diào)飲酒情況而較少描述代謝因素所帶來(lái)的疾病進(jìn)展風(fēng)險(xiǎn),而大量研究[4-5] 表明,NAFLD與代謝綜合征密不可分,因此2020年由國(guó)際專(zhuān)家提出了MAFLD的新定義[6] ,減弱了對(duì)飲酒的限制,而將代謝因素如超重/肥胖、2型糖尿病、代謝功能障礙等作為診斷要點(diǎn),且將這部分病因所致肝硬化及肝癌患者納入MAFLD疾病譜中。

2000—2010年,英國(guó)MAFLD相關(guān)肝癌患病率上升至 34. 8%;美國(guó) MAFLD 相關(guān)肝癌的發(fā)病率逐年增長(zhǎng)9%;1991—2010年,亞洲非病毒感染原因相關(guān)肝癌增長(zhǎng)約 14. 1%[7] 。非健康飲食結(jié)構(gòu)引起的超重與肥胖對(duì)MAFLD及其相關(guān)肝癌的患病率上升有重要影響,大量臨床和數(shù)據(jù)研究[8-12]顯示,腰圍是MAFLD的確切風(fēng)險(xiǎn)因素,腰臀比和睪酮水平為其潛在風(fēng)險(xiǎn)因素。此外,MAFLD與NAFLD定義在脂肪變性風(fēng)險(xiǎn)方面相似,對(duì)于NAFLD而言,脂肪分布于腹腔相較于腹壁發(fā)病風(fēng)險(xiǎn)更大[13] ,因此內(nèi)臟脂肪組織對(duì)發(fā)病發(fā)揮著重要的作用。

人體脂肪組織中含有大量脂肪因子,由脂肪細(xì)胞、免疫細(xì)胞和內(nèi)皮細(xì)胞分泌,包括激素、細(xì)胞因子、生長(zhǎng)因子、胞外基質(zhì)等。根據(jù)脂肪因子的功能,大致可分為免疫反應(yīng)類(lèi)脂肪因子、抗炎癥細(xì)胞因子、脂質(zhì)代謝調(diào)節(jié)因子、類(lèi)固醇激素代謝酶類(lèi)、調(diào)節(jié)血管穩(wěn)態(tài)血管活性因子。目前脂肪因子已在NAFLD人群及動(dòng)物模型中被廣泛研究[14-15] ,且其與脂質(zhì)代謝異常也通過(guò)多種機(jī)制作用于癌癥的發(fā)生[16-19] 。脂肪組織可以分泌多種物質(zhì)對(duì)靶器官的代謝、炎癥、免疫等功能進(jìn)行調(diào)控。目前,瘦素、脂聯(lián)素等經(jīng)典脂肪因子在肥胖和2型糖尿病等代謝類(lèi)疾病中的重要作用已被廣泛認(rèn)可[20],在癌癥方面的作用也被廣泛研究,明確其作用機(jī)制對(duì)MAFLD及其相關(guān)肝癌具有重要臨床意義。本文主要對(duì)近 3~8 年內(nèi)脂肪因子與MAFLD及肝癌相關(guān)臨床和試驗(yàn)研究進(jìn)行分析總結(jié),就煙酰胺磷酸糖苷轉(zhuǎn)移酶(nicotinamide phosphoribosyltransferase,NAMPT)、脂聯(lián)素、趨化素、絲氨酸蛋白酶抑制劑(Vaspin)等脂肪細(xì)胞因子與MAFLD及其相關(guān)肝癌的關(guān)系進(jìn)行綜述,以期為MAFLD疾病譜的認(rèn)識(shí)及肝癌的發(fā)生機(jī)制提供更多研究思路。

1 脂肪因子在MAFLD及其相關(guān)肝癌發(fā)病中的作用

1. 1 瘦素 瘦素是在對(duì)小鼠進(jìn)行克隆操作時(shí)所發(fā)現(xiàn)[21],其作為一種肽類(lèi)激素,可以控制食欲消耗能量,同時(shí)在促進(jìn)細(xì)胞增殖、血管生成等方面對(duì)癌癥相關(guān)進(jìn)展發(fā)揮作用[22] ?;蚪M研究 [23-24] 顯示,在肝細(xì)胞纖維化及癌變過(guò)程中,JAK2-STAT3途徑是重要的促癌通路,瘦素可以激活此途徑,引起肝細(xì)胞癌變[25] ,而人端粒酶逆轉(zhuǎn)錄酶被認(rèn)為是該通路的一個(gè)重要靶位[26](圖1)。瘦素水平可隨MAFLD患者疾病嚴(yán)重程度加重而升高[27] 。伊朗的一項(xiàng)研究[28]發(fā)現(xiàn),通過(guò)藏紅花干預(yù),可以降低瘦素水平改善MAFLD炎癥指標(biāo),提高抗氧化能力。然而,盡管瘦素早期升高會(huì)對(duì)MAFLD脂肪變性起到一定的保護(hù)作用,但長(zhǎng)期升高可引起瘦素抵抗[29] 。綜上可見(jiàn),MAFLD在進(jìn)展過(guò)程中瘦素可能累積升高,增加肝癌的發(fā)生風(fēng)險(xiǎn)。Zhang等[30] 使用替米沙坦喂養(yǎng)MAFLD大鼠后發(fā)現(xiàn)替米沙坦可以下調(diào)瘦素mRNA的表達(dá),降低血清及組織中的瘦素水平(Plt;0. 01),這為代謝綜合征相關(guān)藥物治療MAFLD相關(guān)肝癌提供了臨床參考。

1. 2 NAMPT NAMPT又稱(chēng)為內(nèi)酯素,是一種細(xì)胞代謝限速酶,可在哺乳動(dòng)物煙酰胺腺嘌呤二核苷酸(nicotinamideadenine dinucleotide, NAD)合成補(bǔ)救途徑中催化煙酰胺單核苷酸的產(chǎn)生。NAMPT分為細(xì)胞內(nèi)NAMPT(iNAMPT)和細(xì)胞外NAMPT(eNAMPT),是控制NAD代謝的關(guān)鍵酶,主要由eNAMPT作為細(xì)胞因子發(fā)揮作用,與多種代謝、炎癥類(lèi)疾病及腫瘤有關(guān),其在細(xì)胞中的功能較為復(fù)雜且存在爭(zhēng)議。2019年,一項(xiàng)研究[31]對(duì)211例NAFLD患者進(jìn)行檢測(cè),發(fā)現(xiàn)NAFLD組血清NAMPT水平低于非NAFLD組,且與NAFLD風(fēng)險(xiǎn)呈負(fù)相關(guān)(OR=0. 30,95%CI:0. 10~0. 91,Plt;0. 05),提示NAMPT可能對(duì)肝細(xì)胞代謝功能具有保護(hù)作用。郭婭棣等[32] 研究亦獲得同樣的結(jié)論。NAMPT活性缺乏會(huì)影響線(xiàn)粒體功能和脂質(zhì)代謝,使脂滴合成增加,造成脂肪合成與分解的失衡[33] 。楊麗等 [34] 分析了66例NAFLD患者的部分代謝學(xué)指標(biāo),發(fā)現(xiàn)NAFLD患者NAMPT水平與肝纖維化程度也呈明顯的負(fù)相關(guān)關(guān)系(Plt;0. 05)。最新研究[35] 顯示,NAMPT/NAD/SIRT1通路可顯著緩解非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)小鼠肝臟炎癥的加重,同時(shí)降低整個(gè)腸肝系統(tǒng)中總膽汁酸水平,且激活的NAMPT/NAD/SIRT1可抑制腫瘤細(xì)胞的增殖和血管的形成[36](圖1)。然而也有研究結(jié)論與之相反,例如Sun等[37] 通過(guò)對(duì)NAFLD受試者的血清學(xué)及組織學(xué)檢測(cè)發(fā)現(xiàn),與健康對(duì)照組相比,NAFLD受試者NAMPT表達(dá)明顯增加,血漿中eNAMPT、IL-6、血管生成素-2和白細(xì)胞介素-1受體拮抗劑(IL-1RA)的水平明顯升高。通過(guò)使用 Toll 樣受體 4(Toll-like receptor4, TLR4)配體中和eNAMPT,發(fā)現(xiàn)配體試驗(yàn)組NASH相關(guān)指標(biāo)均明顯下降,提示eNAMPT/TLR4炎癥通路的激活導(dǎo)致了NAFLD/肝纖維化。此外,NAMPT在不同腫瘤細(xì)胞中的功能也不相同,如在結(jié)腸癌[38] 、膠質(zhì)瘤 [39] 、胰腺瘤[40] 、胃腺癌等腫瘤中其表達(dá)上調(diào),有研究 [41] 顯示NAMPT可促進(jìn)腫瘤細(xì)胞增殖和新生血管形成。而在肝細(xì)胞癌及膀胱癌中NAMPT表達(dá)下調(diào),NAMPT能夠刺激腫瘤微環(huán)境中免疫細(xì)胞表面因子的表達(dá),且可以促進(jìn)TNF、穿孔素、NKG2D(自然殺傷細(xì)胞活化性受體)、CD40的表達(dá)和分泌,從而誘導(dǎo)免疫細(xì)胞殺傷及癌細(xì)胞凋亡[42]。若腫瘤長(zhǎng)期存在,NAMPT還會(huì)誘導(dǎo)腫瘤細(xì)胞表面免疫檢查點(diǎn)程序性死亡配體1的表達(dá),產(chǎn)生自然選擇作用,導(dǎo)致免疫逃逸(圖1)。

1. 3 脂聯(lián)素 脂聯(lián)素早在小鼠分化的脂肪細(xì)胞中被發(fā)現(xiàn)[43]。作為一種由脂肪組織分泌的蛋白質(zhì),脂聯(lián)素分為人脂聯(lián)素1和人脂聯(lián)素2,后者主要存在于肝部[44] 。在肝組織中,脂聯(lián)素主要與脂聯(lián)素受體1和脂聯(lián)素受體2結(jié)合,通過(guò)激活A(yù)MPK信號(hào)通路產(chǎn)生抗炎、調(diào)節(jié)脂肪代謝的作用[45] ,促進(jìn)脂肪酸氧化。在脂聯(lián)素刺激下,脂聯(lián)素受體1結(jié)合蛋白、酪蛋白激酶2和肝激酶B1作為上游因子,乙酰輔酶A羧化酶及過(guò)氧化物酶體增殖物激活受體 α(peroxisome proliferator-activated receptor α, PPARα)作為下游因子,參與脂聯(lián)素增強(qiáng)脂肪酸氧化作用的進(jìn)程[46-49]。此外,在酒精性肝病中,脂聯(lián)素主要通過(guò)SIRT1-AMPK軸來(lái)促進(jìn)脂肪酸氧化[50] 。脂聯(lián)素也可以通過(guò)激活 AMPK-PPARα 途徑影響 SREBP-1c 、 Acox1 、 Ucp2 等基因的表達(dá)來(lái)抑制脂質(zhì)的合成[51],作用于甘油三酯脂肪酶和激素敏感性脂肪酶產(chǎn)生降脂作用[52](圖1)。脂聯(lián)素的表達(dá)與肥胖呈負(fù)相關(guān)[53] 。研究 [54] 表明,脂聯(lián)素水平過(guò)低會(huì)增加肝細(xì)胞癌變的風(fēng)險(xiǎn),并通過(guò)促進(jìn)蛋白激酶釋放及激活蛋白酶激酶p38-AMPK途徑促進(jìn)肝癌進(jìn)展。大多數(shù)腫瘤細(xì)胞的表面都可表達(dá)脂聯(lián)素受體,正常情況下脂聯(lián)素可以通過(guò)激活PI3K/AKT/mTOR、JAK/STAT[55] 和Akt1/FoxO1通路[56] 抑制炎癥進(jìn)展及腫瘤增殖生長(zhǎng)。許瀚元等[57]研究發(fā)現(xiàn),脂聯(lián)素對(duì)HepG2細(xì)胞FAS啟動(dòng)子的活性影響呈劑量依賴(lài)性和時(shí)間波動(dòng)性,對(duì)HSL啟動(dòng)子的活性呈劑量依賴(lài)性,時(shí)間上則可一直呈促進(jìn)作用,這為脂聯(lián)素調(diào)控肝臟脂代謝的模式提供了更加詳細(xì)的實(shí)驗(yàn)依據(jù)及模型構(gòu)建。

1. 4 趨化素 趨化素是一種近年發(fā)現(xiàn)的由白色脂肪組織分泌的趨化因子,可通過(guò)影響胰島素受體通路的表達(dá)導(dǎo)致胰島素抵抗,與代謝綜合征具有強(qiáng)相關(guān)性[58] 。研究[59] 發(fā)現(xiàn),在肥胖的NAFLD及纖維炎癥活動(dòng)的患者中,趨化素與炎性因子如TNF-α、IL-6水平均呈正相關(guān),這與趨化素的炎性趨化作用有關(guān)。但2017年P(guān)ohl等[60] 研究認(rèn)為趨化素會(huì)在部分情況下產(chǎn)生抗炎作用,其與肝纖維化和NASH評(píng)分呈負(fù)相關(guān),且與脂肪變性無(wú)關(guān)。這表示趨化素可能在MAFLD不同病理階段與細(xì)胞內(nèi)外環(huán)境影響下會(huì)發(fā)揮不同的生理功能。因此,趨化素在MAFLD相關(guān)肝癌中的作用也有不同,其可通過(guò)趨化樣因子受體1(chemokine-like receptor 1, CMKLR1)、G蛋白偶聯(lián)受體1(G-protein coupled receptor 1, GPR1)和趨化因子(C-C基元)受體樣 2(C-C chemokine receptor-like 2, CCRL2)募集免疫細(xì)胞,如巨噬細(xì)胞、自然殺傷細(xì)胞、漿細(xì)胞樣樹(shù)突狀細(xì)胞(plasmacytoid dendritic cells, pDC)等,從而發(fā)揮腫瘤殺傷與抑制作用,同時(shí)也會(huì)募集免疫抑制性的調(diào)節(jié)T淋巴細(xì)胞及骨髓源性抑制細(xì)胞促進(jìn)腫瘤免疫逃逸,這種免疫調(diào)節(jié)影響著腫瘤的進(jìn)展[61](圖1)。趨化素受體廣泛存在于正常癌組織及免疫細(xì)胞中。pDC可產(chǎn)生脂多糖及干擾素Ⅰ、Ⅲ。此類(lèi)炎癥因子可增強(qiáng)巨噬細(xì)胞中 CMKLR1的轉(zhuǎn)錄表達(dá),轉(zhuǎn)化為 M1型巨噬細(xì)胞殺傷腫瘤。然而,腫瘤產(chǎn)生時(shí),pDC產(chǎn)生的干擾素會(huì)減少甚至缺失,從而利于腫瘤微環(huán)境的形成[62] 。研究 [63-65] 發(fā)現(xiàn),趨化素可刺激早期生長(zhǎng)應(yīng)答因子1(early growth responseprotein 1, EGR1)發(fā)揮作用,EGR1具有生長(zhǎng)抑制及促凋亡的功能,趨化素可通過(guò)CMKLR1及GPR1激活血清反應(yīng)因子,刺激EGR1產(chǎn)生活性,從而抑制腫瘤的進(jìn)展。此外,趨化素通過(guò)趨化素受體促進(jìn)β抑制素2表達(dá),并抑制β-連環(huán)蛋白和絲裂原活化蛋白激酶(mitogen-activatedprotein kinase, MAPK)活性產(chǎn)生抗腫瘤作用[66-67] 。然而,趨化素還能夠促進(jìn)p38-MAPK通路活性以及升高細(xì)胞外調(diào)節(jié)蛋白激酶的磷酸化水平,上調(diào)血管內(nèi)皮生長(zhǎng)因子及基質(zhì)金屬蛋白酶7的表達(dá),從而促進(jìn)腫瘤組織的形成[68] 。趨化素根據(jù)不同的細(xì)胞通路對(duì)不同類(lèi)型腫瘤的發(fā)生發(fā)展起到調(diào)節(jié)作用,而目前研究[69-70] 大多肯定了其在肝癌中的抗腫瘤作用,但仍需進(jìn)一步探究其在不同細(xì)胞通路中對(duì)肝癌發(fā)生發(fā)展影響的詳細(xì)機(jī)制。

1. 5 Vaspin Vaspin是一種由白色脂肪組織產(chǎn)生的與血糖脂質(zhì)代謝密切相關(guān)的脂肪因子,可特異性結(jié)合激肽釋放酶,抑制其生物活性,從而減緩胰島素降解,改善糖耐量水平。這項(xiàng)功能的發(fā)揮有賴(lài)于Vaspin的生物活性[71] 。吳光秀等[72]研究發(fā)現(xiàn),Vaspin可以通過(guò)抑制肝臟脂肪合成的關(guān)鍵限速酶,促進(jìn)脂肪分解限制酶來(lái)調(diào)控脂肪的代謝。陳香梅等[73] 研究顯示,Vaspin在NAFLD患者肝組織中表達(dá)升高且與血清低密度脂蛋白、空腹血糖呈正相關(guān),臨床可用于提示NAFLD的病情進(jìn)展。Vaspin可明顯降低血管平滑肌細(xì)胞內(nèi) TNF-α 的活性,從而抑制核因子-κB、蛋白激酶C的激活和活性氧的產(chǎn)生來(lái)減少淋巴細(xì)胞的募集,同時(shí)抑制MAPK、PI3K/Akt等通路來(lái)減少血管內(nèi)皮細(xì)胞的增生[74] 。然而馬歡 [75] 通過(guò)觀察內(nèi)生痰濕體質(zhì)對(duì)小鼠血清Vaspin的影響,發(fā)現(xiàn)Vaspin與IL-6呈直線(xiàn)相關(guān)關(guān)系,提示Vaspin可能與促進(jìn)炎癥反應(yīng)有關(guān)。一項(xiàng)對(duì)56例重度肥胖NAFLD女性受試者的研究[76] 結(jié)果顯示,肝臟的Vaspin基因表達(dá)水平與疾病嚴(yán)重程度呈正相關(guān),特別是在肝纖維化及NASH患者中其表達(dá)水平升高明顯,表明Vaspin mRNA的表達(dá)具有非線(xiàn)性的特點(diǎn),而即使考慮到混雜因素,也不能排除Vaspin高表達(dá)的有害作用,或者與其他因子作用而產(chǎn)生促炎或其他有害作用的可能。一項(xiàng)Vaspin對(duì)Hep-3B細(xì)胞的凋亡試驗(yàn)[77] 證明,Vaspin對(duì)Hep-3B細(xì)胞具有劑量依賴(lài)性的保護(hù)作用,當(dāng)Vaspin劑量為5~10 ng/mL時(shí),細(xì)胞活力增加。Vaspin處理后,Hep-3B細(xì)胞簇氧化應(yīng)激減弱,使細(xì)胞凋亡減少。提示Vaspin能夠下調(diào)Hep-3B細(xì)胞的凋亡通路,抑制其促炎反應(yīng)與氧化應(yīng)激過(guò)程,加重腫瘤進(jìn)展。同時(shí),Vaspin對(duì)腫瘤細(xì)胞的增殖具有刺激作用,且在肝病病程中Vaspin對(duì)新生血管生成的保護(hù)機(jī)制亦被認(rèn)為在肝細(xì)胞癌的發(fā)生發(fā)展中起重要作用[78-81]。

2 P53基因調(diào)控脂質(zhì)代謝影響肝癌的發(fā)生

P53是最常見(jiàn)的抑癌基因之一,主要通過(guò)調(diào)控下游靶基因發(fā)揮作用[82] ,可對(duì)細(xì)胞損傷如癌基因激活、DNA損傷、氧化應(yīng)激、蛋白質(zhì)錯(cuò)誤折疊等作出及時(shí)反應(yīng),被活化刺激所激活,是控制細(xì)胞凋亡、抑制腫瘤的重要分子[83] 。大量研究表明P53不僅是基因組異常的調(diào)控樞紐,還調(diào)控著代謝穩(wěn)態(tài)的平衡,可同時(shí)參與調(diào)控機(jī)體糖脂代謝、脂肪酸氧化產(chǎn)能、乙醇代謝、氨基酸代謝及核苷酸代謝的過(guò)程,是重要的調(diào)控基因。

脂肪參與機(jī)體能量代謝和儲(chǔ)存,同時(shí)也是細(xì)胞增殖分化不可或缺的營(yíng)養(yǎng)物質(zhì)。P53作為肥胖的主要調(diào)節(jié)因子,其與脂質(zhì)代謝及脂肪因子的關(guān)系密不可分。研究[84]顯示,NAFLD或代謝綜合征發(fā)生發(fā)展的同時(shí)可能伴隨高P53表達(dá),這可能是大量脂肪被吸收所誘導(dǎo),同時(shí)伴隨脂肪因子共同作用,通過(guò)P53/PXR-SCD1調(diào)控軸及其他通路等途徑促進(jìn)脂滴形成加重炎癥進(jìn)展。肝細(xì)胞癌變主要源自細(xì)胞內(nèi)原癌基因激活、抑癌基因失活以及多種信號(hào)通路的共同作用[85] 。作為一種抑癌基因,P53可以通過(guò)抑制蘋(píng)果酸酶 2活性[86] 和 SREBP-1的表達(dá) [87] 、降低NADPH(還原型輔酶Ⅱ)水平[83] 、激活骨橋蛋白 [88] 等途徑抑制脂肪合成,也可以通過(guò)編碼β3-腎上腺素能受體基因分解脂肪[89],進(jìn)而影響脂肪組織細(xì)胞功能。癌變的肝細(xì)胞 P53 基因表達(dá)會(huì)受到抑制,為滿(mǎn)足增殖生長(zhǎng)需要,脂滴分解、脂質(zhì)合成、脂肪變性減輕。此外,研究[90]顯示,P53凋亡刺激蛋白2分子N段可與SIRT1分子結(jié)合協(xié)同抑制肝癌HepG2細(xì)胞脂質(zhì)的合成及脂滴的分解,抑制腫瘤細(xì)胞的增殖。

可見(jiàn)P53基因作為抑癌基因通過(guò)調(diào)控脂肪組織細(xì)胞脂質(zhì)代謝對(duì)MAFLD及其相關(guān)肝癌產(chǎn)生重要影響,同時(shí)脂肪組織細(xì)胞可分泌各種脂肪因子發(fā)揮功能,與P53蛋白共同調(diào)控細(xì)胞的炎癥、癌變及轉(zhuǎn)移進(jìn)程。

3 小結(jié)與展望

在MAFLD發(fā)病過(guò)程中,脂肪組織發(fā)揮重要作用,通過(guò)脂肪因子參與肝病的發(fā)生發(fā)展,隨著大量營(yíng)養(yǎng)物質(zhì)的攝入和脂肪組織的擴(kuò)張,血管系統(tǒng)對(duì)脂肪細(xì)胞供血負(fù)擔(dān)導(dǎo)致細(xì)胞缺血缺氧從而誘導(dǎo)脂肪組織產(chǎn)生炎癥趨化因子[91-92] ,同時(shí)游離脂肪酸增加,導(dǎo)致脂肪組織中DNA損傷、P53表達(dá)上調(diào)[93] ,激活炎癥通路,選擇性調(diào)控多種脂肪因子的表達(dá),參與肝臟炎癥發(fā)生發(fā)展。充足的營(yíng)養(yǎng)物質(zhì)、高糖環(huán)境及炎癥刺激提高了細(xì)胞癌變的敏感性,多數(shù)肝癌細(xì)胞更傾向于促進(jìn)脂質(zhì)代謝及合成以滿(mǎn)足自身快速增殖生長(zhǎng)的能量供給,因此脂質(zhì)的異常代謝及合成影響著脂肪細(xì)胞的功能,而脂肪細(xì)胞影響肝臟的抗炎、抗氧化、解毒、調(diào)控代謝及免疫等功能。抑癌基因如P53可以從源頭上參與脂質(zhì)的代謝調(diào)控,從而影響脂肪組織的代謝功能。NAFLD或代謝綜合征可能會(huì)伴隨高P53表達(dá),抑制脂質(zhì)的合成及脂滴的分解,從而抑制腫瘤細(xì)胞的增殖。然而高糖引起的血管內(nèi)皮細(xì)胞再生及高脂環(huán)境為肝細(xì)胞癌變提供了物質(zhì)和能量基礎(chǔ),提高了細(xì)胞癌變的敏感性。在 MAFLD 及其相關(guān)肝癌的進(jìn)展過(guò)程中,脂肪因子作用機(jī)制復(fù)雜,肝臟炎癥或免疫等因素在脂肪因子影響肝病的過(guò)程中發(fā)揮的作用不甚明確,研究結(jié)果也存在差異,故存在較多爭(zhēng)議,這也與變量的控制、研究對(duì)象本身特性及混雜因素的排除相關(guān)。因此,基于更深層次的理論進(jìn)行嚴(yán)謹(jǐn)?shù)难芯颗c試驗(yàn)探討脂肪因子的作用機(jī)制及其相互作用可以更進(jìn)一步揭示爭(zhēng)議之下存在的必然機(jī)制,為臨床控制MAFLD及其相關(guān)肝癌提供更加有力的證據(jù)。

利益沖突聲明: 本文不存在任何利益沖突。

作者貢獻(xiàn)聲明: 張熠瀟負(fù)責(zé)撰寫(xiě)論文,資料分析,修改論文;蔣博文參與文獻(xiàn)檢索,收集數(shù)據(jù),修改論文;孫建光負(fù)責(zé)擬定寫(xiě)作思路,指導(dǎo)撰寫(xiě)文章并最后定稿。

參考文獻(xiàn):

[1] CAO MM, LI H, SUN DQ, et al. Global epidemiology of liver cancerin 2020[J]. Chin J Cancer Prev Treat, 2022, 29(5): 322-328. DOI: 10.16073/j.cnki.cjcpt.2022.05.03.曹毛毛, 李賀, 孫殿欽, 等. 全球肝癌2020年流行病學(xué)現(xiàn)狀[J]. 中華腫瘤防治雜志, 2022, 29(5): 322-328. DOI: 10.16073/j.cnki.cjcpt.2022.05.03.

[2] NING L, SUN JG. Research progress of traditional Chinese medcineand western medicine in precancerous lesions of primary hepaticcarcinoma[J]. Mod Tradit Chin Med Mater Med World Sci Technol,2021, 23(10): 3590-3598. DOI: 10.11842/wst.20210506008.寧麟, 孫建光. 原發(fā)性肝癌癌前病變中西醫(yī)研究進(jìn)展[J]. 世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化, 2021, 23(10): 3590-3598. DOI: 10.11842/wst.20210506008.

[3] WANG GH. Clinical and pathological features of cryptogenic livercancer[D]. Changchun: Jilin University, 2016.王國(guó)華. 隱源性肝癌的臨床特點(diǎn)及病理特征分析[D]. 長(zhǎng)春: 吉林大學(xué),2016.

[4] K?R?J?M?KI AJ, BLOIGU R, KAUMA H, et al. Non-alcoholic fattyliver disease with and without metabolic syndrome: Different long-term outcomes[J]. Metabolism, 2017, 66: 55-63. DOI: 10.1016/j.me?tabol.2016.06.009.

[5] ZHANG YY, ZHANG T, ZHANG CQ, et al. Identification of reciprocalcausality between non-alcoholic fatty liver disease and metabolicsyndrome by a simplified Bayesian network in a Chinese population

[J]. BMJ Open, 2015, 5(9): e008204. DOI: 10.1136/bmjopen-2015-008204.

[6] XUE R, FAN JG. Brief introduction of an international expert consen?sus statement: A new definition of metabolic associated fatty liverdisease[J]. J Clin Hepatol, 2020, 36(6): 1224-1227. DOI: 10.3969/j.issn.1001-5256.2020.06.007.薛芮, 范建高. 代謝相關(guān)脂肪性肝病新定義的國(guó)際專(zhuān)家共識(shí)簡(jiǎn)介[J]. 臨床肝膽病雜志, 2020, 36(6): 1224-1227. DOI: 10.3969/j.issn.1001-5256.2020.06.007.

[7] JIANG TT, SUN FF, ZENG Z, et al. Progress on metabolic associ?ated fatty liver disease related liver cancer[J/CD]. Chin J Liver Dis(Electronic Version), 2022, 14(3): 14-17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.蔣婷婷, 孫芳芳, 曾湛, 等. 代謝相關(guān)脂肪性肝病相關(guān)肝癌研究進(jìn)展[J/CD]. 中國(guó)肝臟病雜志(電子版), 2022, 14(3): 14-17. DOI: 10.3969/j.issn.1674-7380.2022.03.004.

[8] JARUVONGVANICH V, SANGUANKEO A, RIANGWIWAT T, et al.Testosterone, sex hormone-binding globulin and nonalcoholic fattyliver disease: A systematic review and meta-analysis[J]. Ann Hepa?tol, 2017, 16(3): 382-394. DOI: 10.5604/16652681.1235481.

[9] WANG S, ZHANG J, JIANG XZ, et al. Relationship between waist cir?cumference trajectory and new-onset non alcoholic fatty liver dis?ease in the non-obese population[J]. Chin J Epidemiol, 2020, 41(6): 824-828. DOI: 10.3760/cma.j.cn112338-20190630-00479.王珊, 張健, 蔣曉忠, 等. 非肥胖人群的腰圍軌跡與新發(fā)非酒精性脂肪肝的相關(guān)性[J]. 中華流行病學(xué)雜志, 2020, 41(6): 824-828. DOI: 10.3760/cma.j.cn112338-20190630-00479.

[10] SARKAR M, YATES K, SUZUKI A, et al. Low testosterone is associ?ated with nonalcoholic steatohepatitis and fibrosis severity in men

[J]. Clin Gastroenterol Hepatol, 2021, 19(2): 400-402. DOI: 10.1016/j.cgh.2019.11.053.

[11] LEE JH, JEON S, LEE HS, et al. Cutoff points of waist circumferencefor predicting incident non-alcoholic fatty liver disease in middle-agedand older Korean adults[J]. Nutrients, 2022, 14(14): 2994. DOI: 10.3390/nu14142994.

[12] NING L, SUN JG. Associations between body circumference andtestosterone levels and risk of metabolic dysfunction-associatedfatty liver disease: A Mendelian randomization study[J]. BMC Pub?lic Health, 2023, 23(1): 602. DOI: 10.1186/s12889-023-15467-4.

[13] FRANCHITTO A, CARPINO G, ALISI A, et al. The contribution of theadipose tissue-liver axis in pediatric patients with nonalcoholic fattyliver disease after laparoscopic sleeve gastrectomy[J]. J Pediatr,2020, 216: 117-127. DOI: 10.1016/j.jpeds.2019.07.037.

[14] POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Adipose tissue,obesity and non-alcoholic fatty liver disease[J]. Minerva Endocri?nol, 2017, 42(2): 92-108. DOI: 10.23736/S0391-1977.16.02563-3.

[15] áLVAREZ-MERCADO AI, BUJALDON E, GRACIA-SANCHO J, et al.The role of adipokines in surgical procedures requiring both liver re?generation and vascular occlusion[J]. Int J Mol Sci, 2018, 19(11):3395. DOI: 10.3390/ijms19113395.

[16] YANG T, XUE JL. Research progress on the pathogenesis and car?cinogenesis of colorectal polyps in patients with type 2 diabetesmellitus[J]. Chin J New Clin Med, 2024, 17(1): 113-118. DOI: 10.3969/j.issn.1674-3806.2024.01.21.楊騰, 薛君力. 2型糖尿病患者結(jié)直腸息肉發(fā)病及癌變機(jī)制的研究進(jìn)展

[J]. 中國(guó)臨床新醫(yī)學(xué), 2024, 17(1): 113-118. DOI: 10.3969/j.issn.1674-3806.2024.01.21.

[17] XU Y, LI ZX, MA Y, et al. Cancer disease burden attributable to type2 diabetes mellitus among adults in China, 1990-2019[J]. ChinaCancer, 2022, 31(12): 959-966. DOI: 10.11735/j.issn.1004-0242.2022.12.A004.徐英, 李志學(xué), 馬艷, 等. 1990—2019年中國(guó)成年人歸因于2型糖尿病的癌癥疾病負(fù)擔(dān)研究[J]. 中國(guó)腫瘤, 2022, 31(12): 959-966. DOI: 10.11735/j.issn.1004-0242.2022.12.A004.

[18] CHEN XY, CHEN JH, YANG YL. Research progress on the mecha?nism, prevention and treatment of obesity-related tumors[J/OL].Electron J Metab Nutr Cancer, 2022, 9(6): 714-720. DOI: 10.16689/j.cnki.cn11-9349/r.2022.06.006.陳系羽, 陳京浩, 楊雁靈 . 肥胖相關(guān)腫瘤發(fā)生機(jī)制和防治研究進(jìn)展[J/OL]. 腫瘤代謝與營(yíng)養(yǎng)電子雜志, 2022, 9(6): 714-720. DOI: 10.16689/j.cnki.cn11-9349/r.2022.06.006.

[19] WANG H. Risk factors and mechanism of cancer in type 2 diabetespatients in Changchuna[D]. Changchun: Jilin University, 2023.王歡. 長(zhǎng)春地區(qū)2型糖尿病患者伴發(fā)癌癥的危險(xiǎn)因素分析及機(jī)制探討

[D]. 長(zhǎng)春: 吉林大學(xué), 2023.

[20] DONATO J Jr. Programming of metabolism by adipokines during devel?opment[J]. Nat Rev Endocrinol, 2023, 19(7): 385-397. DOI: 10.1038/s41574-023-00828-1.

[21] ZHANG Y, PROENCA R, MAFFEI M, et al. Positional cloning of themouse obese gene and its human homologue[J]. Nature, 1994, 372(6505): 425-432. DOI: 10.1038/372425a0.

[22] LIN TC, HUANG KW, LIU CW, et al. Leptin signaling axis specificallyassociates with clinical prognosis and is multifunctional in regulatingcancer progression[J]. Oncotarget, 2018, 9(24): 17210-17219. DOI:10.18632/oncotarget.24966.

[23] KAN ZY, ZHENG HC, LIU X, et al. Whole-genome sequencing identi?fies recurrent mutations in hepatocellular carcinoma[J]. GenomeRes, 2013, 23(9): 1422-1433. DOI: 10.1101/gr.154492.113.

[24] TONG HV, BOCK CT, VELAVAN TP. Genetic insights on host andhepatitis B virus in liver diseases[J]. Mutat Res Rev Mutat Res,2014, 762: 65-75. DOI: 10.1016/j.mrrev.2014.06.001.

[25] ZHANG B, ZHONG DW, WANG QW, et al. Study on correlation ofJAK/STAT signal pathway with progression and prognosis in hepato?cellular carcinoma[J]. Chin J Cell Mol Immunol, 2010, 26(4): 368-370, 373. DOI: 10.13423/j.cnki.cjcmi.005452.張斌, 鐘德玝, 王群偉, 等. JAK/STAT信號(hào)通路與肝細(xì)胞性肝癌的腫瘤進(jìn)展和預(yù)后的相關(guān)性研究[J]. 細(xì)胞與分子免疫學(xué)雜志, 2010, 26(4):368-370, 373. DOI: 10.13423/j.cnki.cjcmi.005452.

[26] GAO PL, LI HY, YANG XF, et al. JAK/STAT3 signaling system regu?lates hTERT through leptin in hepatocellular carcinoma cells[J]. WorldChin J Dig, 2015, 23(35): 5613-5619.高培亮, 李海洋, 楊曉峰, 等. JAK/STAT3信號(hào)系統(tǒng)通過(guò)瘦素調(diào)控hTERT在肝癌細(xì)胞中的作用[J]. 世界華人消化雜志, 2015, 23(35): 5613-5619.

[27] LONARDO A, NASCIMBENI F, MAURANTONIO M, et al. Nonalco?holic fatty liver disease: Evolving paradigms[J]. World J Gastroen?terol, 2017, 23(36): 6571-6592. DOI: 10.3748/wjg.v23.i36.6571.

[28] POUR FK, ARYAEIAN N, MOKHTARE M, et al. The effect of saffronsupplementation on some inflammatory and oxidative markers, leptin,adiponectin, and body composition in patients with nonalcoholicfatty liver disease: A double-blind randomized clinical trial[J]. Phy?tother Res, 2020, 34(12): 3367-3378. DOI: 10.1002/ptr.6791.

[29] HU LP, CAI H, LI QJ, et al. Study on the pathogenesis of metabo?lism associated fatty liver disease[J]. J Med Inf, 2023, 36(23): 174-179. DOI: 10.3969/j.issn.1006-1959.2023.23.044.胡麗平, 蔡華, 李情嬌, 等. 代謝相關(guān)脂肪性肝病發(fā)病機(jī)制的研究[J]. 醫(yī)學(xué)信息, 2023, 36(23): 174-179. DOI: 10.3969/j.issn.1006-1959.2023.23.044.

[30] ZHANG QZ, LIU YL, WANG YR, et al. Effects of telmisartan on im?proving leptin resistance and inhibiting hepatic fibrosis in rats withnon-alcoholic fatty liver disease[J]. Exp Ther Med, 2017, 14(3): 2689-2694. DOI: 10.3892/etm.2017.4809.

[31] QIU Y, WANG SF, YU C, et al. Association of circulating adipsin, vis?fatin, and adiponectin with nonalcoholic fatty liver disease in adults:A case-control study[J]. Ann Nutr Metab, 2019, 74(1): 44-52. DOI:10.1159/000495215.

[32] GUO YD, DENG YJ, SUN HL, et al. To investigate the levels of adip?sin, visfatin and irisin in patients with nonalcoholic fatty liver disease(NAFLD)and their correlation[J]. J Pract Med, 2020, 36(17): 2376-2380. DOI: 10.3969/j.issn.1006-5725.2020.17.012.郭婭棣, 鄧玉杰, 孫洪林, 等. 非酒精性脂肪肝患者血清脂肪素、內(nèi)脂素和鳶尾素水平及其相關(guān)性[J]. 實(shí)用醫(yī)學(xué)雜志, 2020, 36(17): 2376-2380. DOI: 10.3969/j.issn.1006-5725.2020.17.012.

[33] GUO X, JIAO L, YI Y, et al. NAMPT regulates mitochondria functionand lipid metabolism during porcine oocyte maturation[J]. J CellPhysiol, 2024, 239(1): 180-192. DOI: 10.1002/jcp.31156.

[34] YANG L, ZHI SS. Relationship between the serum levels of CK-18,visfatin and liver fibrosis indexes in patients with NAFLD[J]. HebeiMed J, 2019, 41(11): 1726-1728. DOI: 10.3969/j.issn.1002-7386.2019.11.032.楊麗, 智深深. NAFLD患者血清CK-18、內(nèi)脂素水平變化與纖維化指標(biāo)的關(guān)系[J]. 河北醫(yī)藥, 2019, 41(11): 1726-1728. DOI: 10.3969/j.issn.1002-7386.2019.11.032.

[35] YANG N, SUN RB, ZHANG XL, et al. Alternative pathway of bile acidbiosynthesis contributes to ameliorate NASH after induction of NAMPT/NAD + /SIRT1 axis[J]. Biomed Pharmacother, 2023, 164: 114987. DOI:10.1016/j.biopha.2023.114987.

[36] MA R, WU YS, ZHAI YS, et al. Exogenous pyruvate represses his?tone gene expression and inhibits cancer cell proliferation via theNAMPT-NAD + -SIRT1 pathway[J]. Nucleic Acids Res, 2019, 47(21):11132-11150. DOI: 10.1093/nar/gkz864.

[37] SUN BL, SUN XG, KEMPF CL, et al. Involvement of eNAMPT/TLR4inflammatory signaling in progression of non-alcoholic fatty liver dis?ease, steatohepatitis, and fibrosis[J]. FASEB J, 2023, 37(3): e22825.DOI: 10.1096/fj.202201972RR.

[38] LUCENA-CACACE A, OTERO-ALBIOL D, JIMéNEZ-GARCíA MP, et al.NAMPT is a potent oncogene in colon cancer progression that modu?lates cancer stem cell properties and resistance to therapy throughSirt1 and PARP[J]. Clin Cancer Res, 2018, 24(5): 1202-1215. DOI: 10.1158/1078-0432.CCR-17-2575.

[39] LUCENA-CACACE A, OTERO-ALBIOL D, JIMéNEZ-GARCíA MP, et al.NAMPT overexpression induces cancer stemness and defines a noveltumor signature for glioma prognosis[J]. Oncotarget, 2017, 8(59):99514-99530. DOI: 10.18632/oncotarget.20577.

[40] LV HW, LV GS, CHEN CA, et al. NAD + metabolism maintains induciblePD-L1 expression to drive tumor immune evasion[J]. Cell Metab,2021, 33(1): 110-127. DOI: 10.1016/j.cmet.2020.10.021.

[41] ADYA R, TAN BK, CHEN J, et al. Nuclear factor-kappaB inductionby visfatin in human vascular endothelial cells: Its role in MMP-2/9production and activation[J]. Diabetes Care, 2008, 31(4): 758-760.DOI: 10.2337/dc07-1544.

[42] CHANG Q. Immunomodulatory role of nicotinamide phosphoribosyl?transferase (NAMPT) in chronic hepatitis B and hepatocellular car?cinoma[D]. Jinan: Shandong University, 2023.常晴. 煙酰胺磷酸核糖轉(zhuǎn)移酶(NAMPT)在慢性乙型肝炎和肝癌中的免疫調(diào)節(jié)作用[D]. 濟(jì)南: 山東大學(xué), 2023.

[43] SCHERER PE, WILLIAMS S, FOGLIANO M, et al. A novel serum pro?tein similar to C1q, produced exclusively in adipocytes[J]. J BiolChem, 1995, 270(45): 26746-26749. DOI: 10.1074/jbc.270.45.26746.

[44] PAL CHINA S, SANYAL S, CHATTOPADHYAY N. Adiponectin sig?naling and its role in bone metabolism[J]. Cytokine, 2018, 112: 116-131. DOI: 10.1016/j.cyto.2018.06.012.

[45] LIU QQ, GAUTHIER MS, SUN L, et al. Activation of AMP-activatedprotein kinase signaling pathway by adiponectin and insulin inmouse adipocytes: Requirement of acyl-CoA synthetases FATP1 andAcsl1 and association with an elevation in AMP/ATP ratio[J]. FASEBJ, 2010, 24(11): 4229-4239. DOI: 10.1096/fj.10-159723.

[46] YOON MJ, LEE GY, CHUNG JJ, et al. Adiponectin increases fattyacid oxidation in skeletal muscle cells by sequential activation ofAMP-activated protein kinase, p38 mitogen-activated protein kinase,and peroxisome proliferator-activated receptor alpha[J]. Diabetes,2006, 55(9): 2562-2570. DOI: 10.2337/db05-1322.

[47] FANG XP, PALANIVEL R, CRESSER J, et al. An APPL1-AMPK signal?ing axis mediates beneficial metabolic effects of adiponectin in theheart[J]. Am J Physiol Endocrinol Metab, 2010, 299(5): E721-E729.DOI: 10.1152/ajpendo.00086.2010.

[48] TOMAS E, TSAO TS, SAHA AK, et al. Enhanced muscle fat oxida?tion and glucose transport by ACRP30 globular domain: Acetyl-CoAcarboxylase inhibition and AMP-activated protein kinase activation

[J]. Proc Natl Acad Sci U S A, 2002, 99(25): 16309-16313. DOI: 10.1073/pnas.222657499.

[49] DENG DT, WANG YM, CHENG Y, et al. Adiponectin activates AMP-activated protein kinase via LKB1 pathway[J]. Chin J EndocrinolMetab, 2012, 28(7): 578-583. DOI: 10.3760/cma.j.issn.1000-6699.2012.07.014.鄧大同, 王佑民, 程媛, 等. 脂聯(lián)素通過(guò)LKB1途徑激活腺苷酸活化蛋白激酶[J]. 中華內(nèi)分泌代謝雜志, 2012, 28(7): 578-583. DOI: 10.3760/cma.j.issn.1000-6699.2012.07.014.

[50] YOU M, ROGERS CQ. Adiponectin: A key adipokine in alcoholic fattyliver[J]. Exp Biol Med (Maywood), 2009, 234(8): 850-859. DOI: 10.3181/0902-MR-61.

[51] YAMAUCHI T, NIO Y, MAKI T, et al. Targeted disruption of AdipoR1and AdipoR2 causes abrogation of adiponectin binding and metabolicactions[J]. Nat Med, 2007, 13(3): 332-339. DOI: 10.1038/nm1557.

[52] KIM SJ, TANG TY, ABBOTT M, et al. AMPK phosphorylates desnu?trin/ATGL and hormone-sensitive lipase to regulate lipolysis andfatty acid oxidation within adipose tissue[J]. Mol Cell Biol, 2016, 36(14): 1961-1976. DOI: 10.1128/MCB.00244-16.

[53] ANTUNA-PUENTE B, FEVE B, FELLAHI S, et al. Adipokines: Themissing link between insulin resistance and obesity[J]. DiabetesMetab, 2008, 34(1): 2-11. DOI: 10.1016/j.diabet.2007.09.004.

[54] MANIERI E, HERRERA-MELLE L, MORA A, et al. Adiponectin ac?counts for gender differences in hepatocellular carcinoma incidence

[J]. J Exp Med, 2019, 216(5): 1108-1119. DOI: 10.1084/jem.20181288.

[55] DALAMAGA M, DIAKOPOULOS KN, MANTZOROS CS. The role ofadiponectin in cancer: A review of current evidence[J]. EndocrRev, 2012, 33(4): 547-594. DOI: 10.1210/er.2011-1015.

[56] XIE X, YAN D, LI HB, et al. Enhancement of adiponectin amelioratesnonalcoholic fatty liver disease via inhibition of FoxO1 in type I dia?betic rats[J]. J Diabetes Res, 2018, 2018: 6254340. DOI: 10.1155/2018/6254340.

[57] XU HY, ZHU HJ, PAN H, et al. Effects of adiponectin on the genepromoter activities of fatty acid synthase and hormone sensitive lipasein HepG2 cells[J]. Basic Clin Med, 2021, 41(1): 13-19. DOI: 10.16352/j.issn.1001-6325.2021.01.005.許瀚元, 朱惠娟, 潘慧, 等. 脂聯(lián)素對(duì)HepG2細(xì)胞中脂肪酸合成酶及激素敏感性脂肪酶基因啟動(dòng)子活性的影響[J]. 基礎(chǔ)醫(yī)學(xué)與臨床, 2021, 41(1): 13-19. DOI: 10.16352/j.issn.1001-6325.2021.01.005.

[58] EBERT T, GEBHARDT C, SCHOLZ M, et al. Relationship between12 adipocytokines and distinct components of the metabolic syn?drome[J]. J Clin Endocrinol Metab, 2018, 103(3): 1015-1023. DOI:10.1210/jc.2017-02085.

[59] SELL H, DIVOUX A, POITOU C, et al. Chemerin correlates withmarkers for fatty liver in morbidly obese patients and strongly de?creases after weight loss induced by bariatric surgery[J]. J Clin En?docrinol Metab, 2010, 95(6): 2892-2896. DOI: 10.1210/jc.2009-2374.

[60] POHL R, HABERL EM, REIN-FISCHBOECK L, et al. Hepatic chemerinmRNA expression is reduced in human nonalcoholic steatohepatitis

[J]. Eur J Clin Invest, 2017, 47(1): 7-18. DOI: 10.1111/eci.12695.

[61] GALON J, ANGELL HK, BEDOGNETTI D, et al. The continuum ofcancer immunosurveillance: Prognostic, predictive, and mechanis?tic signatures[J]. Immunity, 2013, 39(1): 11-26. DOI: 10.1016/j.im?muni.2013.07.008.

[62] MITCHELL D, CHINTALA S, DEY M. Plasmacytoid dendritic cell inimmunity and cancer[J]. J Neuroimmunol, 2018, 322: 63-73. DOI:10.1016/j.jneuroim.2018.06.012.

[63] ROURKE JL, DRANSE HJ, SINAL CJ. CMKLR1 and GPR1 mediatechemerin signaling through the RhoA/ROCK pathway[J]. Mol CellEndocrinol, 2015, 417: 36-51. DOI: 10.1016/j.mce.2015.09.002.

[64] KRONES-HERZIG A, ADAMSON E, MERCOLA D. Early growth re?sponse 1 protein, an upstream gatekeeper of the p53 tumor sup?pressor, controls replicative senescence[J]. Proc Natl Acad Sci US A, 2003, 100(6): 3233-3238. DOI: 10.1073/pnas.2628034100.

[65] NAIR P, MUTHUKKUMAR S, SELLS SF, et al. Early growth response-1-dependent apoptosis is mediated by p53[J]. J Biol Chem, 1997,272(32): 20131-20138. DOI: 10.1074/jbc.272.32.20131.

[66] LIU-CHITTENDEN Y, JAIN M, GASKINS K, et al. RARRES2 functionsas a tumor suppressor by promoting β-catenin phosphorylation/degrada?tion and inhibiting p38 phosphorylation in adrenocortical carcinoma[J].Oncogene, 2017, 36(25): 3541-3552. DOI: 10.1038/onc.2016.497.

[67] RAGHUWANSHI SK, NASSER MW, CHEN XX, et al. Depletion ofbeta-arrestin-2 promotes tumor growth and angiogenesis in a murinemodel of lung cancer[J]. J Immunol, 2008, 180(8): 5699-5706. DOI:10.4049/jimmunol.180.8.5699.

[68] WANG CH, WU WKK, LIU XD, et al. Increased serum chemerin levelpromotes cellular invasiveness in gastric cancer: A clinical andexperimental study[J]. Peptides, 2014, 51: 131-138. DOI: 10.1016/j.peptides.2013.10.009.

[69] LIN W, CHEN YL, JIANG L, et al. Reduced expression of chemerinis associated with a poor prognosis and a lowed infiltration of bothdendritic cells and natural killer cells in human hepatocellular carci?noma[J]. Clin Lab, 2011, 57(11-12): 879-885.

[70] MENYHáRT O, NAGY á, GY?RFFY B. Determining consistent prog?nostic biomarkers of overall survival and vascular invasion in hepato?cellular carcinoma[J]. R Soc Open Sci, 2018, 5(12): 181006. DOI: 10.1098/rsos.181006.

[71] KL?TING N, KOVACS P, KERN M, et al. Central vaspin administra?tion acutely reduces food intake and has sustained blood glucose-lowering effects[J]. Diabetologia, 2011, 54(7): 1819-1823. DOI: 10.1007/s00125-011-2137-1.

[72] WU GX, ZHOU ZH, SUN JJ, et al. Effect of Vaspin on liver lipid ag?gregation in mice fed with high fat[J]. Chin J Gerontol, 2018, 38(13): 3206-3209. DOI: 10.3969/j.issn.1005-9202.2018.13.054.吳光秀, 周澤華, 孫建娟, 等. Vaspin對(duì)高脂喂養(yǎng)小鼠肝臟脂質(zhì)聚集的影響[J]. 中國(guó)老年學(xué)雜志, 2018, 38(13): 3206-3209. DOI: 10.3969/j.issn.1005-9202.2018.13.054.

[73] CHEN XM, ZHANG L, QI LM, et al. The expression and clinical sig?nificance of adipokine Vaspin in nonalcoholic fatty liver disease[J].China J Mod Med, 2021, 31(6): 37-43. DOI: 10.3969/j.issn.1005-8982.2021.06.008.陳香梅, 張亮, 齊立明, 等. 脂肪因子Vaspin在非酒精性脂肪性肝病中的表達(dá)及其臨床意義[J]. 中國(guó)現(xiàn)代醫(yī)學(xué)雜志, 2021, 31(6): 37-43. DOI:10.3969/j.issn.1005-8982.2021.06.008.

[74] LI HL, PENG WH, ZHUANG JH, et al. Vaspin attenuates high glu?cose-induced vascular smooth muscle cells proliferation and che?mokinesis by inhibiting the MAPK, PI3K/Akt, and NF- κB signalingpathways[J]. Atherosclerosis, 2013, 228(1): 61-68. DOI: 10.1016/j.atherosclerosis.2013.02.013.

[75] MA H. Effect of endogenous phlegm-dampness on fat factor Vaspinin serum of CIA mice[D]. Shenyang: China Medical University, 2022.馬歡. 內(nèi)生痰濕對(duì)CIA小鼠血清中脂肪因子Vaspin的影響[D]. 沈陽(yáng):中國(guó)醫(yī)科大學(xué), 2022.

[76] WALUGA M, KUKLA M, ?ORNIAK M, et al. Vaspin mRNA levels inthe liver of morbidly obese women with nonalcoholic fatty liver dis?ease[J]. Pol J Pathol, 2017, 68(2): 128-137. DOI: 10.5114/pjp.2017.69688.

[77] SKONIECZNA M, HUDY D, HEJMO T, et al. The adipokine vaspin re?duces apoptosis in human hepatocellular carcinoma (Hep-3B)cells, associated with lower levels of NO and superoxide anion[J].BMC Pharmacol Toxicol, 2019, 20(1): 58. DOI: 10.1186/s40360-019-0334-6.

[78] BOOTH A, MAGNUSON A, FOUTS J, et al. Adipose tissue, obesityand adipokines: Role in cancer promotion[J]. Horm Mol Biol Clin In?vestig, 2015, 21(1): 57-74. DOI: 10.1515/hmbci-2014-0037.

[79] KUKLA M, MAZUR W, BU?DAK RJ, et al. Potential role of leptin, adipo?nectin and three novel adipokines—visfatin, chemerin and vaspin—inchronic hepatitis[J]. Mol Med, 2011, 17(11-12): 1397-1410. DOI: 10.2119/molmed.2010.00105.

[80] ERDOGAN S, SEZER S, BASER E, et al. Evaluating vaspin and adi?ponectin in postmenopausal women with endometrial cancer[J].Endocr Relat Cancer, 2013, 20(5): 669-675. DOI: 10.1530/ERC-13-0280.

[81] FAZELI MS, DASHTI H, AKBARZADEH S, et al. Circulating levels ofnovel adipocytokines in patients with colorectal cancer[J]. Cyto?kine, 2013, 62(1): 81-85. DOI: 10.1016/j.cyto.2013.02.012.

[82] LACROIX M, RISCAL R, ARENA G, et al. Metabolic functions of thetumor suppressor p53: Implications in normal physiology, metabolicdisorders, and cancer[J]. Mol Metab, 2020, 33: 2-22. DOI: 10.1016/j.molmet.2019.10.002.

[83] MAO YX, JIANG P. The crisscross between p53 and metabolism incancer[J]. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 914-922. DOI: 10.3724/abbs.2023109.

[84] LIN YM. The role and mechanism of p53/PXR-SCD1 axis in nonalco?holic fatty liver disease[D]. Hangzhou: Zhejiang University, 2020.林一鳴. p53/PXR-SCD1調(diào)控軸在NAFLD中的作用及機(jī)制研究[D]. 杭州: 浙江大學(xué), 2020.

[85] DENG Y, DUAN Y. Research progress on pathogenesis and drugtherapy of primary liver cancer[J]. Hebei Med, 2024, 30(2): 345-348. DOI: 10.3969/j.issn.1006-6233.2024.02.034.鄧燕, 段勇. 原發(fā)性肝癌發(fā)病機(jī)制和藥物治療的研究進(jìn)展[J]. 河北醫(yī)學(xué), 2024, 30(2): 345-348. DOI: 10.3969/j.issn.1006-6233.2024.02.034.

[86] LI W, KOU JJ, ZHANG ZX, et al. Cellular redox homeostasis maintainedby malic enzyme 2 is essential for MYC-driven T cell lymphomagenesis

[J]. Proc Natl Acad Sci U S A, 2023, 120(23): e2217869120. DOI:10.1073/pnas.2217869120.

[87] MOON SH, HUANG CH, HOULIHAN SL, et al. p53 represses themevalonate pathway to mediate tumor suppression[J]. Cell, 2019,176(3): 564-580. DOI: 10.1016/j.cell.2018.11.011.

[88] GóMEZ-SANTOS B, SAENZ DE URTURI D, NU?EZ-GARCíA M, et al.Liver osteopontin is required to prevent the progression of age-re?lated nonalcoholic fatty liver disease[J]. Aging Cell, 2020, 19(8):e13183. DOI: 10.1111/acel.13183.

[89] KANG JG, LAGO CU, LEE JE, et al. A mouse homolog of a humanTP53 germline mutation reveals a lipolytic activity of p53[J]. CellRep, 2020, 30(3): 783-792. DOI: 10.1016/j.celrep.2019.12.074.

[90] WANG H. The role of ankyrin-repeat-containing, SH3-domain-containing,and proline-rich-region- containing protein 2 (ASPP2) in lipid me?tabolism in hepatocellular carcinoma[D]. Shanghai: Second Mili?tary Medical University, 2017.汪浩. p53凋亡刺激蛋白2調(diào)控肝癌脂質(zhì)代謝的研究[D]. 上海: 第二軍醫(yī)大學(xué), 2017.

[91] FOLKMAN J, HAHNFELDT P, HLATKY L. Cancer: Looking outsidethe genome[J]. Nat Rev Mol Cell Biol, 2000, 1(1): 76-79. DOI: 10.1038/35036100.

[92] KANDA H, TATEYA S, TAMORI Y, et al. MCP-1 contributes to macro?phage infiltration into adipose tissue, insulin resistance, and hepaticsteatosis in obesity[J]. J Clin Invest, 2006, 116(6): 1494-1505. DOI:10.1172/JCI26498.

[93] SHIMIZU I, YOSHIDA Y, KATSUNO T, et al. p53-induced adiposetissue inflammation is critically involved in the development of insulinresistance in heart failure[J]. Cell Metab, 2012, 15(1): 51-64. DOI:10.1016/j.cmet.2011.12.006.

收稿日期:2024-04-29;錄用日期:2024-06-14

本文編輯:葛俊

猜你喜歡
肝腫瘤
HBV相關(guān)肝硬化結(jié)節(jié)的多模態(tài)超聲診斷價(jià)值
Glisson蒂橫斷式肝切除術(shù)對(duì)預(yù)防肝腫瘤復(fù)發(fā)應(yīng)用
含脂性肝細(xì)胞肝癌的影像學(xué)特征與病理對(duì)照分析
CUSA聯(lián)合雙極電凝在老年肝腫瘤切除術(shù)中的應(yīng)用
微波消融肝腫瘤術(shù)中影響因素及消融后殘留危險(xiǎn)因素研究
經(jīng)皮超聲引導(dǎo)下放射性125I粒子植入治療晚期肝癌的臨床觀察
經(jīng)肝動(dòng)脈化療栓塞術(shù)治療肝細(xì)胞癌的研究進(jìn)展
原發(fā)性肝癌患者乙型肝炎病毒標(biāo)志物模式與病毒DNA載量分析
原發(fā)性肝癌超聲引導(dǎo)下經(jīng)皮射頻消融治療的臨床觀察
肝癌合并門(mén)脈癌栓術(shù)后行肝動(dòng)脈栓塞化療聯(lián)合門(mén)靜脈化療的臨床療效分析
阿鲁科尔沁旗| 芦溪县| 兴安县| 阿克| 西畴县| 鲁甸县| 祁东县| 景宁| 黄大仙区| 巴彦淖尔市| 房产| 荥阳市| 奎屯市| 龙口市| 双桥区| 康保县| 玉溪市| 侯马市| 敦化市| 长宁区| 江口县| 澄江县| 遂宁市| 尼勒克县| 清水县| 山西省| 普宁市| 桐柏县| 邯郸市| 吴川市| 云林县| 威远县| 枞阳县| 苍南县| 布尔津县| 长乐市| 剑阁县| 周至县| 八宿县| 衡水市| 彰化县|