摘要:降雨分配的變化以及極端降雨事件的頻發(fā)是全球氣候變化的重要特征,為了探究降雨變化對中國草地土壤pH值的影響,本文通過檢索159篇關(guān)于增雨和減雨處理對中國草地生態(tài)系統(tǒng)土壤pH值影響的文章,運(yùn)用整合分析,探究了土壤pH值對增雨和減雨處理的響應(yīng)及其影響因素。結(jié)果表明:增雨處理在年降雨小于200 mm和200~400 mm地區(qū)土壤pH值提高0.9%和2.3%,年均溫低于0℃地區(qū)土壤pH值提高6.7%;弱酸性、中性、弱堿性草地上土壤pH值提高4.1%,4.9%和1.3%,堿性草地降低2.7%;典型、荒漠草原上土壤pH值提高1.8%和0.9%。減雨處理在年降雨量低于200 mm和200~400 mm地區(qū)土壤pH值降低0.4%和0.7%;弱堿性草地土壤pH值降低0.7%,草甸草原土壤pH值降低1.5%,典型草原土壤pH值提高0.9%。增雨處理通過增加植被蓋度,減少物種豐富度和地下生物量,提高草地土壤pH值;減雨處理通過對土壤碳氮磷含量的影響降低草地土壤pH值。本研究結(jié)果可為全球降雨格局變化背景下草地土壤養(yǎng)分管理提供科學(xué)依據(jù)。
關(guān)鍵詞:極端降雨;減雨處理;養(yǎng)分管理;增雨處理
中圖分類號:S812.2 " " " "文獻(xiàn)標(biāo)識碼:A " " " "文章編號:1007-0435(2025)01-0262-11
Response of Soil pH to Precipitation Alterations across Chinese Grassland: A Meta-Analysis
JU Xin1,2, YUE Zhuo-ran3, ZHAO Shou-yi3, ZHANG Shuai-zhu3, DU Ting3, WU Shuai-kai1,2,
DONG Kuan-hu1,2, WANG Chang-hui1,2, YANG Jian-qiang3*, SU Yuan1,2*
(1.College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China; 2.Shanxi Key Laboratory of
Grassland Ecological Protection and Native Grass Germplasm Innovation, Taigu, Shanxi Province 030801, China; 3.College of Life Science, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China)
Abstract:Changes in rainfall distribution and the increasing frequency of extreme precipitation events are key characteristics of global climate change. This study aims to explore the effects of these rainfall variations on soil pH levels in grassland ecosystems across China. A comprehensive analysis was conducted on 159 studies that investigated the effects of increased and decreased precipitation on soil pH in Chinese grassland ecosystems. The study integrates these findings to examine how soil pH responds to precipitation manipulation and identifies the key influencing factors. Increased precipitation led to significant rises in soil pH, with increases of 0.9% and 2.3% in regions receiving less than 200 mm and between 200-400 mm of annual rainfall, respectively, and by 6.7% in areas with an average annual temperature below 0°C. Additionally, soil pH increased by 4.1%, 4.9%, and 1.3% in weakly acidic, neutral, and weakly alkaline grasslands, respectively, but decreased by 2.7% in alkaline grasslands. In typical and desert grasslands, soil pH increased by 1.8% and 0.9%, respectively. In contrast, reduced precipitation decreased soil pH by 0.4% and 0.7% in areas with annual rainfall below 200 mm and between 200~400 mm, respectively. Furthermore, soil pH declined by 0.7% in weakly alkaline grasslands, by 1.5% in meadow grasslands, but increased by 0.9% in typical grasslands.Increased precipitation notably raised soil pH by enhancing vegetation cover, reducing species richness and below-ground biomass, and indirectly altering soil carbon (C) and nitrogen (N) content. Conversely, reduced precipitation significantly lowered soil pH, mainly by affecting soil C, N, and phosphorus (P) content. These findings provide a scientific basis for managing soil nutrients in grassland ecosystems in arid and semi-arid regions in the context of global precipitation pattern changes.
Key words:Extreme precipitation;Precipitation decrease treatments;Nutrient management;Precipitation increase treatments
水分是干旱-半干旱區(qū)草地生態(tài)系統(tǒng)的限制性資源,是土壤和生物體內(nèi)營養(yǎng)物質(zhì)的溶劑,更是其運(yùn)輸?shù)慕橘|(zhì)[1]。近年來,在全球氣候變化背景下,極端降雨事件(如降雨量、降雨強(qiáng)度、季節(jié)分布不均勻等)發(fā)生的頻率顯著增加[2-4]。降雨模式的改變會影響植物的生長過程[5],這些極端降雨對草地生態(tài)系統(tǒng)的地上凈初級生產(chǎn)力[6]、物種多樣性、群落豐度和均勻度[7]有顯著影響,通過生物間相互作用導(dǎo)致土壤養(yǎng)分水平以及生態(tài)條件的變化進(jìn)而影響土壤碳氮過程等關(guān)鍵的地球化學(xué)循環(huán)過程[8-9]。降雨會通過改變凋落物質(zhì)量和土壤微生物影響凋落物的分解[10],進(jìn)而影響土壤碳循環(huán)[11]。例如較高強(qiáng)度的增雨處理會導(dǎo)致地表徑流和深層土壤排水量的增大[12]影響土壤養(yǎng)分循環(huán),該變化可能會影響植物生長[13]。減雨處理則會限制土壤養(yǎng)分向植物的轉(zhuǎn)移,植物會將更多的養(yǎng)分分配至地下部分[14]。植物生物量的改變尤其是地下生物量的改變會通過根系分泌物量的變化影響微生物群落進(jìn)而影響土壤pH值,降雨還會通過調(diào)節(jié)土壤肥力、土壤鹽分積累、植被蓋度及其群落結(jié)構(gòu)影響土壤pH值[15]。
人類活動干擾,例如放牧、氮肥施用等,對土壤pH值的影響與其強(qiáng)度和頻率等密切相關(guān)。有研究表明遠(yuǎn)離放牧區(qū)或人為免耕可以通過促進(jìn)有機(jī)質(zhì)分解使得土壤堿性鹽基陽離子濃度降低,顯著降低土壤pH值[16],施用氮肥顯著降低草地生態(tài)系統(tǒng)土壤pH值[17]。以氣候因子為主導(dǎo)因素對土壤pH值影響進(jìn)行的研究數(shù)量較少,增雨處理和減雨處理對土壤pH值影響的研究具有不同的結(jié)果。有研究表明,降雨增多會導(dǎo)致吸附于土壤的鹽基陽離子向下淋溶進(jìn)入地下水,而土壤固相空缺處的吸附位被H+離子占據(jù)導(dǎo)致土壤酸化[18]。與其相反的是,有學(xué)者認(rèn)為降雨的增加增強(qiáng)了土壤堿性陽離子的交換能力,從而增加土壤pH值[19]。一項(xiàng)在青藏高原的研究則發(fā)現(xiàn)土壤pH值對降雨變化無顯著響應(yīng)[20],然而,對于全國尺度上的降雨變化對草地土壤pH值的影響暫無定論。
為了探究中國干旱、半干旱草地在未來全球氣候變化背景下降雨格局改變,尤其是極端降雨事件頻發(fā)對土壤pH值及其所導(dǎo)致的生產(chǎn)力變化和草地退化等生態(tài)效應(yīng)的影響。本文收集了已經(jīng)發(fā)表的有關(guān)中國草地設(shè)置增雨、減雨控制試驗(yàn)的相關(guān)文獻(xiàn),通過整合分析匯總多項(xiàng)獨(dú)立研究的結(jié)果分析降雨變化對草地土壤pH的影響及潛在調(diào)控因素[21]。本研究主要回答以下問題:(1)增雨和減雨處理對于土壤pH值的影響是積極的還是消極的?(2)土壤pH值對增雨和減雨處理的響應(yīng)模式是否相同?
1 材料與方法
1.1 數(shù)據(jù)來源與篩選
本研究的數(shù)據(jù)庫選擇為Web of Science和中國知網(wǎng)。在中國知網(wǎng)數(shù)據(jù)庫中輸入“降雨” “降水”“干旱”和“中國草地”進(jìn)行檢索,在Web of Science數(shù)據(jù)庫中輸入“precipitation ”“drought”和“China”“grassland”進(jìn)行檢索,截止時間為2022年12月31日,分別得到368,5148篇研究文獻(xiàn)。再通過以下標(biāo)準(zhǔn)進(jìn)行文獻(xiàn)篩選:(1)采用遮雨棚減少降雨或人工增加降雨的方式設(shè)置降雨梯度;(2)詳細(xì)記錄了降雨梯度、試驗(yàn)地、植被、土壤因子。最終,符合要求的文獻(xiàn)有159篇,觀測數(shù)據(jù)有4676對。
此外,提取試驗(yàn)點(diǎn)名稱和試驗(yàn)點(diǎn)位置、草地類型、年均溫(Mean annual temperature,MAT)、年均降雨量(Mean annual precipitation,MAP)、降雨強(qiáng)度、0~10 cm土層土壤酸堿度(Potential of hydrogen,pH)、土壤溫度(Soil temperature,ST)、土壤含水量(Soil water content,SWC)、土壤電導(dǎo)率(Electrical conductivity,EC)、土壤容重(Soil bulk density,BD)、土壤全氮(Total nitrogen,TN)、土壤全碳(Total carbon,TC)、土壤全磷(Total phosphorus,TP)、土壤銨態(tài)氮(Ammonium nitrogen,NH_4^+-N)、土壤硝態(tài)氮(Nitrate nitrogen,NO_3^--N)、土壤無機(jī)氮(Inorganic nitrogen,IN)、土壤可溶性有機(jī)碳(Dissolved organic carbon,DOC)、土壤可溶性有機(jī)氮(Dissolved organic nitrogen,DON)、土壤有機(jī)氮(Soil organic nitrogen,SON)、土壤有效磷(Available phosphorus,AP)、地上生物量(Above-ground biomass,AGB)、地下生物量(Below-ground Biomass,BGB)、地上凈初級生產(chǎn)力(Above-ground Net primary productivit,ANPP)、地下凈初級生產(chǎn)力(Below-ground Net primary productivit,BNPP)、物種豐富度(Species richness,SR)、植被香農(nóng)維納指數(shù)(Shannon-Wiener index,S-W)、植被辛普森指數(shù)(Simpson’s diversity index,SIM)、植被蓋度(Fractional vegetation cover,F(xiàn)VC)、微生物生物量碳(Microbiological biomass carbon,MBC)、微生物生物量氮(Microbial biomass nitrogen,MBN)、土壤呼吸(Soil respiration,RS)、試驗(yàn)重復(fù)次數(shù),并將不同文獻(xiàn)因子數(shù)據(jù)單位進(jìn)行統(tǒng)一。文獻(xiàn)中正文及表格的數(shù)據(jù)直接提取,圖片中的數(shù)據(jù)使用GetData 2.22軟件提取數(shù)據(jù)。
1.2 劃分方法
本研究中,對收集到的數(shù)據(jù)進(jìn)行了劃分。以年降雨量為劃分依據(jù),設(shè)置了200 mm(干旱與半干旱區(qū)分界線)、400 mm(半干旱與半濕潤區(qū)分界線)分界線[22]。以年均溫為劃分依據(jù),設(shè)置了0℃分界線。以土壤酸堿度為劃分依據(jù),設(shè)置了pH值6.5,7.5,8.5分界線[23]。以文獻(xiàn)中描述的草地類型為劃分依據(jù),分為草甸草原、典型草原和荒漠草原。
1.3 數(shù)據(jù)分析
本研究中,在進(jìn)行數(shù)據(jù)分析前首先進(jìn)行了針對處理的均一化處理,目的是將不同文獻(xiàn)中的降雨變化值統(tǒng)一為增減50%[24],公式如下:
XT=XC+(XT-XC)×50/|T|
其中XT為均一化后的因子,XC為空白對照下因子的平均值;XT為T處理下因子原平均值,T為該處理下降雨改變百分比。
使用響應(yīng)比(RR)以反映降雨量變化對當(dāng)?shù)夭莸豴H值的影響,公式如下:
RR=ln(XT/XC)
為了避免由于極端誤差造成的極端加權(quán)值,使用了基于試驗(yàn)重復(fù)次數(shù)的加權(quán)值計(jì)算[21],公式如下:
W=(NT×NC)/(NT+NC)
其中W為加權(quán)值,NC為空白對照處理數(shù)量;NT為T處理數(shù)量。
利用加權(quán)響應(yīng)比作為降雨量變化中國草地pH值的影響[25],公式如下:
lnRR=(∑_(i=1)^m?∑_(j=1)^n?〖w_ij lnRR_ij 〗)/(∑_(i=1)^m?∑_(j=1)^n?w_ij )
其中m為試驗(yàn)組數(shù)量,n為該試驗(yàn)組樣本量(文獻(xiàn)量)。
為了便于描述和了解,對上述加權(quán)響應(yīng)比進(jìn)行進(jìn)一步計(jì)算得到變化百分比,公式如下:
Percentage change(%)=(elnRR-1)×100%
如95%置信區(qū)間不與零重合則為顯著。土壤pH值外的其他因子數(shù)據(jù),如大于等于5個試驗(yàn)組數(shù)量(文獻(xiàn)量)則按照上述方法進(jìn)行計(jì)算。利用SPSS計(jì)算降雨量改變處理下各個因子之間的相關(guān)關(guān)系。利用Origin 2022作圖。
2 結(jié)果與分析
2.1 土壤pH值對增雨和減雨處理的響應(yīng)
增雨處理顯著提高了土壤pH值(Plt;0.05),然而,減雨處理對土壤pH值無顯著影響。以年降雨量為依據(jù)將數(shù)據(jù)進(jìn)行分類,減雨處理在年降雨量低于400 mm地區(qū)顯著降低了土壤pH值,分別為200 mm以下降低0.4%(Plt;0.05)、200~400 mm地區(qū)降低0.7%。土壤pH值在年降雨小于200 mm地區(qū)增雨處理顯著提高了0.9%(Plt;0.05),在200~400 mm 地區(qū)增雨處理提高了2.3%。在年降雨量大于400 mm地區(qū)增雨處理和減雨處理對土壤pH值均無顯著影響。
以年均溫度為依據(jù)將數(shù)據(jù)進(jìn)行分類,在年均溫低于0℃地區(qū)增雨處理土壤pH值顯著提高6.7%(Plt;0.05)。在年均溫大于0℃地區(qū)增雨處理和減雨處理對土壤pH值無顯著影響。
以土壤pH值為依據(jù)將數(shù)據(jù)進(jìn)行分類,在弱酸性草地上,增雨處理土壤pH值顯著提高了4.1%(P lt; 0.05);在中性草地上,增雨處理土壤pH值顯著提高了4.9%;在弱堿性草地上,增雨處理土壤pH值顯著提高了1.3%,減雨處理土壤pH值顯著降低0.7%;在堿性草地上,增雨處理土壤pH值顯著降低了2.7%,減雨處理無顯著影響。
以草地類型將數(shù)據(jù)進(jìn)行分類,在草甸草原增雨處理對土壤pH值無顯著影響,在草甸草原減雨處理土壤pH值顯著降低了1.5%(Plt;0.05);在典型草原增雨處理土壤pH值顯著提高了1.8%,在典型草原減雨處理土壤pH值顯著提高了0.9%;在荒漠草原增雨處理土壤pH值顯著提高了0.9%,減雨處理對土壤pH值無顯著影響(圖1)。土壤pH值對增雨處理和減雨處理響應(yīng)的文獻(xiàn)數(shù)量見表1。
2.2 增雨和減雨處理下土壤pH值與其他因子之間的相關(guān)關(guān)系
增雨處理下,土壤TN(Plt;0.05)、DOC(Plt;0.01)、FVC(Plt;0.05)、MBC(Plt;0.01)顯著降低了土壤pH值(圖2);減雨處理下,土壤TN(Plt;0.05)、NO_3^--N(Plt;0.01)、SON(Plt;0.001)、DOC(Plt;0.05)顯著降低了土壤pH值,BGB(Plt;0.05)顯著提高了土壤pH值(圖2)。
圖2 增雨處理和減雨處理下土壤pH值對TN,DOC,F(xiàn)VC,MBC,SON,NO_3^--N,BGB的響應(yīng)
Fig.2 Responses of soil pH to TN, DOC, FVC, MBC, SON, NO_3^--N and BGB under precipitation increase treatment and precipitation decrease treatment
注:A,B,C,D為增雨,E,F(xiàn),G,H,I為減雨
Note:A, B, C, D indicates precipitation increased and E, F, H, J, I indicates precipitation decreased
2.3 中國草地生態(tài)系統(tǒng)各因子對增雨和減雨處理的響應(yīng)
增雨處理顯著提高了Rs(Plt;0.05),MBN,MBC,F(xiàn)VC,SIM,SR,BNPP,ANPP,AGB,AP,SON,IN,NO_3^--N,NH_4^+-N,TN,EC,SWC,降低了S-W,BGB,BD;減雨處理顯著提高了MBN(Plt;0.05),AP,DON,DOC,IN,NO_3^--N,BD,EC,降低了FVC,S-W,ANPP,AGB,BGB,SOC,SWC(圖3)。
2.4 增雨和減雨處理下中國草地生態(tài)系統(tǒng)各因子間相關(guān)關(guān)系
增雨處理下,ST與SWC,TN,Rs呈顯著負(fù)相關(guān)關(guān)系,與TP,MBC呈顯著正相關(guān)關(guān)系;SWC與AGB,EC與NH_4^+-N,SR與S-W,SIM與BGB,F(xiàn)VC與AGB呈顯著正相關(guān)關(guān)系;pH與TN,DOC,F(xiàn)VC,MBC呈顯著負(fù)相關(guān)關(guān)系;TN與DON呈顯著負(fù)相關(guān)關(guān)系,與AP,BGB,MBC,MBN呈顯著正相關(guān)關(guān)系;NH_4^+-N與NO_3^--N,IN,AGB呈顯著正相關(guān)關(guān)系,與FVC呈顯著負(fù)相關(guān)關(guān)系;NO_3^--N與IN,DOC,MBC呈顯著正相關(guān)關(guān)系;MBC與SR,S-W,F(xiàn)VC呈顯著正相關(guān)關(guān)系,與TP呈顯著負(fù)相關(guān)關(guān)系;MBN與DON,BGB,MBC呈顯著正相關(guān)關(guān)系;S-W與SON,AGB與SIM呈顯著負(fù)相關(guān)關(guān)系。
減雨處理下,pH與TN,NO_3^--N,SON,DOC呈顯著負(fù)相關(guān)關(guān)系,與BGB呈顯著正相關(guān)關(guān)系;TN與NO_3^--N,TC,SON呈顯著正相關(guān)關(guān)系;ST與Rs,NH_4^+-N與TC,TC與ANPP,AP與MBC,AP與MBN呈顯著負(fù)相關(guān)關(guān)系;AGB與SWC,EC與TN,NO_3^--N與IN,SON與DOC,AP與DOC,MBC與DON,BGB與SIM,TP與MBC,MBN與MBC,Rs與MBC呈顯著正相關(guān)關(guān)系(圖5)。各因子對增雨處理和減雨處理響應(yīng)比的文獻(xiàn)數(shù)量見表2。
3 討論
3.1 土壤pH值對增雨處理的響應(yīng)
本研究結(jié)果表明,增雨處理顯著提高了中國草地土壤pH值。通過對各因子間相關(guān)關(guān)系的研究發(fā)現(xiàn),增雨處理顯著提高土壤pH值的原因可能是增雨處理通過減少BGB和植被S-W指數(shù),降低了TN和MBC導(dǎo)致土壤pH值上升。增雨處理會提高FVC,使得NH_4^+-N,NO_3^--N,DOC降低最終導(dǎo)致土壤pH值上升(圖5)。
本研究發(fā)現(xiàn)增雨處理會顯著提高FVC,其原因可能是提高了水分的可利用性,或者為植物生長提供更多的生態(tài)位[26]。FVC的提高會通過影響土壤的水分、氣體環(huán)境,促進(jìn)植物吸水導(dǎo)致土壤含水量下降[27],進(jìn)而提高光合速率,增加土壤近表面的氧氣濃度,降低CO2濃度提高土壤pH值[28],這與本研究結(jié)果一致。有研究表明增雨處理會提高土壤養(yǎng)分的可利用性,尤其是N的可利用性[29],但是增雨處理對土壤中參與C,N過程的酶活性無顯著影響,因此增雨處理對土壤養(yǎng)分環(huán)境的影響十分有限[30],本研究也得出了相似的結(jié)論,增雨處理對于植物的影響較大,而對于土壤環(huán)境僅產(chǎn)生間接影響。也有研究表明短期的增雨處理導(dǎo)致的植被群落及其功能性改變不足以影響土壤環(huán)境[31]。本研究發(fā)現(xiàn)降雨對于土壤養(yǎng)分的影響是通過對植被蓋度、群落多樣性及其功能的影響進(jìn)而改變土壤養(yǎng)分含量和質(zhì)量[32]。增雨處理對于植被群落生長的積極作用增加了其對土壤C和N的需求[28]。增雨處理通過提高土壤水分可利用性,進(jìn)而提高了微生物群落的活性[33],同時也提高了土壤呼吸,從而加速了土壤C的流失[34],從多個途徑減少了土壤DOC含量[35]。土壤DOC含量的下降導(dǎo)致土壤有機(jī)酸和酸性物質(zhì)含量減少,進(jìn)而導(dǎo)致土壤pH值上升[36-37]。增雨處理會增加植物物種多樣性,尤其是在受到水分限制的地區(qū)[38],但是本研究在全國尺度上出現(xiàn)了相反的結(jié)果,增雨處理會降低FVC,其原因可能是增雨處理提高了優(yōu)勢種或喜水植物的占比,增雨處理還會減少植物物種多樣性。而植被豐富度的降低會降低根系分泌物對土壤微生物群落生物量的積極作用[39],進(jìn)而導(dǎo)致土壤pH值上升[40-41]。本研究發(fā)現(xiàn)增雨處理會顯著降低植被地下生物量,這可能是因?yàn)橥寥浪诌^于飽和導(dǎo)致的根系缺氧[42],也可能是因?yàn)榈厣喜糠稚L旺盛,土壤養(yǎng)分條件降低導(dǎo)致的。地下生物量的減少,通過根系分泌物的減少、土壤微生物數(shù)量和活性的降低導(dǎo)致土壤全氮含量下降[43]。土壤全氮則是通過減少土壤酸性物質(zhì)(銨態(tài)氮、氨基酸等)導(dǎo)致土壤pH值的上升[44-45]。
本研究發(fā)現(xiàn),以年降雨量200 mm,400 mm為界將數(shù)據(jù)進(jìn)行分類,年降雨量高于400 mm地區(qū)的土壤pH值對增雨處理的響應(yīng)不顯著,其原因可能是高降雨量地區(qū)土壤含水量、有機(jī)質(zhì)、離子含量較高從而能夠中和土壤pH值的響應(yīng)趨勢,也可能是當(dāng)?shù)厣鷳B(tài)系統(tǒng)能抵抗短期的增雨處理[46]。本研究發(fā)現(xiàn),以年均溫0℃為界將數(shù)據(jù)進(jìn)行分類,年均溫高于0℃地區(qū)的土壤pH值對增雨處理的響應(yīng)不顯著,原因是年均溫較高的地區(qū)通常土壤呼吸速率和有機(jī)物分解速率也較高[47],排放出了大量的二氧化碳和有機(jī)酸,能夠中和增雨處理對土壤pH的堿化作用。本研究發(fā)現(xiàn),以土壤酸堿度將數(shù)據(jù)進(jìn)行分類,在堿性草地上,增雨處理顯著降低了土壤pH值2.7%,這與表土鹽基離子的淋溶有關(guān)[48],此外,增雨處理可能促進(jìn)植物根系吸水,在此過程中將部分鹽基離子吸收[49]。本研究發(fā)現(xiàn),以草原類型進(jìn)行分類,在草甸草原上,增雨處理對土壤pH值無顯著影響,其原因可能是相對較高的MAP使得該地區(qū)生態(tài)系統(tǒng)相對穩(wěn)定,不易受到增雨處理的影響[46]。
3.2 土壤pH值對減雨處理的響應(yīng)
本研究結(jié)果表明減雨處理降低了中國草地土壤pH值,但趨勢不顯著。僅在MAP低于400 mm的草地上顯著,其作用途徑可能是減雨處理通過增加AP,EC,IN進(jìn)而提高DOC,NO_3^--N,TN,降低土壤pH值,也可以通過降低BGB或提高DOC,NO_3^--N直接降低土壤pH值(圖5)。
本研究發(fā)現(xiàn)減雨處理對于植物地下生物量存在顯著的消極影響,與松嫩草原的研究相反[49],但這并不違背“最優(yōu)分配理論”,減雨處理導(dǎo)致植株矮小,限制了植被生長,且對于地上部分的影響要大于地下部分(圖5)。此外減雨處理會降低土壤水分可利用性,減少植被的繁殖,提高了物種的死亡率[28]。減雨處理可能通過促進(jìn)植物病原菌的產(chǎn)生,進(jìn)而導(dǎo)致植物多樣性下降,并促使植物趨于抗逆性生長[50],綜合影響了植被的地下生物量。與增雨處理機(jī)理類似,地下生物量的減少會導(dǎo)致pH值下降。本研究發(fā)現(xiàn)減雨處理顯著提高了土壤AP和IN,減雨處理在一定程度上緩解了土壤養(yǎng)分的淋溶和流失,此外為微生物提供了充足的養(yǎng)分條件,促進(jìn)了有機(jī)質(zhì)的分解,提高了土壤中C,N,P的含量[51-52]。土壤AP含量的提高會通過對微生物[53-54]和植物[55-56]生長的促進(jìn)增加土壤DOC的來源,土壤DOC含量的上升通過土壤有機(jī)酸等酸性物質(zhì)的增加降低pH值。土壤總無機(jī)氮含量的升高導(dǎo)致NO_3^--N含量的升高,進(jìn)而降低土壤pH值[57]。本研究發(fā)現(xiàn)減雨處理顯著提高了EC,減雨處理降低了降雨導(dǎo)致的離子淋溶進(jìn)而提高了土壤電導(dǎo)率[58]。土壤EC的提高也就意味著包含無機(jī)氮化合物在內(nèi)的離子含量提高,在微生物的作用下釋放出氮元素,提高了土壤總氮含量,進(jìn)而導(dǎo)致了土壤酸化。
本研究發(fā)現(xiàn),以年降雨量200 mm,400 mm為界將數(shù)據(jù)進(jìn)行分類,MAP大于400 mm地區(qū)減雨處理對土壤pH值的影響不顯著,其原因是高降雨量地區(qū)的土壤條件相對穩(wěn)定,不易在短期減雨處理?xiàng)l件下受到顯著的影響[46]。以年均溫0℃為界將數(shù)據(jù)進(jìn)行分類,年均溫高于0℃地區(qū)的土壤pH值對減雨處理的響應(yīng)不顯著,我國年均溫高于0℃地區(qū)通常土壤水分、養(yǎng)分條件較穩(wěn)定[58],對短期減雨處理的影響具備一定的緩沖能力。以土壤酸堿度將數(shù)據(jù)進(jìn)行分類,減雨處理對堿性草原土壤pH值無顯著影響,是因?yàn)辂}堿地巨大的蒸發(fā)量[28]。以草原類型進(jìn)行分類,荒漠草原減雨處理對土壤pH值影響不顯著的原因與堿性草原類似,減雨處理強(qiáng)度相較于巨大的蒸發(fā)量顯得微不足道[28]。
需要指出的是,由于關(guān)于我國草地增雨處理和減雨處理下土壤pH值變化的文獻(xiàn)數(shù)量相對較少,使得本文的數(shù)據(jù)有限,也就導(dǎo)致了本研究的最終結(jié)果存在一定的局限性。此外,盡管本研究發(fā)現(xiàn)了增雨處理和減雨處理對中國草地土壤pH值影響的差異化途徑,但其普適性需要進(jìn)一步驗(yàn)證。因此,在極端降雨頻發(fā)的全球氣候變化大背景下,未來需要開展更多研究以進(jìn)一步探索土壤pH值對增雨處理和減雨處理的響應(yīng)結(jié)果及途徑,以期在更大尺度上給出更加準(zhǔn)確和普適的結(jié)論。
4 結(jié)論
極端降雨對中國草地土壤pH值有顯著影響,影響大小與年均溫、年均降雨量、土壤初始pH值和草地類型有關(guān)。增雨處理通過提高優(yōu)勢種豐度增加植被蓋度,減少物種豐富度和地下生物量,間接影響土壤養(yǎng)分含量,顯著提高了中國草地土壤pH值;減雨處理對中國草地土壤pH值影響不顯著,在年降雨量小于400 mm 的地區(qū),主要通過對土壤養(yǎng)分含量的影響顯著降低中國草地土壤pH值。
參考文獻(xiàn)
[1] 武倩,鞠馨,任海燕,等. 降水調(diào)節(jié)荒漠草原生態(tài)系統(tǒng)碳交換對增溫和氮添加的響應(yīng)[J]. 草地學(xué)報(bào),2024,32(4):1224-1233
[2] GU L,YIN J B,GENTINE P,et al. Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics[J]. Nature Communications,2023,14(1):3197
[3] MARTINEZ-VILLALOBOS C,NEELIN J D. Regionally high risk increase for precipitation extreme events under global warming[J]. Scientific Reports,2023,13(1):5579
[4] BAO J W,SHERWOOD S C,ALEXANDER L V,et al. Future increases in extreme precipitation exceed observed scaling rates[J]. Nature Climate Change,2017,7:128-132
[5] WANG S,ZHANG S W,LIN X,et al. Response of soil water and carbon storage to short-term grazing prohibition in arid and semi-arid grasslands of China[J]. Journal of Arid Environments,2022,202:104754
[6] GUO Q,HU Z M,LI S G,et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution[J]. Global Change Biology,2012,18(12):3624-3631
[7] CHENG Z,CUI Z,SHI J J,et al. Plant functional types drive differential responses of grassland ecosystem functions along a precipitation gradient[J]. Ecological Indicators,2021,133:108433
[8] FRANK D,REICHSTEIN M,BAHN M,et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts[J]. Global Change Biology,2015,21(8):2861-2880
[9] REN S L,CHEN X Q,PAN C C. Temperature-precipitation background affects spatial heterogeneity of spring phenology responses to climate change in northern grasslands (30°N-55°N)[J]. Agricultural and Forest Meteorology,2022,315:108816
[10] SU Y,MA X F,GONG Y M,et al. Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China[J]. Journal of Arid Land,2021,13(7):717-729
[11] 王英成,蘆光新,鄭開福,等. 退化高寒草甸土壤真菌群落水平分布格局及驅(qū)動因子[J]. 草地學(xué)報(bào),2024,32(4):1105-1111
[12] YU C Q,WANG J W,SHEN Z X,et al. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the Northern Tibetan Plateau[J]. Science of the Total Environment,2019,647:1490-1497
[13] WANG C,VERA-VéLEZ R,LAMB E G,et al. Global pattern and associated drivers of grassland productivity sensitivity to precipitation change[J]. Science of the Total Environment,2022,806:151224
[14] WANG J,WEN X F,LYU S D,et al. Transition in multi-dimensional leaf traits and their controls on water use strategies of co-occurring species along a soil limiting-resource gradient[J]. Ecological Indicators,2021,128:107838
[15] KAMBLE P N,GAIKWAD V B,KUCHEKAR S R,et al. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India)[J]. European Journal of Soil Biology,2014,65:87-95
[16] LI Y,LI Z,CUI S,et al. Trade-off between soil pH, bulk density and other soil physical properties under global no-tillage agriculture[J]. Geoderma,2020,361:114099
[17] TIAN D S,NIU S L. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters,2015,10(2):024019
[18] 陳美玲. 模擬增氮和增雨對貝加爾針茅草甸草原的植被、土壤以及土壤真菌群落的影響[D]. 長春:東北師范大學(xué),2013:12-14
[19] GUO X X,ZUO X A,YUE P,et al. Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, Northern China[J]. Plant and Soil,2022,471(1):527-540
[20] 楊新宇,林笠,李穎,等. 青藏高原高寒草甸土壤物理性質(zhì)及碳組分對增溫和降雨改變的響應(yīng)[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,53(4):765-774
[21] ABBASI A,SALAZAR A,OH Y,et al. Reviews and syntheses: soil responses to manipulated precipitation changes - an assessment of meta-analyses[J]. Biogeosciences,2020,17(14):3859-3873
[22] 高艷紅,許建偉,張萌,等. 中國400 mm等降水量變遷與干濕變化研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2020,35(11):1101-1112
[23] 黃翔,陳鋼,洪娟,等. 耕地土壤pH測定方法比較研究[J]. 湖北農(nóng)業(yè)科學(xué),2021,60(19):106-109
[24] ZHANG Z Y,LI Y X,WILLIAMS R A,et al. Responses of soil respiration and its sensitivities to temperature and precipitation: A meta-analysis[J]. Ecological Informatics,2023,75:102057
[25] ZHOU G Y,ZHOU X H,HE Y H,et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis[J]. Global Change Biology,2017,23(3):1167-1179
[26] ZHU M K,KONG F L,LI Y,et al. Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland[J]. Environmental Research,2020,187:109659
[27] MOHAMMADIAN E,HADAVIMOGHADDAM F,KHEIROLLAHI M,et al. Probing solubility and pH of CO2 in aqueous solutions: Implications for CO2 injection into oceans[J]. Journal of CO2 Utilization,2023,71:102463
[28] LI N,WANG B R,HUANG Y M,et al. Response of cbbL-harboring microorganisms to precipitation changes in a naturally-restored grassland[J]. Science of The Total Environment,2022,838:156191
[29] ZHANG L H,XIE Z K,ZHAO R F,et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology,2018,127:87-95
[30] 閆鐘清,齊玉春,李素儉,等. 降水和氮沉降增加對草地土壤微生物與酶活性的影響研究進(jìn)展[J]. 微生物學(xué)通報(bào),2017,44(6):1481-1490
[31] HOOKER T D,STARK J M,NORTON U,et al. Distribution of ecosystem C and N within contrasting vegetation types in a semiarid rangeland in the Great Basin, USA[J]. Biogeochemistry,2008,90(3):291-308
[32] VERBRIGGHE N,MEERAN K,BAHN M,et al. Long-term warming reduced microbial biomass but increased recent plant-derived C in microbes of a subarctic grassland[J]. Soil Biology and Biochemistry,2022,167:108590
[33] YANG X J,XIANG G H,SUN W C,et al. Shrub encroachment drives different responses of soil respiration to increased precipitation and N enrichment[J]. Agricultural and Forest Meteorology,2022,325:109155
[34] 常晨暉,茍小林,吳福忠,等. 利用海拔差異模擬增溫對高山森林土壤溶解性有機(jī)碳和有機(jī)氮含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(3):663-671
[35] ZHANG C,LIU G B,XUE S,et al. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China[J]. European Journal of Soil Biology,2013,54:16-24
[36] WANG T,KANG F F,CHENG X Q,et al. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China[J]. Soil and Tillage Research,2016,163:176-184
[37] SONG M,LI X M,JING S S,et al. Responses of soil nematodes to water and nitrogen additions in an old-field grassland[J]. Applied Soil Ecology,2016,102:53-60
[38] WANG X Y,GE Y,WANG J. Positive effects of plant diversity on soil microbial biomass and activity are associated with more root biomass production[J]. Journal of Plant Interactions,2017,12(1):533-541
[39] YAO X D,ZHANG N L,ZENG H,et al. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China[J]. Science of the Total Environment,2018,630:96-102
[40] 譚淑端,朱明勇,張克榮,等. 植物對水淹脅迫的響應(yīng)與適應(yīng)[J]. 生態(tài)學(xué)雜志,2009,28(9):1871-1877
[41] GONG X W, FENG Y,DANG K,et al. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families[J]. Science of the Total Environment,2023,881:163536
[42] LANDI L,VALORI F,ASCHER J,et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils[J]. Soil Biology and Biochemistry,2006,38(3):509-516
[43] ALHAJ HAMOUD Y,SHAGHALEH H,GUO X P,et al. pH-responsive/sustained release nitrogen fertilizer hydrogel improves yield, nitrogen metabolism, and nitrogen use efficiency of rice under alternative wetting and moderate drying irrigation[J]. Environmental and Experimental Botany,2023,211:105376
[44] YANG Y,CHEN X L,LIU L X,et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis[J]. Global Change Biology,2022,28(21):6446-6461
[45] CHEN J D,YAO Y,WANG G,et al. Decreased precipitation frequency altered abundance, but not community structure, of soil nematodes in degraded grasslands[J]. Ecological Indicators,2021,131:108184
[46] YAN Y J,WANG J S,TIAN D S,et al. Sustained increases in soil respiration accompany increased carbon input under long-term warming across global grasslands[J]. Geoderma,2022,428:116157
[47] 張慧智,史學(xué)正,于東升,等. 中國土壤溫度的季節(jié)性變化及其區(qū)域分異研究[J]. 土壤學(xué)報(bào),2009,46(2):227-234
[48] SAHAB S,SUHANI I,SRIVASTAVA V,et al. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies[J]. Science of the Total Environment,2021,764:144164
[49] AZAD K,KAMINSKYJ S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth[J]. Symbiosis,2016,68(1):73-78
[50] FENG H Y,MA M T,WANG Z,et al. Diversity and community composition of carbon-fixing microbes along precipitation gradient in the Tibetan Plateau[J]. Catena,2023,222:106849
[51] FADIJI A E,YADAV A N,SANTOYO G,et al. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview[J]. Microbiological Research,2023,271:127368
[52] WU W C,WANG F,XIA A Q,et al. Meta-analysis of the impacts of phosphorus addition on soil microbes[J]. Agriculture Ecosystems amp; Environment,2022,340:108180
[53] JIANG J,WANG Y P,LIU F C,et al. Antagonistic and additive interactions dominate the responses of belowground carbon-cycling processes to nitrogen and phosphorus additions[J]. Soil Biology and Biochemistry,2021,156:108216
[54] LIU Z K,LI J,BAYAERTA,et al. Biodiversity in mosaic communities: Soil microbial diversity associates with plant functional groups relating to soil available phosphorus in Tibetan alpine meadow[J]. European Journal of Soil Biology,2023,116:103479
[55] ZHU S G,CHENG Z G,WANG J,et al. Soil phosphorus availability and utilization are mediated by plant facilitation via rhizosphere interactions in an intercropping system[J]. European Journal of Agronomy,2023,142:126679
[56] ZHANG H Q,ZHAO X Q,SHI Y,et al. Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions[J]. Geoderma,2021,398:115102
[57] WANG J L,ZHAO X Q,ZHANG H Q,et al. The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity[J]. Journal of Soils and Sediments,2021,21(9):3019-3033
[58] WU G L,YANG Z,CUI Z,et al. Mixed artificial grasslands with more roots improved mine soil infiltration capacity[J]. Journal of Hydrology,2016,535:54-60
(責(zé)任編輯 "閔芝智)