国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

板栗外生菌根誘導(dǎo)基因CmNRT3的表達(dá)及功能研究

2024-12-31 00:00:00任艷艷李子平何玉吉張昊琳王韻清張卿肖婷婷李虎臣曹慶芹
果樹(shù)學(xué)報(bào) 2024年10期
關(guān)鍵詞:基因功能板栗

摘" " 要:【目的】外生菌根是板栗獲取土壤氮素的重要途徑,但目前外生菌根對(duì)提高板栗氮素吸收和利用的分子機(jī)制尚不明確。探明板栗外生菌根誘導(dǎo)上調(diào)的硝酸鹽轉(zhuǎn)運(yùn)蛋白基因CmNRT3的序列特征、表達(dá)模式及相關(guān)功能,將為外生菌根促氮吸收提供理論依據(jù)?!痉椒ā客ㄟ^(guò)轉(zhuǎn)錄組數(shù)據(jù)分析、熒光定量PCR、瞬時(shí)轉(zhuǎn)化體系及酵母互補(bǔ)等方法研究CmNRT3基因的表達(dá)特征和生理功能?!窘Y(jié)果】CmNRT3基因在板栗外生菌根中顯著上調(diào)表達(dá)。在未接種板栗及苜蓿轉(zhuǎn)基因根系的表皮細(xì)胞中檢測(cè)到CmNRT3啟動(dòng)子驅(qū)動(dòng)的GUS信號(hào),而在苜蓿的叢枝菌根中,GUS信號(hào)主要存在于含有叢枝的皮層細(xì)胞中。亞細(xì)胞定位結(jié)果顯示CmNRT3定位于細(xì)胞膜及苜蓿含有叢枝的細(xì)胞膜上。酵母互補(bǔ)試驗(yàn)表明,CmNRT3轉(zhuǎn)運(yùn)蛋白不能互補(bǔ)硝酸鹽轉(zhuǎn)運(yùn)缺陷型酵母的功能?!窘Y(jié)論】CmNRT3受外生菌根誘導(dǎo)表達(dá),定位于細(xì)胞膜上。CmNRT3啟動(dòng)子驅(qū)動(dòng)的GUS信號(hào)在含叢枝的苜蓿根系皮層細(xì)胞中強(qiáng)烈表達(dá),但不具備硝酸鹽吸收或轉(zhuǎn)運(yùn)功能。該研究為進(jìn)一步揭示板栗外生菌根促氮吸收提供了理論基礎(chǔ)。

關(guān)鍵詞:板栗;外生菌根;CmNRT3;硝酸鹽吸收轉(zhuǎn)運(yùn);基因功能

中圖分類(lèi)號(hào):S664.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)10-2014-11

Expression and function of ectomycorrhizal induced gene CmNRT3 in Chinese chestnut

REN Yanyan, LI Ziping, HE Yuji, ZHANG Haolin, WANG Yunqing, ZHANG Qing, XIAO Tingting, LI Huchen, CAO Qingqin*

(College of Plant Science and Technology, Beijing University of Agriculture/Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China)

Abstract: 【Objective】 Ectomycorrhizae is an important microbial that enables chestnut trees to obtain limited soil nutrients, such as nitrogen. The molecular mechanism involved in nitrogen absorption and utilization by ectomycorrhizae has not yet been clarified in chestnut. In this study, the highly induced nitrate transporter gene CmNRT3 of Chinese chestnut in response to ectomycorrhizal symbiosis was identified and its spatial expression pattern and protein function were further analyzed. 【Methods】 The plant materials used were Chinese chestnut Jingshuhong, which produced healthy, pest-free fruits, and Medicago truncatula ecotype A17 and Nicotiana benthamiana, which were propagated in our laboratory. The ectomycorrhizal fungus selected was Scleroderma citrinum, obtained by propagation on P20 medium. The arbuscular mycorrhizal fungus used was spores of Rhizophagus irregularis, provided by the arbuscular mycorrhizal fungi germplasm resource center of Beijing Academy of Agriculture and Forestry Sciences. △ynt-Leu- yeast lacking of nitrate transportation ability was provided by Yuan Lixing's research group (China Agricultural University), and cultured in YNB yeast medium. To investigate which chestnut NRTs were involved in ectomycorrhizal symbiosis, the excavation and expression analysis of Chinese chestnut NRT gene family in both control and ectomycorrhizae colonized roots were conducted. The CmNRTs were identified using protein sequence BLAST of Arabidopsis and rice NRTs against the chestnut genome, and MEGA7.0.14 software for gene sequence alignment and evolutionary analysis was employed. The high induction of CmNRT3 in chestnut ectomycorrhizal roots was confirmed using quantitative real-time PCR (BIO-RAD, USA). Primers used were designed by Primer 3 (v.0.4.0) (http://bioinfo.ut.ee/primer3-0.4.0/). Primer sequences of CmNRT3 were CmNRT3-F: 5'- GTCTAGCTGTAACTTGTTATGGA-3', CmNRT3-R: 5'-CTGGCAAACTCTGGTTTAGA-3'. Primer sequences of CmACTIN as a reference gene were CmACTIN-F: 5'-GTGGCGGTTCAACCATGTTC-3', CmACTIN-R: 5'- GGATGGACCACTCTCATCGT-3'. Further, a 1.6 kb promoter of CmNRT3 was cloned, and the CmNRT3 promoter-GUS construct was generated and transgenic roots expressing this reporter by performing hairy root transformation were obtained. Additionally, this construct was introduced into Medicago through hairy root transformation as well, and then the transgenic roots were inoculated with R. irregularis. The transgenic roots underwent GUS staining, plastic embedding, and sectioning with a microtome (Leica). The sections were counterstained with ruthenium red and observed under a light microscope (Leica 5500). In this way the spatial expression pattern of CmNRT3 was studied in chestnut control roots, and heterozygously analyzed in Medicago arbuscular mycorrhizal roots. To further identify the CmNRT3’s subcellular localization, 35S::CmNRT3::GFP and CmNRT3pro::CmNRT3::GFP fusion constructs were generated and transiently expressed in N. benthamiana leaves and Medicago roots, respectively. Here, plasma membrane-tagged protein pm-rb CD3-1008 expression vectors were used as a marker, and a laser confocal microscope (Leica STELLARIS 5) was used for protein expression observation. To test whether this CmNRT3 function is a nitrate transporter, CmNRT3-pDR-F1-GW vector by using pENTR-TOPO-CmNRT3 vector (with stop codon) through LR recombination reaction was generated. Subsequently, yeast functional complementation experiments by expressing the aforementioned vector in △ynt-Leu- yeast were conducted. 【Results】 60 putative nitrate transporter (NRT) gene family members in chestnut genome were characterized, and divided into three subfamilies, NRT1, NRT2 and NRT3. In NRT3 subfamily, Cm06G00423 was the only member and therefore named as CmNRT3. Based on transcriptome data analyses of Chinese chestnut control and ectomycorrhizal roots, CmNRT3 was induced by 8 folds in 2 months old ectomycorrhizal roots. Meanwhile, through quantitative real-time PCR the expression level of CmNRT3 gene was up-regulated by 3.13 folds in 1 month old ECM, compared with the control roots. A 1.6 kb CmNRT3 promoter-driven GUS signal was mainly detected in the epidermis and weakly in the cortex in chestnut and Medicago control roots. However, the GUS signal was predominantly present in arbuscule containing cells upon arbuscular mycorrhizal symbiosis in Medicago roots. The subcellular localization analysis by using 35S::CmNRT3::GFP construct indicated that CmNRT3 was localized on the cell membrane, marked by the plasma membrane pm-rb CD3-1008 reporter in N. benthamiana leaves. In Medicago arbuscular mycorrhizal roots expressing CmNRT3pro::CmNRT3::GFP fusion vectors, CmNRT3 protein was mainly localized in arbuscule containing cells and specifically on the peri-arbuscular membrane, an interface between plants and arbuscular mycorrhizal fungi. Through yeast complementation assay, the nitrate transportation defective yeast expressing CmNRT3 failed to recover the growth in Leu-deficient medium. In contrast, the growth could be restored by adding Leu in the medium. 【Conclusion】 This analysis indicated that CmNRT3 is a unique gene within NRT3 subfamily in Chinese chestnut, indicating this gene has a specific function. CmNRT3 is highly expressed in both early and late stages of ectomycorrhizal symbiosis, suggesting it is required during the whole process of symbiotic interaction. This expression pattern seems conserved in different plant species. CmNRT3 is localized on membranes particularly in arbuscular plasma membrane. It might function as a membrane co-transporter. This study underscored the role of ectomycorrhiza in promoting nitrogen absorption and utilization in Chinese chestnut.

Key words: Chinese chestnut; Ectomycorrhiza; CmNRT3; Nitrate absorption and transport; Gene function

菌根是自然界中普遍存在的一種共生現(xiàn)象,是由土壤中的菌根真菌與高等植物根系形成的共生關(guān)系[1]。研究表明,菌根真菌所獲取的氮和磷可占植物根系吸收的80%[2]。外生菌根是菌根中的一種主要類(lèi)型,主要在木本植物中形成,如板栗、楊樹(shù)和松樹(shù)等。與叢枝菌根真菌入侵植物根系皮層細(xì)胞形成細(xì)胞內(nèi)叢枝結(jié)構(gòu)不同,外生菌根具有典型的結(jié)構(gòu)特征,真菌菌絲在根尖外層形成菌套,在根表皮細(xì)胞之間形成哈蒂氏網(wǎng)以及根外形成外延菌絲[3- 4]。外生菌根真菌的外延菌絲從土壤中吸收水分及礦質(zhì)營(yíng)養(yǎng)元素通過(guò)遠(yuǎn)距離運(yùn)輸給菌根,然后通過(guò)相關(guān)轉(zhuǎn)運(yùn)蛋白轉(zhuǎn)運(yùn)至共生界面提供給宿主植物。

氮素是植物生長(zhǎng)發(fā)育過(guò)程中必不可少的營(yíng)養(yǎng)元素[5]。在自然界中,植物根系吸收氮的主要形式是硝酸鹽(NO3-)和銨鹽(NH4+)[6-8]。在好氧土壤條件下,NO3-是大多數(shù)植物吸收氮的主要形式[9]。為了適應(yīng)土壤中硝酸鹽的濃度變化,高等植物發(fā)展出了兩種不同的硝酸鹽吸收系統(tǒng),分別為高親和力運(yùn)輸系統(tǒng)(HATs)及低親和力運(yùn)輸系統(tǒng)(LATs)[10]。

在植物根系中,NO3-的吸收及運(yùn)輸主要由硝酸鹽轉(zhuǎn)運(yùn)蛋白家族(nitrate transporter,NRT)負(fù)責(zé)。NRTs包含了3個(gè)基因家族:NRT1家族[又稱(chēng)PTR(peptide transporter)基因家族或NPF(NRT1 PTR FAMILY)基因家族][11]、NRT2家族及NRT3家族(又稱(chēng)NAR家族)[9]。NRT1基因家族十分龐大,除轉(zhuǎn)運(yùn)NO3-外,還能轉(zhuǎn)運(yùn)NO2-、多肽和氨基酸等物質(zhì),大多數(shù)NRT1家族成員主要在LATs中起作用[12-14]。NRT2家族主要在HATs系統(tǒng)中起作用,他們往往需要NRT3家族作為伴侶蛋白共同促進(jìn)植物在低氮水平下對(duì)硝酸鹽的吸收[15]。在番茄[16]、苜蓿[17]和水稻[18]中均發(fā)現(xiàn)了受叢枝菌根誘導(dǎo)表達(dá)的硝酸鹽轉(zhuǎn)運(yùn)蛋白基因,其中水稻OsNPF4.5在叢枝菌根中的轉(zhuǎn)錄水平比對(duì)照組升高了500倍以上;當(dāng)以硝酸鹽作為唯一氮源時(shí),該基因在氮吸收中的貢獻(xiàn)可占菌根氮吸收貢獻(xiàn)的45%[18]。目前部分叢枝菌根植物共生途徑的硝酸鹽轉(zhuǎn)運(yùn)已得到證實(shí),但外生菌根誘導(dǎo)的硝酸鹽轉(zhuǎn)運(yùn)的研究相對(duì)較少,其轉(zhuǎn)運(yùn)機(jī)制尚未明確。有研究表明,外生菌根真菌與楊樹(shù)共生后,楊樹(shù)PcNRT1.1和PcNRT2.1基因轉(zhuǎn)錄水平明顯高于對(duì)照組[19]。

板栗(Castanea mollissima)為殼斗科栗屬植物,屬于堅(jiān)果類(lèi)喬木經(jīng)濟(jì)植物的一種,具有極高的營(yíng)養(yǎng)價(jià)值,有著“木本糧食”、“干果之王”的美稱(chēng)[20],大多生長(zhǎng)在土壤貧瘠、干旱的地區(qū)[21]。板栗抗旱,耐瘠薄,與其能夠形成外生菌根的能力密切相關(guān)。板栗可與多種外生菌根真菌共生[22],外生菌根形成后,顯著促進(jìn)板栗對(duì)土壤水分、養(yǎng)分的吸收,增強(qiáng)植物對(duì)干旱、鹽堿、重金屬脅迫的耐受性,以及對(duì)病蟲(chóng)害的抗性,滿(mǎn)足了板栗植株正常生長(zhǎng)的需求[23]。

筆者通過(guò)同源序列比對(duì),在板栗基因組中鑒定出60個(gè)CmNRT基因,進(jìn)化分析表明,他們分布于3個(gè)進(jìn)化支,其中CmNRT3為NRT3進(jìn)化支中僅有的成員,前期研究發(fā)現(xiàn)該基因受外生菌根響應(yīng)后上調(diào)表達(dá)[24]。筆者在本研究中進(jìn)一步對(duì)板栗CmNRT3基因開(kāi)展了時(shí)空表達(dá)定位及相關(guān)功能等方面的研究,以期為板栗外生菌根促氮吸收提供科學(xué)依據(jù)。

1 材料和方法

1.1 試驗(yàn)材料

試驗(yàn)于2021—2022年在北京農(nóng)學(xué)院農(nóng)業(yè)應(yīng)用新技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室進(jìn)行。本研究用到的植物材料包括板栗(C. mollissima)京暑紅、蒺藜苜蓿A17(Medicago truncatula)及本氏煙草(Nicotiana benthamiana)。板栗種子果實(shí)飽滿(mǎn)、無(wú)病蟲(chóng)害,蒺藜苜蓿A17種子、本氏煙草種子均為實(shí)驗(yàn)室擴(kuò)繁所得。外生菌根真菌橙黃硬皮馬勃菌(Scleroderma citrinum,Sc)為筆者實(shí)驗(yàn)室分離培養(yǎng),叢枝菌根真菌異形根孢囊霉(Rhizophagus irregularis,Ri)由北京農(nóng)林科學(xué)院叢枝菌根真菌種質(zhì)資源庫(kù)提供。

1.2 外生菌根真菌培養(yǎng)

配制P20固體培養(yǎng)基(0.5 g·L-1 Di-NH4-tartrat、1 g·L-1磷酸二氫鉀、0.5 g·L-1七水合硫酸鎂、1 g·L-1葡萄糖、Kanieltra 1000×母液1 mL、100 mg·L-1 Thiamine 母液1 mL、18 g·L-1瓊脂、氫氧化鉀調(diào)節(jié)pH至5.5),用于培養(yǎng)外生菌根真菌橙黃硬皮馬勃菌。將繼代培養(yǎng)的馬勃菌絲切割成5 mm× 5 mm的方塊,倒置于P20固體培養(yǎng)基上,隨后將培養(yǎng)基正置于25 ℃培養(yǎng)箱中,黑暗培養(yǎng)15 ~ 20 d即可獲得菌絲活力較強(qiáng)的真菌。

1.3 板栗外生菌根土盆共生

在干凈的生長(zhǎng)缽中放入2/3無(wú)菌蛭石,將板栗幼苗放置于生長(zhǎng)缽中央,自來(lái)水澆透。利用固態(tài)橙黃硬皮馬勃菌接種板栗根系,每株板栗苗接種3個(gè)3 cm×3 cm的固態(tài)橙黃硬皮馬勃菌菌塊。同時(shí),用保鮮膜封住生長(zhǎng)缽,一周后,逐步揭開(kāi)保鮮膜。隔周分別澆灌水和營(yíng)養(yǎng)液,2個(gè)月左右即可觀察到外生菌根的形成。

1.4 CmNRT3序列克隆及載體構(gòu)建

利用Omega植物RNA提取試劑盒對(duì)板栗菌根及未接種根系進(jìn)行RNA提取,反轉(zhuǎn)錄獲得cDNA。根據(jù)CmNRT3序列設(shè)計(jì)引物CmNRT3-ORF-F(5'-ATGGCAGCACGTGGAATTCTCT-3')/CmNRT3-ORF-R(5'-TCACTTCTTCTGAGACTGTTTTGCCCTTC-3')和CmNRT3-PRO-F(5'- TCGGGCAGAGTGGAATCTGAATAC-3')/CmNRT3-PRO-R(5'- TTGCTGCTCTGAGTTGTTGCCA-3'),分別擴(kuò)增CmNRT3 ORF序列及起始密碼子上游1.8 kb啟動(dòng)子序列。將擴(kuò)增產(chǎn)物連接到TOPO載體上,測(cè)序正確后,分別構(gòu)建CmNRT3pro::GUS、35S::CmNRT3::GFP及CmNRT3pro::CmNRT3::GFP表達(dá)載體。

1.5 CmNRT3序列比對(duì)及進(jìn)化分析

通過(guò)已知的擬南芥、水稻硝酸鹽轉(zhuǎn)運(yùn)蛋白與板栗基因組進(jìn)行BLASTp比對(duì)分析,并下載相應(yīng)的板栗硝酸鹽轉(zhuǎn)運(yùn)蛋白氨基酸序列;在NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/)中下載擬南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、蒺藜苜蓿(M. truncatula)及毛果楊(Populus trichocarpa)等草本及木本植物NRT3家族蛋白序列。使用MEGA7.0.14軟件中的ClustalW功能進(jìn)行序列比對(duì),導(dǎo)入GeneDoc中標(biāo)記跨膜結(jié)構(gòu)域與保守結(jié)構(gòu)域;使用MEGA7.0.14軟件中的NJ鄰接法構(gòu)建進(jìn)化樹(shù),參數(shù)Bootstrap值設(shè)為1000。

1.6 CmNRT3的表達(dá)分析

分別取板栗未接種根系及外生菌根的樣品提取RNA,反轉(zhuǎn)錄獲得cDNA。所用引物通過(guò)Primer 3(v.0.4.0)進(jìn)行設(shè)計(jì)(http://bioinfo.ut.ee/primer3-0.4.0/),并通過(guò)BioEdit進(jìn)行特異性分析(引物序列為CmNRT3-F:5'-GTCTAGCTGTAACTTGTTATGGA-3';CmNRT3-R:5'-CTGGCAAACTCTGGTTTAGA-3')。利用CFX96 Touch熒光定量PCR檢測(cè)系統(tǒng)(BIO-RAD,美國(guó))進(jìn)行qRT-PCR反應(yīng),數(shù)據(jù)用2-△△CT算法進(jìn)行處理,并通過(guò)SPSS軟件進(jìn)行差異顯著性分析。所有試驗(yàn)均設(shè)置3次重復(fù),CmACTIN作為內(nèi)參基因(引物序列為CmACTIN-F:5'-GTGGCGGTTCAACCATGTTC-3';CmACTIN-R:5'-GGATGGACCACTCTCATCGT-3')。

1.7 CmNRT3啟動(dòng)子GUS分析

將CmNRT3pro::GUS表達(dá)載體轉(zhuǎn)化至發(fā)根農(nóng)桿菌MSU440中,利用毛根轉(zhuǎn)化方法[24-25]獲得轉(zhuǎn)基因根系。板栗和苜蓿毛根轉(zhuǎn)化的外植體均是新長(zhǎng)出的2~3 d的胚根。將含有轉(zhuǎn)基因根系的板栗/苜蓿植株分別與外生菌根真菌橙黃硬皮馬勃菌/叢枝菌根真菌異形根孢囊霉進(jìn)行共生,獲得轉(zhuǎn)基因菌根。取板栗/苜蓿轉(zhuǎn)基因的菌根與未接種根系放入含有GUS染液的離心管中,避光抽真空1~2 h后放入37 ℃培養(yǎng)箱,避光反應(yīng)40 h左右,將根段進(jìn)行樹(shù)脂包埋和切片處理。切片完成后,采用0.1%釕紅染色15 min,即可使用顯微鏡觀察切片。

1.8 CmNRT3蛋白亞細(xì)胞定位

將35S::CmNRT3::GFP及Marker質(zhì)膜標(biāo)記蛋白pm-rb CD3-1008表達(dá)載體轉(zhuǎn)入根癌農(nóng)桿菌GV3101中,并制備侵染液。選擇狀態(tài)較好的煙草,吸取侵染液注射煙草葉片下表皮。過(guò)夜暗培養(yǎng)后,光照培養(yǎng)2~3 d。將侵染后的煙草葉片剪成小塊放置于載玻片上(下表皮朝上),蓋上蓋玻片,利用激光共聚焦顯微鏡(Leica,STELLARIS 5)觀察拍照。

利用發(fā)根農(nóng)桿菌介導(dǎo)的毛根轉(zhuǎn)化方法,將含有CmNRT3pro::CmNRT3::GFP表達(dá)載體的發(fā)根農(nóng)桿菌MSU440侵染苜蓿,獲得轉(zhuǎn)基因根系,進(jìn)而與異形根孢囊霉共生獲得轉(zhuǎn)基因叢枝菌根。將菌根放置于體視顯微鏡下用雙面刀片從中間切成兩部分,使用激光共聚焦顯微鏡觀察。由于轉(zhuǎn)基因材料帶有GFP融合蛋白及DsRed紅色熒光蛋白,因此可通過(guò)GFP(激發(fā)光為489 nm,接收光為495~560 nm)和DsRed(激發(fā)光為561 nm,接收光為565~680 nm)雙激發(fā)光,于40倍水鏡下觀察拍照。

1.9 酵母功能互補(bǔ)

利用 Invitrogen 公司 Gateway? LR ClonaseTM II 重組酶及其試劑盒,將已構(gòu)建好的pENTR-TOPO-CmNRT3載體(含終止密碼子TGA)與酵母表達(dá)載體pDR-F1-GW進(jìn)行LR重組反應(yīng),獲得CmNRT3-pDR-F1-GW表達(dá)載體。將試驗(yàn)組CmNRT3-pDR-F1-GW表達(dá)載體及對(duì)照組pDR-F1-GW載體轉(zhuǎn)入硝酸鹽缺陷型的多形漢遜酵母菌株(△ynt-Leu-)中[26-27]。配制不同硝酸鹽濃度的選擇培養(yǎng)基,以培養(yǎng)基中加入亮氨酸作為陽(yáng)性對(duì)照。選擇PCR鑒定為陽(yáng)性的重組酵母單菌落進(jìn)行活化(PCR鑒定引物為pDR-F:5'-ATTATGACCGGTGACGAAACGTG-3'和CmNRT3-ORF-R:5'-TCACTTCTTCTGAGACTGTTTTGCCCTTC-3'),3000 r·min-1離心5 min,無(wú)菌水清洗2次后再用無(wú)菌水重懸,調(diào)整酵母OD600為1.0,最后用無(wú)菌水稀釋10倍。在不同硝酸鹽濃度的培養(yǎng)基上吸取2 μL菌液點(diǎn)接。37 ℃倒置培養(yǎng),2 d后觀察。

2 結(jié)果與分析

2.1 板栗NRT基因家族成員CmNRT3的鑒定

為鑒定板栗基因組中的硝酸鹽轉(zhuǎn)運(yùn)蛋白成員,利用擬南芥、水稻硝酸鹽轉(zhuǎn)運(yùn)蛋白對(duì)板栗基因組進(jìn)行BLASTp篩選,共鑒定出60個(gè)NRT家族成員。進(jìn)化樹(shù)分析表明,NRT1家族成員56個(gè),NRT2家族成員3個(gè),NRT3家族成員1個(gè)(圖1)。在NRT3基因家族中,只有1個(gè)板栗基因(Cm06G00423),命名為CmNRT3。對(duì)板栗、擬南芥、水稻、苜蓿和楊樹(shù)NRT3家族成員的進(jìn)化樹(shù)分析表明,這些物種分別存在1、2、2、2和3個(gè)NRT3基因,因此利用板栗研究NRT3基因的功能可以避免同源基因功能的冗余性。

蛋白序列比對(duì)結(jié)果(圖2)表明,前述5個(gè)物種的NRT3中均含有NAR2(high-affinity nitrate transporter)保守結(jié)構(gòu)域及兩個(gè)跨膜結(jié)構(gòu)域。在水稻中NAR2結(jié)構(gòu)域參與了硝酸鹽的信號(hào)轉(zhuǎn)導(dǎo)[28];而跨膜結(jié)構(gòu)域則參與硝酸鹽的吸收及運(yùn)輸。這些結(jié)果預(yù)示了CmNRT3可能參與板栗根系氮素利用的生物學(xué)功能。

2.2 CmNRT3在外生菌根中誘導(dǎo)上調(diào)表達(dá)

對(duì)板栗60個(gè)NRT家族成員進(jìn)行轉(zhuǎn)錄組數(shù)據(jù)分析[29],發(fā)現(xiàn)與對(duì)照組相比,共有14個(gè)基因在外生菌根中極顯著上調(diào)表達(dá),且上調(diào)倍數(shù)大于2倍(圖3)。其中Cm06G00423(CmNRT3)在外生菌根中高度表達(dá),與對(duì)照組相比上調(diào)了8倍。為研究CmNRT3是否在外生菌根中具有作用,qRT-PCR結(jié)果表明,與未接種的對(duì)照根相比,該基因在外生菌根中的表達(dá)量上調(diào)了3.13倍,因此該基因?yàn)橥馍T導(dǎo)上調(diào)表達(dá)的基因(圖4),可能在外生菌根共生中發(fā)揮作用。

2.3 CmNRT3基因啟動(dòng)子在板栗根中的表達(dá)定位

為明確CmNRT3基因的表達(dá)定位,構(gòu)建了由CmNRT3起始密碼子上游1.8 kb啟動(dòng)子序列驅(qū)動(dòng)的GUS表達(dá)載體CmNRT3pro::GUS,將該表達(dá)載體瞬時(shí)轉(zhuǎn)化至板栗根系中。對(duì)含有轉(zhuǎn)基因根的板栗苗接種橙黃硬皮馬勃菌或不接菌處理(對(duì)照組)。但與真菌互作一個(gè)月后,所有的轉(zhuǎn)基因根均未能形成外生菌根(n=6)。將對(duì)照組及真菌互作組的轉(zhuǎn)基因根進(jìn)行GUS染色,并利用半薄塑料切片觀察。如圖5所示,對(duì)照組的板栗轉(zhuǎn)基因根中(n=6),GUS信號(hào)在其表皮細(xì)胞中強(qiáng)烈表達(dá),在皮層細(xì)胞中也有部分表達(dá)。真菌互作組中未形成外生菌根的轉(zhuǎn)基因根也有GUS信號(hào),其表達(dá)模式與對(duì)照組一致。

2.4 CmNRT3基因啟動(dòng)子在苜蓿根中的表達(dá)定位

在未接種叢枝菌根真菌的苜蓿轉(zhuǎn)基因?qū)φ崭校珿US活性在苜蓿轉(zhuǎn)基因根系各個(gè)組織中均有表達(dá),其中表皮細(xì)胞中的表達(dá)量最高(圖6-A),這與板栗中的表達(dá)模式一致,推測(cè)不同物種中CmNRT3表達(dá)模式較為保守。轉(zhuǎn)基因苜蓿根系接種叢枝菌根真菌后,CmNRT3基因在表皮細(xì)胞和未形成叢枝的細(xì)胞中表達(dá)微弱,其主要表達(dá)于叢枝細(xì)胞。同時(shí),在成熟叢枝的細(xì)胞中,GUS信號(hào)最為強(qiáng)烈(圖6-B,紅箭頭指示的細(xì)胞類(lèi)型),而在衰退叢枝的細(xì)胞中GUS信號(hào)減弱(圖6-B,黑箭頭指示的細(xì)胞類(lèi)型),表明CmNRT3的表達(dá)與叢枝菌根的發(fā)育階段具有相關(guān)性。CmNRT3基因在成熟叢枝細(xì)胞中表達(dá)量高預(yù)示其參與了叢枝的功能,推測(cè)該基因介導(dǎo)了叢枝細(xì)胞中氮信號(hào)轉(zhuǎn)導(dǎo)或硝酸鹽的運(yùn)輸。

2.5 CmNRT3蛋白亞細(xì)胞定位

為準(zhǔn)確定位CmNRT3所編碼的蛋白發(fā)揮功能的位置,構(gòu)建了35S::CmNRT3::GFP表達(dá)載體并進(jìn)行煙草葉片亞細(xì)胞定位分析。觀察發(fā)現(xiàn),CmNRT3-GFP融合蛋白與Marker質(zhì)膜標(biāo)記蛋白pm-rb CD3-1008共定位(圖7),說(shuō)明CmNRT3蛋白定位在細(xì)胞膜上,是膜轉(zhuǎn)運(yùn)蛋白,與其具有兩個(gè)跨膜結(jié)構(gòu)域一致(圖2)。

為進(jìn)一步探究CmNRT3在菌根共生中的功能,利用苜蓿叢枝菌根體系研究CmNRT3在苜蓿叢枝中的亞細(xì)胞定位。首先利用CmNRT3起始密碼子上游1.8 kb的啟動(dòng)子構(gòu)建了CmNRT3pro::CmNRT3::GFP融合表達(dá)載體,瞬時(shí)轉(zhuǎn)化獲得苜蓿轉(zhuǎn)基因根后,接種叢枝菌根真菌異形根孢囊霉或不進(jìn)行接種(對(duì)照組),4周后利用激光掃描共聚焦顯微鏡對(duì)GFP信號(hào)進(jìn)行定位觀察。在對(duì)照根中,CmNRT3蛋白定位于細(xì)胞膜上(圖8),與煙草中的觀察結(jié)果一致;在苜蓿的叢枝菌根中觀察到菌絲分支及叢枝主干被GFP包圍,該部位類(lèi)似于叢枝圍膜,推測(cè)CmNRT3蛋白定位于叢枝圍膜上(圖8)。

2.6 酵母功能互補(bǔ)

為了研究CmNRT3是否具有硝酸鹽轉(zhuǎn)運(yùn)功能,構(gòu)建了CmNRT3-pDR-F1-GW酵母表達(dá)載體以開(kāi)展同源互補(bǔ)試驗(yàn),分別將上述載體與空載分別轉(zhuǎn)化酵母突變體。在Leu缺陷培養(yǎng)基中,CmNRT3基因及空載轉(zhuǎn)化的缺陷型酵母突變體均不能正常生長(zhǎng)(圖9-A)。向酵母培養(yǎng)基中添加Leu后,恢復(fù)了缺陷型酵母體內(nèi)的氨基酸合成途徑,缺陷型酵母及轉(zhuǎn)基因酵母生長(zhǎng)狀況良好(圖9-B)。由此可以推斷,CmNRT3基因編碼的蛋白不具有硝酸鹽吸收或轉(zhuǎn)運(yùn)的能力。

3 討 論

目前由于板栗轉(zhuǎn)基因效率低及轉(zhuǎn)基因根系共生難等原因,難以獲得板栗轉(zhuǎn)基因外生菌根。與板栗不同,其親緣支中豆目豆科的苜蓿轉(zhuǎn)基因效率高,常用來(lái)作為研究叢枝菌根共生機(jī)制的模式材料,且有研究表明,外生菌根與叢枝菌根的進(jìn)化共生機(jī)制具有一定的相似性和保守性[30-31]。因此筆者利用菌根模式材料苜蓿來(lái)研究CmNRT3基因的表達(dá)模式,從而推測(cè)其相關(guān)功能。

CmNRT3受外生菌根信號(hào)響應(yīng)上調(diào)表達(dá),推測(cè)可能介導(dǎo)了板栗外生菌根的硝酸鹽途徑。試驗(yàn)結(jié)果表明,CmNRT3pro::GUS表達(dá)載體分別轉(zhuǎn)化苜蓿和板栗后,在未接種轉(zhuǎn)基因根系中,兩者均表現(xiàn)出在根表皮組織中表達(dá)信號(hào)強(qiáng)烈,而在皮層組織中表達(dá)相對(duì)較弱的現(xiàn)象,推測(cè)NRT3在板栗與苜蓿的空間表達(dá)模式上具有高度的進(jìn)化保守性。當(dāng)苜蓿與叢枝菌根真菌共生后,發(fā)現(xiàn)GUS信號(hào)在含有成熟叢枝的皮層細(xì)胞中表達(dá)強(qiáng)烈,而在含有衰退叢枝的細(xì)胞中表達(dá)較弱,這與水稻OsNPF4.5的表達(dá)模式基本一致[18]。此外,前人報(bào)道大豆GmAMT4.1[6]、高粱SbAMT3.1[32]均在叢枝中特異表達(dá),且定位于叢枝周膜中,負(fù)責(zé)將NH4+從叢枝交換界面運(yùn)輸?shù)剿拗髦参镏?,證明了這些基因在叢枝菌根促氮吸收中起關(guān)鍵作用。筆者通過(guò)構(gòu)建CmNRT3pro::CmNRT3::GFP表達(dá)載體并轉(zhuǎn)化苜蓿,發(fā)現(xiàn)CmNRT3蛋白定位于苜蓿叢枝菌根的叢枝上?;贑mNRT3在外生菌根中顯著上調(diào)表達(dá),且叢枝菌根與外生菌根具有一定的進(jìn)化保守性,猜測(cè)CmNRT3基因在外生菌根共生途徑中具有重要功能。

CmNRT3可能作為氮信號(hào)分子參與外生菌根途徑中的硝酸鹽運(yùn)輸。在擬南芥中,酵母雙雜和擬南芥原生質(zhì)體試驗(yàn)表明,所有NRT2(除AtNRT2.7外)基因均與AtNAR2.1(AtNRT3.1)基因相互作用[33]。同樣地,水稻NRT2家族成員中的OsNRT2.1、2.2和2.3a也需要在OsNAR2.1(OsNRT3.1)的協(xié)助下吸收硝酸鹽[34]。此外,許多硝酸鹽轉(zhuǎn)運(yùn)蛋白除運(yùn)輸硝酸鹽外,還常常充當(dāng)硝態(tài)氮的信號(hào)分子感受器,介導(dǎo)相關(guān)信號(hào)的傳遞工作[35]。AtNPF6.3/AtNRT1.1突變后不再具有轉(zhuǎn)運(yùn)硝酸鹽的能力,但仍具有傳遞硝酸鹽信號(hào)的作用,表明其同時(shí)具有信號(hào)分子的功能[36]。酵母功能互補(bǔ)結(jié)果表明,CmNRT3不能直接參與吸收或轉(zhuǎn)運(yùn)硝酸鹽,推測(cè)其可能以氮信號(hào)分子感受器的形式參與外生菌根硝酸鹽吸收。在未接種的對(duì)照根中表皮細(xì)胞的根毛往往是根感受氮信號(hào)以及硝酸鹽吸收的主要部位,qRT-PCR結(jié)果以及啟動(dòng)子分析分別證明了CmNRT3在未接種的板栗對(duì)照根中有表達(dá),且在表皮細(xì)胞表達(dá)量最高。在形成菌根后,植物氮吸收途徑不再局限于根毛,CmNRT3在苜蓿未接種根系及叢枝菌根中的表達(dá)模式也發(fā)生了相應(yīng)的改變。在苜蓿叢枝菌根研究中,感受磷信號(hào)的SPX1和SPX3在未接種的對(duì)照根和叢枝菌根中的表達(dá)模式也發(fā)生了變化,在未接種的對(duì)照根中均勻表達(dá),但在形成叢枝菌根后在叢枝細(xì)胞中特異表達(dá)[37],這與本研究的結(jié)果一致。

4 結(jié) 論

筆者通過(guò)轉(zhuǎn)錄組數(shù)據(jù)分析及實(shí)時(shí)熒光定量PCR驗(yàn)證篩選出了在外生菌根中高度表達(dá)的硝酸鹽轉(zhuǎn)運(yùn)蛋白基因CmNRT3。通過(guò)組織學(xué)定位發(fā)現(xiàn),板栗、苜蓿非菌根的表皮細(xì)胞中檢測(cè)到CmNRT3啟動(dòng)子的GUS信號(hào);在苜蓿菌根中,CmNRT3僅在含叢枝的細(xì)胞中特異性表達(dá)。亞細(xì)胞定位結(jié)果表明,CmNRT3在煙草葉片的細(xì)胞膜上具有活性,是膜轉(zhuǎn)運(yùn)蛋白;在苜蓿中主要在含叢枝的細(xì)胞中表達(dá)并定位于叢枝圍膜上。酵母功能互補(bǔ)驗(yàn)證表明,轉(zhuǎn)化CmNRT3基因的缺陷型多形漢遜酵母突變體仍不能生長(zhǎng),說(shuō)明該基因不具備運(yùn)輸NO3-的能力。

參考文獻(xiàn)References:

[1] SHI J C,WANG X L,WANG E T. Mycorrhizal symbiosis in plant growth and stress adaptation:From genes to ecosystems[J]. Annual Review of Plant Biology,2023,74:569-607.

[2] VAN DER HEIJDEN M G A,MARTIN F M,SELOSSE M A,SANDERS I R. Mycorrhizal ecology and evolution:The past,the present,and the future[J]. New Phytologist,2015,205(4):1406-1423.

[3] BONFANTE P,GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nature Communications,2010,1:48.

[4] TEDERSOO L,BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews of the Cambridge Philosophical Society,2019,94(5):1857-1880.

[5] KUMAR S,KUMAR S,MOHAPATRA T. Interaction between macro- and micro-nutrients in plants[J]. Frontiers in Plant Science,2021,12:665583.

[6] KOEGEL S,AIT LAHMIDI N,ARNOULD C,CHATAGNIER O,WALDER F,INEICHEN K,BOLLER T,WIPF D,WIEMKEN A,COURTY P E. The family of ammonium transporters (AMT) in Sorghum bicolor:Two AMT members are induced locally,but not systemically in roots colonized by arbuscular mycorrhizal fungi[J]. New Phytologist,2013,198(3):853-865.

[7] CHEN A Q,GU M,WANG S S,CHEN J D,XU G H. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis[J]. Seminars in Cell amp; Developmental Biology,2018,74:80-88.

[8] HESTRIN R,HAMMER E C,MUELLER C W,LEHMANN J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J]. Communications Biology,2019,2:233.

[9] WANG Y Y,CHENG Y H,CHEN K E,TSAY Y F. Nitrate transport,signaling,and use efficiency[J]. Annual Review of Plant Biology,2018,69:85-122.

[10] FAN X R,NAZ M,F(xiàn)AN X R,XUAN W,MILLER A J,XU G H. Plant nitrate transporters:From gene function to application[J]. Journal of Experimental Botany,2017,68(10):2463-2475.

[11] LéRAN S,VARALA K,BOYER J C,CHIURAZZI M,CRAWFORD N,DANIEL-VEDELE F,DAVID L,DICKSTEIN R,F(xiàn)ERNANDEZ E,F(xiàn)ORDE B,GASSMANN W,GEIGER D,GOJON A,GONG J M,HALKIER B A,HARRIS J M,HEDRICH R,LIMAMI A M,RENTSCH D,SEO M,TSAY Y F,ZHANG M Y,CORUZZI G,LACOMBE B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants[J]. Trends in Plant Science,2014,19(1):5-9.

[12] SUGIURA M,GEORGESCU M N,TAKAHASHI M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts[J]. Plant amp; Cell Physiology,2007,48(7):1022-1035.

[13] KOMAROVA N Y,THOR K,GUBLER A,MEIER S,DIETRICH D,WEICHERT A,SUTER GROTEMEYER M,TEGEDER M,RENTSCH D. AtPTR1 and AtPTR5 transport dipeptides in planta[J]. Plant Physiology,2008,148(2):856-869.

[14] VON WITTGENSTEIN N J J B,LE C H,HAWKINS B J,EHLTING J. Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants[J]. BMC Evolutionary Biology,2014,14:11.

[15] 李贏. 大麥NRT2/3基因家族分析及其功能驗(yàn)證[D]. 揚(yáng)州:揚(yáng)州大學(xué),2019.

LI Ying. Genome-wide analysis and functional identification of NRT2/3 gene family in barley[D]. Yangzhou:Yangzhou University,2019.

[16] HILDEBRANDT U,SCHMELZER E,BOTHE H. Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus[J]. Physiologia Plantarum,2002,115(1):125-136.

[17] HOHNJEC N,VIEWEG M F,PüHLER A,BECKER A,KüSTER H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza[J]. Plant Physiology,2005,137(4):1283-1301.

[18] WANG S S,CHEN A Q,XIE K,YANG X F,LUO Z Z,CHEN J D,ZENG D C,REN Y H,YANG C F,WANG L X,F(xiàn)ENG H M,LóPEZ-ARREDONDO D L,HERRERA-ESTRELLA L R,XU G H. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(28):16649-16659.

[19] SA G,YAO J,DENG C,LIU J,ZHANG Y N,ZHU Z M,ZHANG Y H,MA X J,ZHAO R,LIN S Z,LU C F,POLLE A,CHEN S L. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net[J]. New Phytologist,2019,222(4):1951-1964.

[20] 劉帥,陳良珂,房克鳳,楊瑞,邢宇,曹慶芹,秦嶺. 板栗種子淀粉體發(fā)育的掃描電鏡觀察[J]. 電子顯微學(xué)報(bào),2015,34(4):346-350.

LIU Shuai,CHEN Liangke,F(xiàn)ANG Kefeng,YANG Rui,XING Yu,CAO Qingqin,QIN Ling. Observation of amyloplast development in chestnut seed by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society,2015,34(4):346-350.

[21] 趙彥華. 板栗良種資源[J]. 果樹(shù)資源學(xué)報(bào),2020,1(6):91-94.

ZHAO Yanhua. Chestnut seed resources[J]. Journal of Fruit Resources,2020,1(6):91-94.

[22] 秦嶺,徐踐,馬萱,苑虎,鄭來(lái)友,王有智. 板栗共生菌根真菌種類(lèi)及其發(fā)生規(guī)律的研究[J]. 北京農(nóng)學(xué)院學(xué)報(bào),1995,10(1):71-76.

QIN Ling,XU Jian,MA Xuan,YUAN Hu,ZHENG Laiyou,WANG Youzhi. Research on symbiotical fungi species and ectomycorrhizae occurrence of chestnut (Castanea mollissima BL.)[J]. Journal of Beijing University of Agriculture,1995,10(1):71-76.

[23] 王騰. 板栗兩種菌根形態(tài)的鑒定及Pht1家族基因的挖掘與表達(dá)分析[D]. 北京:北京農(nóng)學(xué)院,2017.

WANG Teng. Identification of two types of mycorrhizas and expression profiles of Pht1 gene family in mycorrhizal Castanea mollissima Blume.[D]. Beijing:Beijing University of Agriculture,2017.

[24] 李光棟. 板栗田間外生菌根轉(zhuǎn)錄組分析及共生相關(guān)轉(zhuǎn)運(yùn)蛋白基因挖掘[D]. 北京:北京農(nóng)學(xué)院,2020.

LI Guangdong. Transcriptome analysis on ectomycorrhiza of Castanea mollissima revealed symbiotic related nutrient transporters[D]. Beijing:Beijing University of Agriculture,2020.

[25] 安劍勇. 柑橘菌根比較轉(zhuǎn)錄組學(xué)分析及菌根共生寄主糖輸出轉(zhuǎn)運(yùn)蛋白SWEET1b的功能鑒定[D]. 武漢:華中農(nóng)業(yè)大學(xué),2018.

AN Jianyong. Comparative transcriptome analysis of citrus AM symbiosis and functional characterization of AM-host plant sugar efflux transporter SWEET1b[D]. Wuhan:Huazhong Agricultural University,2018.

[26] MACHíN F,MEDINA B,NAVARRO F J,PéREZ M D,VEENHUIS M,TEJERA P,LORENZO H,LANCHA A N,SIVERIO J M. The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha[J]. Yeast,2004,21(3):265-276.

[27] SIVERIO J M. Assimilation of nitrate by yeasts[J]. FEMS Microbiology Reviews,2002,26(3):277-284.

[28] 張辰明. 水稻OsNAR2.1參與硝酸鹽調(diào)控根系生長(zhǎng)的機(jī)制[D]. 南京:南京農(nóng)業(yè)大學(xué),2011.

ZHANG Chenming. The rice OsNAR2.1 participates the regulating root growth by nitrate[D]. Nanjing:Nanjing Agricultural University,2011.

[29] LI H C,GE Y Y,ZHANG Z Y,ZHANG H L,WANG Y Y,WANG M D,ZHAO X,YAN J D,LI Q,QIN L,CAO Q Q,BISSELING T. Arbuscular mycorrhizal conserved genes are recruited for ectomycorrhizal symbiosis[J]. New Phytologist,2024,242(5):1860-1864.

[30] LOTH-PEREDA V,ORSINI E,COURTY P E,LOTA F,KOHLER A,DISS L,BLAUDEZ D,CHALOT M,NEHLS U,BUCHER M,MARTIN F. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa[J]. Plant Physiology,2011,156(4):2141-2154.

[31] HARRISON M J,DEWBRE G R,LIU J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. The Plant Cell,2002,14(10):2413-2429.

[32] KOBAE Y,TAMURA Y,TAKAI S,BANBA M R,HATA S. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean[J]. Plant amp; Cell Physiology,2010,51(9):1411-1415.

[33] KOTUR Z,MACKENZIE N,RAMESH S,TYERMAN S D,KAISER B N,GLASS A D M. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist,2012,194(3):724-731.

[34] YAN M,F(xiàn)AN X R,F(xiàn)ENG H M,MILLER A J,SHEN Q R,XU G H. Rice OsNAR2.1 interacts with OsNRT2.1,OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant,Cell amp; Environment,2011,34(8):1360-1372.

[35] XU G H,F(xiàn)AN X R,MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology,2012,63:153-182.

[36] HO C H,LIN S H,HU H C,TSAY Y F. CHL1 functions as a nitrate sensor in plants[J]. Cell,2009,138(6):1184-1194.

[37] WANG P,SNIJDERS R,KOHLEN W,LIU J Y,BISSELING T,LIMPENS E. Medicago SPX1 and SPX3 regulate phosphate homeostasis,mycorrhizal colonization,and arbuscule degradation[J]. The Plant Cell,2021,33(11):3470-3486.

猜你喜歡
基因功能板栗
又聞板栗香
打板栗
撿板栗
板栗開(kāi)花
青年歌聲(2019年10期)2019-10-18 01:12:26
“噼里啪啦”板栗爆炸啦!
西瓜噬酸菌Ⅲ型分泌系統(tǒng)hrcQ基因功能分析
吃個(gè)板栗不容易
關(guān)于基因敲除技術(shù)的淺介
考試周刊(2017年42期)2018-01-30 15:56:28
豬akirin2基因的組織表達(dá)譜及序列分析
基因組編輯系統(tǒng)CRISPR—Cas9研究進(jìn)展及其在豬研究中的應(yīng)用
瑞安市| 兴和县| 宁波市| 察雅县| 宾川县| 博客| 新闻| 措勤县| 纳雍县| 德庆县| 凤冈县| 灵山县| 尤溪县| 来宾市| 房山区| 德保县| 镇原县| 廊坊市| 曲周县| 广饶县| 商丘市| 康定县| 密云县| 平凉市| 讷河市| 安溪县| 阿拉尔市| 舒兰市| 林州市| 天台县| 托克逊县| 新蔡县| 仁布县| 临安市| 双柏县| 浙江省| 龙门县| 海丰县| 郯城县| 昌吉市| 靖江市|