国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

對(duì)蝦腸道微生物響應(yīng)部分環(huán)境脅迫的研究進(jìn)展

2025-02-23 00:00:00李海玥張懷東
黑龍江水產(chǎn) 2025年1期
關(guān)鍵詞:環(huán)境污染

摘" 要:對(duì)蝦在養(yǎng)殖過(guò)程中會(huì)遇到各種環(huán)境脅迫因素,包括重金屬污染、病原體感染及其他污染等。面對(duì)這些脅迫,除了對(duì)蝦自身外,其體內(nèi)的腸道微生物也會(huì)做出相應(yīng)響應(yīng)。腸道菌群不僅具有指示宿主健康狀況的作用,經(jīng)過(guò)調(diào)節(jié)后還可以提升對(duì)蝦免疫力、促進(jìn)對(duì)蝦生長(zhǎng)。對(duì)腸道菌群的研究還能加強(qiáng)對(duì)疾病的理解,從而制定更有效的對(duì)蝦病害防治手段。

關(guān)鍵詞:腸道微生物;環(huán)境污染;對(duì)蝦養(yǎng)殖

中圖分類號(hào):S945.1文獻(xiàn)標(biāo)志碼:A

作為世界對(duì)蝦養(yǎng)殖第一大國(guó),中國(guó)的水產(chǎn)養(yǎng)殖產(chǎn)量占世界水產(chǎn)養(yǎng)殖總產(chǎn)量的60%以上[1]。中國(guó)的對(duì)蝦養(yǎng)殖業(yè)占有十分重要的經(jīng)濟(jì)地位。近年來(lái)對(duì)蝦養(yǎng)殖規(guī)模擴(kuò)大化,養(yǎng)殖環(huán)境逐步惡化,對(duì)蝦面臨的環(huán)境脅迫因素越來(lái)越多,養(yǎng)殖業(yè)損失加劇。對(duì)蝦的消化系統(tǒng)由消化道和消化腺組成。消化道包括前腸、中腸、后腸以及肛門;消化腺主要指肝胰腺。腸道不僅是對(duì)蝦重要的消化器官——能夠消化吸收營(yíng)養(yǎng)物質(zhì)、與外界進(jìn)行物質(zhì)交換,也是必不可少的免疫器官。腸道具有面積可觀的黏膜,上皮細(xì)胞彼此緊密連接,還能分泌豐富的生物活性物質(zhì)。除了這些結(jié)構(gòu)基礎(chǔ),腸道中還存在著與宿主互惠共生的大量微生物。腸道微生物與宿主的腸道環(huán)境構(gòu)成一個(gè)復(fù)雜的微生態(tài)系統(tǒng),對(duì)生物體各種生理狀態(tài)的調(diào)節(jié)起著至關(guān)重要的作用[2-3]。腸道免疫系統(tǒng)由三大屏障組成,包括腸黏膜細(xì)胞構(gòu)成的機(jī)械屏障、腸道免疫細(xì)胞及其分泌物構(gòu)成的免疫屏障和腸道正常菌群構(gòu)成的生物屏障[4]。有研究表明,腸道菌群與宿主對(duì)蝦的健康狀況息息相關(guān)[5-7]。

1 重金屬污染

腸道作為接觸重金屬的器官,腸道微生物在重金屬解毒中起著重要作用。LIU等報(bào)道利用腸道微生物可以減少重金屬毒性[8]。現(xiàn)介紹鎘、鉛、鈷、銅等重金屬的影響。

DUAN等人研究了鎘和鉛暴露對(duì)南美白對(duì)蝦腸道微生物群落的毒性作用,發(fā)現(xiàn)共有四十個(gè)細(xì)菌門的豐度發(fā)生了波動(dòng),鎘和鉛暴露改變了微生物多樣性,群落組成和代謝功能,進(jìn)而誘導(dǎo)腸道微生物群變異[9]。LIU等人使用表面展示具有鎘結(jié)合潛力的肽的大腸桿菌,研究了對(duì)蝦體內(nèi)鎘積累的變化,發(fā)現(xiàn)實(shí)驗(yàn)組和對(duì)照組的鎘元素敏感菌群數(shù)量有變化:在門水平上,對(duì)照組蝦腸道中的主要細(xì)菌群落是擬桿菌、變形桿菌、疣微菌和厚壁菌。鎘處理組的變形桿菌增加,擬桿菌減少。證明了該全細(xì)胞吸附劑能夠減輕鎘暴露引起的蝦腸道微生物群落結(jié)構(gòu)的變化[10]。CHEN等人研究了水性鈷對(duì)甲殼動(dòng)物的危害,證明鈷脅迫會(huì)干擾南美白對(duì)蝦腸道微生物群的組成和功能。在組成上機(jī)會(huì)致病菌弧菌的豐度顯著增加,功能上氨基酸代謝、脂質(zhì)代謝和碳水化合物代謝顯著降低等[11]。QIAN等人研究了長(zhǎng)期水性銅暴露對(duì)南美白對(duì)蝦的毒性,發(fā)現(xiàn)1 mg/L的Cu2+可以降低腸道微生物群和KEGG代謝途徑的豐度,抑制腸道微生物的氨基酸代謝功能[12]。

鎘、鉛、鈷、銅等重金屬對(duì)南美白對(duì)蝦腸道菌群的影響類似,主要體現(xiàn)在多樣性和代謝功能的變化上。擬桿菌、變形桿菌、厚壁菌、放線菌和疣微菌是對(duì)蝦腸道中的優(yōu)勢(shì)菌,重金屬暴露后機(jī)會(huì)致病菌豐度顯著增加,有益菌群也有所變化。在代謝上,主要是氨基酸代謝、脂質(zhì)代謝和碳水化合物代謝等代謝途徑受到重金屬抑制。除此之外,有益細(xì)菌也會(huì)產(chǎn)生一些有利于對(duì)蝦生長(zhǎng)發(fā)育的次生代謝物,如紅細(xì)菌科(Rhodobacteraceae)可以合成維生素B12[13]

2 病原體感染

對(duì)蝦養(yǎng)殖中的常見(jiàn)病原有對(duì)蝦血細(xì)胞虹彩病毒、白斑綜合征病毒、傳染性皮下及造血組織壞死病毒、急性肝胰腺壞死病致病性副溶血弧菌、蝦肝腸胞蟲、對(duì)蝦偷死野田村病毒、桃拉綜合征病毒和黃頭病毒等。

目前研究較多的是對(duì)蝦血細(xì)胞虹彩病毒、白斑綜合征病毒和蝦肝腸胞蟲等病原對(duì)對(duì)蝦腸道菌群的影響。HE等人發(fā)現(xiàn)對(duì)蝦血細(xì)胞虹彩病毒能與有害細(xì)菌(光桿菌和弧菌等)協(xié)同作用,促進(jìn)Warburg效應(yīng)并誘導(dǎo)代謝重編程,引起繼發(fā)性細(xì)菌感染[14]。JATUYSPORN等人發(fā)現(xiàn),白斑綜合征病毒感染黑虎蝦后,門水平上變形桿菌顯著增加,屬水平上發(fā)光桿菌豐度顯著增加,種水平上美人魚發(fā)光桿菌(Photobacterium damselae )最多。免疫和免疫相關(guān)基因的轉(zhuǎn)移可以改變蝦腸道中的細(xì)菌組成,證明了宿主-微生物群相互作用在理解疾病方面的重要性[15]。LPEZ等人[16]發(fā)現(xiàn)蝦肝腸胞蟲感染南美白對(duì)蝦后,細(xì)菌假單胞菌屬(Pseudomonas)和真菌長(zhǎng)西氏酵母(Naganishia)數(shù)量最多,不同的細(xì)菌和真菌屬可以在不同的疾病階段發(fā)現(xiàn),說(shuō)明微生物豐度與疾病階段有關(guān)。慢性感染會(huì)逐漸惡化微生物群落及其功能,導(dǎo)致致病性和機(jī)會(huì)性微生物的暴發(fā)。CHANG等人對(duì)感染致病性和非致病性副溶血性弧菌(Vibrio parahaemolyticus,Vp)的南美白對(duì)蝦進(jìn)行研究后發(fā)現(xiàn)[17]:短期內(nèi)只能引起急性肝胰腺壞死?。ˋcute hepatopancreatic necrosis disease,AHPND)的非致病性副溶血性弧菌(Vp)會(huì)影響蝦腸道菌群,使發(fā)光桿菌屬(Photobacterium)和弧菌屬(Vibrio)增加。長(zhǎng)期則兩者都會(huì)使腸道菌群的生物多樣性下降。

3 其他環(huán)境脅迫

面對(duì)細(xì)菌等生物脅迫時(shí),養(yǎng)殖戶常常會(huì)使用抗生素進(jìn)行預(yù)防與治療。由于抗生素濫用,無(wú)論是養(yǎng)殖對(duì)蝦,還是野生對(duì)蝦,體內(nèi)都能檢測(cè)到一定的抗生素殘留。經(jīng)過(guò)食物鏈的富集,抗生素的殘留量會(huì)進(jìn)一步增加,最終危害人體健康。目前,抗生素抗性基因在水產(chǎn)養(yǎng)殖生態(tài)系統(tǒng)中高度傳播[18-19],應(yīng)加以重視。南美白對(duì)蝦通常在低鹽度水中飼養(yǎng),低鹽度使對(duì)蝦更易患病,抗生素使用率隨之增加。因此,人工養(yǎng)殖的對(duì)蝦腸道微生物受到低鹽度和抗生素殘留兩方面的影響。磺胺霉素和氯霉素常用于水產(chǎn)養(yǎng)殖,CHEN等人對(duì)這兩種抗生素對(duì)南美白對(duì)蝦的影響進(jìn)行了研究。研究發(fā)現(xiàn),與對(duì)照組相比,低鹽度組擬桿菌豐度較高,藍(lán)藻比例降低。低鹽度抗生素添加組的疣微菌豐度下降,潛在益生菌紅細(xì)菌科和假單胞菌減少,機(jī)會(huì)致病菌氣單胞菌增加[20]。長(zhǎng)期低鹽度和抗生素共同暴露改變了腸道微生物群的多樣性,增加了機(jī)會(huì)性病原體,使對(duì)蝦的腸道屏障功能和消化功能受損。另一方面,在自然環(huán)境中,野生對(duì)蝦也會(huì)由于全球水循環(huán)遭受抗生素脅迫。

環(huán)境污染為對(duì)蝦帶來(lái)了許多環(huán)境脅迫,除了重金屬污染與抗生素殘留外,還有塑料等污染。在對(duì)蝦養(yǎng)殖過(guò)程中,塑料薄膜和尼龍線等塑料制品隨處可見(jiàn),這增加了微塑料暴露的機(jī)會(huì)。納米塑料短期暴露使對(duì)蝦腸道微生物特征發(fā)生顯著變化,但是在一段時(shí)間后該變化消失[21]。LI等人發(fā)現(xiàn)對(duì)蝦攝入的微塑料主要存在于腸道,微塑料暴露顯著增加了腸道微生物多樣性,對(duì)蝦生長(zhǎng)速度下降[22]。ZHU等人[23]發(fā)現(xiàn)納米塑料作用后,弧菌屬, 發(fā)光桿菌屬(Photobacterium spp.), 黃色海水菌屬和不動(dòng)桿菌屬(Acinetobacter spp.)豐度增加,亞硫酸桿菌屬(Sulfitobacter spp.)和假交替單胞菌屬(Pseudoalteromonas spp.)豐度減少。

4 總結(jié)與展望

健康對(duì)蝦的腸道微生物主要由擬桿菌、變形桿菌、疣微菌和厚壁菌等組成。在正常環(huán)境中,腸道菌群會(huì)隨著宿主蝦的生長(zhǎng)發(fā)育發(fā)生變化,這一動(dòng)態(tài)過(guò)程可以分為三個(gè)階段,改變喂食的日糧成分會(huì)影響宿主的體重[24]。在面對(duì)環(huán)境脅迫時(shí),腸道菌群的動(dòng)態(tài)波動(dòng)會(huì)更加顯著。希瓦氏菌(Shewanella)、氣單胞菌和不動(dòng)桿菌等是機(jī)會(huì)致病菌[20]。受到不利環(huán)境條件脅迫時(shí),機(jī)會(huì)致病菌的豐度會(huì)增加,進(jìn)而引起繼發(fā)性感染。在不同脅迫條件下,有益菌群的變化不同。有益菌群的有益之處主要在于其特殊的代謝功能。疣微菌(Verrucomicobia)可以降解多糖,幫助消化飼料纖維[25]。沈氏菌(Shimia)具有水解幾丁質(zhì)或殼聚糖并降解芳香族化合物的潛在代謝能力[26]。潘多拉菌(Pandoraea)能夠降解木質(zhì)素[27]。 除了這些原核微生物外,對(duì)蝦腸道菌群中還存在真核微生物。腸道真核生物群落的變化與消化酶活性呈正相關(guān),進(jìn)而可以影響蝦生長(zhǎng)性能[28]。

微生物組分與宿主的特定功能密切相關(guān),其調(diào)節(jié)已被用于改善蝦的健康、生長(zhǎng)性能和抗病能力,以提高產(chǎn)量[16]。補(bǔ)充β-1,3-葡聚糖可以調(diào)節(jié)腸道菌群的穩(wěn)態(tài),抑制腸道炎癥反應(yīng),提高機(jī)體免疫功能和抗氧化能力[29]。補(bǔ)充益生菌可以調(diào)節(jié)免疫系統(tǒng),增加胃腸道穩(wěn)定性,分泌抗菌化合物,與病原體競(jìng)爭(zhēng)以防止腸道粘連,競(jìng)爭(zhēng)病原體生存所需的營(yíng)養(yǎng)并產(chǎn)生抗毒素作用[30]。腸道菌群除了可以應(yīng)對(duì)環(huán)境脅迫外,還可以對(duì)環(huán)境脅迫起到指示作用。LU等人[31]利用腸道微生物設(shè)計(jì)了一個(gè)診斷模型,能夠準(zhǔn)確診斷AHPND的初始、進(jìn)展或死亡階段,準(zhǔn)確率達(dá)到86.5%。除了文章中詳細(xì)提到的這些外,對(duì)蝦養(yǎng)殖過(guò)程中還會(huì)面臨溫度、溶解氧、氨氮、鹽度、饑餓等脅迫。對(duì)對(duì)蝦腸道菌群進(jìn)行研究能夠更好地對(duì)抗這些脅迫,增加經(jīng)濟(jì)效益。

參考文獻(xiàn):

[1]CHEN Minglong, JIN Meng, TAO Peiran, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J].Environmental Pollution,2018,242(Pt B):1146-1156.

[2]張家松,段亞飛,張真真,等.對(duì)蝦腸道微生物菌群的研究進(jìn)展[J].南方水產(chǎn)科學(xué),2015,11(6):114-119.

[2]ZHANG Jiasong, DUAN Yafei, ZHANG Zhenzhen, et.al. Research progress of intestinal microbial flora in shrimp[J].South China Fisheries Science, 2015,11(6):114-119.

[3]ZHANG Siyuan, SUN Xumei. Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection[J].Microbiology Spectrum,2022,10(2):e0246521.

[4]鄭曉婷,段亞飛,董宏標(biāo),等.甲殼動(dòng)物腸道免疫系統(tǒng)的研究進(jìn)展[J].海洋湖沼通報(bào),2016(3):83-90.

[5]吳金鳳,熊金波,王欣,等.腸道菌群對(duì)凡納濱對(duì)蝦健康的指示作用[J].應(yīng)用生態(tài)學(xué)報(bào),2016,27(2):611-621.

[4]ZHENG Xiaoting, DUAN Yafei, DONG Hongbiao, et.al. Progress on Gut Mucosal Immunization of Crustacean[J].Transactions of Oceanology and Limnology,2016(3):83-90.

[5]WU Jinfeng, XIONG Jinbo, WANG Xin, et.al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J].Chinese Journal of Applied Ecology,2016, 27(2):611-621.

[6]HUANG Fei, PAN Luqing, SONG Mengsi, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Applied Microbiology and Biotechnology,2018,102(19): 8585-8598.

[7]SUN Fulin, WANG Chunzhong, CHEN Lijuan, et al. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment[J].Applied Microbiology and Biotechnology,2020,104(2):775-783.

[8]LIU Minrui, LU Xia, KHAN A ,et al. Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides[J].Journal of Hazardous Materials,2019,367:35-42.

[9]DUAN Yafei, WANG Yun, HUANG Jianhua, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei[J]. Marine Pollution Bulletin,2021,167:112220.

[10]LIU Minrui, QI Xing-e, HAN Jiangyuan, et al.Reducing cadmium accumulation in shrimp using Escherichia coli with surface-displayed peptide[J].Ecotoxicology and Environmental Safety,2023,256:114858.

[11]CHEN Chengzhuang, XU Chang, QIAN Dunwei, et al. Growth and health status of pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt[J].Fish and Shellfish Immunology,2020,100:137-145.

[12]QIAN Dunwei, XU Chang, CHEN Chengzhuang, et al. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei[J]. Fish and Shellfish Immunology,2020,100:445-455.

[13]XIONG Jinbo, DAI Wenfang, ZHU Jinyong, et al. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp[J].Microbial Ecology,2017,73(4):988-999.

[14]HE Zihao, ZHONG Yunqi, LIAO Minze, et al. Integrated analysis of intestinal microbiota and metabolomic reveals that Decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus[J].Frontiers in Immunology, 2022,13:982717.

[15]JATUYSPORN T, LAOHAWUTTHICHAI P, ROMO J P O, et al. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon[J].Scientific Reports, 2023,13(1):996.

[16]LPEZ C J A, CRUZ F R, DHAR A K. The emerging pathogen Enterocytozoon hepatopenaei drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (Penaeus vannamei) [J].Scientific Reports,2022,12(1):14766.

[17]CHANG Yiting, KO Haoting, WU Pinglun,et al. Gut microbiota of Pacific white shrimp (Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus[J]. Microbiology Spectrum,2023,11(5):e0118023.

[18]LU Jiaqi, ZHANG Xinxu, WANG Chaohua, et al. Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm[J].Science of The Total Environment, 2021,794:148760.

[19]SU Haochang, HU Xiaojuan, XU Wujie, et al. Metagenomic analysis of the abundances, diversity, and distribution of antibiotic resistance genes and their potential bacterial hosts in two types of shrimp-rearing farms in South China[J]. Ecotoxicology and Environmental Safety,2022,241:113801.

[20]CHEN Yunsong, ZHOU Li, YU Qiuran, et al.Effects of Sulfamethoxazole and Florfenicol on Growth, Antioxidant Capacity, Immune Responses and Intestinal Microbiota in Pacific White Shrimp Litopenaeus vannamei at Low Salinity[J].Antibiotics,2023,12(3):575.

[21]CHAE Y, KIM D, CHOI M J, et al. Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure[J].Environment International,2019,130:104848.

[22]LI Hongyu, CHEN Hongwei, WANG Jiao, et al. Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp[J].Frontiers in microbiology,2021,12:717272.

[23]ZHU Chenxi, LI Yiming, LIU Guoxing, et al. Effects of nanoplastics on the gut microbiota of Pacific white shrimp Litopenaeus vannamei[J].Peer J, 2024,12:e16743.

[24]FAN Jiqiang, CHEN Limei, MAI Guoqin, et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight[J].Scientific Reports,2019,9(1):734.

[25]CARDMAN Z, ARNOSTI C, DURBIN A, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard[J]. Applied and Environmental Microbiology,2014,80(12):3749-3756.

[26]RODRIGO-TORRES L, PUJALTE M J, ARAHAL D R. Draft genome sequence of Shimia marina CECT 7688(T)[J].Marine Genomics,2016,28:83-86.

[27]KUMAR M, MISHRA A, SINGH S S, et al. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application[J].International Journal of Biological Macromolecules,2018,115:308-316.

[28]DAI Wenfang, YU Weina, ZHANG Jinjie, et al. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp[J].Applied Microbiology and Biotechnology,2017,101(16):6447-6457.

[29]SHEN Kaikai, BAO Lixin, LIU Muxin, et al. Dietary supplementation of β-1, 3-glucan improves the intestinal health of white shrimp (Litopenaeus vannamei) by modulating intestinal microbiota and inhibiting inflammatory response [J].Frontiers in Immunology,2023,14:1119902.

[30]EL-SAADONY M T, SWELUM A A, ABO GHANIMA M M, et al. Shrimp production, the most important diseases that threaten it, and the role of probiotics in confronting these diseases: A review[J].Research in Veterinary Science,2022,144:126-140.

[31]LU Jiaqi, MAO Jiangning, QI Xuejing, et al.The assembly of gut microbiota implicates shrimp acute hepatopancreas necrosis disease progression[J]. Applied Microbiology and Biotechnology,2023,107(24):7489-7500.

Research progress on the response of the gut microbiota of shrimp to environmental stress

LI Haiyue1, ZHANG Huaidong1,2

(1.College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian China; 2. National and Local Joint Engineering Research Center for Industrial Microbialana and Fermentation Technology, Fuzhou 350117, Fujian China)

Abstract:Shrimp will encounter various environmental stress factors during the breeding process, including heavy metal pollution, pathogen infection and other pollution. In the face of these stresses, in addition to the shrimp itself, the intestinal microorganisms in its body will also respond accordingly. The intestinal flora not only has the function of indicating the health status of the host, but also can improve the immunity of shrimp and promote the growth of shrimp after adjustment. Research on intestinal flora can also enhance understanding of disease, leading to the development of more effective methods to control shrimp diseases.

Keywords:intestinal microorganisms; environmental pollution; shrimp farming

基金項(xiàng)目:福建省自然科學(xué)基金面上項(xiàng)目(2020J01181)。

作者簡(jiǎn)介:李海玥(2000-),女,福建寧古人,碩士研究生。研究方向:生物醫(yī)藥。E-mail:2637882038@qq.com。

通信作者:張懷東(1982-),男,江蘇興化人,博士,副教授。研究方向:微生物生物轉(zhuǎn)化。E-mail:zhanghuaidong@fjnu.edu.cn。

猜你喜歡
環(huán)境污染
建筑施工現(xiàn)場(chǎng)如何進(jìn)行環(huán)境污染防治
加強(qiáng)農(nóng)業(yè)環(huán)境污染防治的策略
人本主義視域下的城市環(huán)境污染與治理
水環(huán)境污染現(xiàn)狀及其治理對(duì)策
”兩高”再出司法解釋打擊環(huán)境污染犯罪
江蘇環(huán)境污染責(zé)任保險(xiǎn)緣何“一枝獨(dú)秀”?
水環(huán)境污染面臨的現(xiàn)狀及治理對(duì)策探討
推行環(huán)境污染第三方治理應(yīng)堅(jiān)持三個(gè)原則
農(nóng)藥的環(huán)境污染及其應(yīng)對(duì)策略
河南科技(2014年15期)2014-02-27 14:12:48
煤礦區(qū)環(huán)境污染及治理
河南科技(2014年8期)2014-02-27 14:08:07
朔州市| 汾阳市| 宜君县| 永宁县| 汉源县| 安化县| 新安县| 通州市| 罗平县| 丰城市| 玉龙| 溧阳市| 龙山县| 雷山县| 故城县| 吉安市| 保靖县| 津南区| 沐川县| 长岭县| 赞皇县| 宁陕县| 枞阳县| 方山县| 晋宁县| 普兰店市| 藁城市| 莱州市| 临猗县| 松滋市| 巩留县| 调兵山市| 龙里县| 密云县| 唐河县| 万山特区| 屏东县| 阜阳市| 鞍山市| 卓资县| 沙河市|