摘 要:本文研究了有界區(qū)域上一類帶對數(shù)非線性項的半線性橢圓方程多解的存在性。首先,在Nehari流形上利用變分法證明該方程存在一個能量為負的正基態(tài)解;其次,證明問題對應(yīng)的能量泛函滿足(PS)條件,再借助Clark定理得到該問題的一列解。該結(jié)論在一定程度上補充完善了近期相關(guān)結(jié)果。
關(guān)鍵詞:對數(shù)非線性;變分法;Nehari流形;多解
中圖分類號:O177.91 文獻標(biāo)志碼:A 文章編號:1673-5072(2024)06-0595-05
近年來,因為對數(shù)在量子力學(xué)、量子光學(xué)和核物理等領(lǐng)域的相關(guān)性,具有對數(shù)非線性項的各類偏微分問題引起了學(xué)者們的廣泛關(guān)注。其中,關(guān)于帶對數(shù)非線性項的半線性橢圓問題或者帶位勢的對數(shù)Schrdinger問題解的存在性的研究不在少數(shù)。例如,文獻 [1]關(guān)注了如下半線性橢圓問題
參考文獻:
[1] SHUAI W.Two sequences of solutions for the semilinear elliptic equations with logarithmic nonlinearities [J].Journal of Differential Equations,2023,343:263-284.
[2] TIAN S Y.Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity [J].Journal of Mathematical Analysis and Application,2017,454(2):816-828.
[3] SHUAI W.Existence and multiplicity of solutions for logarithmic Schrdinger equations with potential [J].Journal of Mathematical Physics,2021,62(5):051501.
[4] DENG Y B,HE Q H,PAN Y Q,et al.The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation [J].Advanced Nonlinear Studies,2023,23(1):20220049.
[5] SHUAI W.Multiple solutions for logarithmic Schrdinger equations [J].Nonlinearity,2019,32(6):2201-2225.
[6] ALVES C O,JI C,MATEMTICA.Multi-bump positive solutions for a logarithmic Schrdinger equation with deepening potential well [J].Science China(Mathematics),2022,65(8):1577-1598.
[7] 范海寧,劉穎,張彬林.一類具有臨界指數(shù)的對數(shù)方程基態(tài)解的存在性和集中性[J].中國科學(xué):數(shù)學(xué),2022,52(12): 1377-1406.
[8] JI C,SZULKIN A.A logarithmic Schrdinger equation with asymptotic conditions on the potential [J].Journal of Mathematical Analysis and Applications,2016,437(1):241-254.
[9] SQUASSINA M,SZULKIN A.Multiple solutions to logarithmic Schrdinger equations with periodic potential [J].Calculus of Variations and Partial Differential Equations,2015,54(1):585-597.
[10]YUAN L,JIANG Q.Infinitely many solutions of semi-linear elliptic equations with a logarithmic nonlinear term [J].Applied Mechanics and Materials,2014,2948(496-500):2216-2219.
[11]TANAKA K,ZHANG C X.Multi-bump solutions for logarithmic Schrdinger equation [J].Calculus of Variations and Partial Differential Equations,2017,56(2):1-35.
[12]CHEN S,TANG X.Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity [J].Acta Mathmatica Hungarica,2019,157(1):27-38.
[13]TONG Y H,GUO H,F(xiàn)IGUEIREDO G M.Ground state sign-changing solutions for fractional logarithmic Schrdinger equations on bounded domains [J].Electronic Journal of Qualitative Theory of Differential Equations,2021(70):1-14.
[14]WILLEM M.Minimax Theorems[M].Boston:Birkhauser,1996.
[15]LIU Z L,WANG Z Q.On Clark’s theorem and it’s applications to partially sublinear problems [J].Annales De L Institut Henri Poincare-Analyse Non Lineaire,2015,32(5):1015-1037.
Multiple Solutions for A Class of Semilinear Elliptic Equationswith Logarithmic Nonlinearity
LI Yu-hana,LIAO Jia-fengab
(a.School of Mathematics & Information,b.College of Mathematics Education,
China West Normal University,Nanchong Sichuan 637009,China)
Abstract:This paper talks about the existence of multiple solutions for a class of semilinear elliptic equations with logarithmic nonlinearity on a bounded domain.Firstly,the variational method is employed to prove the existence of a positive ground state solution on Nehari manifold,which has negative energy.Secondly,it is proved that the corresponding energy functional satisfies the (PS) condition.Then,a sequence of solutions are obtained by the Clark’s Theorem.The conclusion has complemented and improved the recent relevant results to some extent.
Keywords:logarithmic nonlinearity;variational method;Nehari manifold;multiple solutions