国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細(xì)菌主導(dǎo)的紅肉腐敗機(jī)制研究進(jìn)展

2024-10-10 00:00:00孫歌武桐煊毛衍偉李俊玲朱立賢仝林張新軍成海建谷月張一敏
肉類研究 2024年8期
關(guān)鍵詞:羊肉牛肉豬肉

摘 要:由細(xì)菌主導(dǎo)的紅肉腐敗是一個(gè)涉及多種菌相互競爭、相互作用的復(fù)雜動(dòng)態(tài)過程,深入了解細(xì)菌引起的紅肉腐敗機(jī)制對于抑制肉類腐敗進(jìn)程、開發(fā)紅肉及其制品防腐措施、延長肉品貨架期有重要意義。本文討論3 種紅肉(牛肉、豬肉和羊肉)屠宰分割過程中腐敗微生物的主要污染來源和干預(yù)措施,總結(jié)不同包裝條件下肉類優(yōu)勢腐敗菌,重點(diǎn)討論細(xì)菌引起的紅肉腐敗機(jī)制,發(fā)現(xiàn)動(dòng)物皮毛和分割間的接觸面是紅肉表面微生物污染的主要來源,在各個(gè)環(huán)節(jié)采取2 種或多種抗菌技術(shù)能更好地降低細(xì)菌初始污染水平;不同紅肉中優(yōu)勢菌在相同包裝條件下存在一定差異,但大致相同;微生物通過丙酮酸代謝使肉產(chǎn)生異味,同時(shí)產(chǎn)生信號(hào)分子,調(diào)節(jié)蛋白酶和脂肪酶分泌,引起肉蛋白降解和脂肪分解,導(dǎo)致肉類產(chǎn)生黏液、軟化等腐敗現(xiàn)象。本文旨在為控制紅肉中的細(xì)菌腐敗提供理論基礎(chǔ)。

關(guān)鍵詞:腐??;牛肉;豬肉;羊肉;細(xì)菌;優(yōu)勢菌;機(jī)制

Advances in Understanding the Mechanism of Red Meat Spoilage Caused by Bacteria

SUN Ge1, WU Tongxuan1, MAO Yanwei1, LI Junling2, ZHU Lixian1, TONG Lin3, ZHANG Xinjun4, CHENG Haijian5, GU Yue6, ZHANG Yimin1,*

(1. College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;

2. Shandong Animal Product Quality and Safety Center, Jinan 271299, China; 3. Tongliao Comprehensive Experimental Station, National Beef Cattle Industrial Technology System, Tongliao 028000, China; 4. Zhongwei Comprehensive Experimental Station, National Beef Cattle Industrial Technology System, Zhongwei 755000, China; 5. Jinan Comprehensive Experimental Station, National Beef Cattle Industrial Technology System, Jinan 250000, China; 6. Baicheng Comprehensive Experimental Station,

National Beef Cattle Industrial Technology System, Baicheng 137314, China)

Abstract: Bacterial spoilage of red meat is a complex dynamic process involving competition and interaction between different bacterial communities. Deeply understanding the mechanism behind bacterial spoilage of red meat is of great significance for inhibiting the spoilage process, developing preservation measures and prolonging the shelf life of meat products. This review discusses the main sources of and intervention measures for microbial spoilage and contamination in red meat (beef, pork and lamb) during the slaughter and cutting process, and summarizes the dominant spoilage bacteria in red meat under different packaging conditions, with a focus on the mechanism of bacterial spoilage of red meat. It has been found that animal fur and contact surfaces during the segmentation process are the main sources of microbial contamination on the red meat surface. Two or more disinfection techniques can be applied at each step to better reduce the initial microbial contamination level. The dominant bacteria in different red meats under the same packaging conditions are roughly the same with only slight differences. Microorganisms in meat produce off-odors through pyruvate metabolism, while producing signaling molecules that regulate the secretion of proteases and lipases, leading to proteolysis and lipolysis, which in turn results in spoilage phenomena such as getting slimy and softer texture. This review is expected to provide a theoretical basis for the control of bacterial spoilage in red meat.

Keywords: spoilage; beef; pork; lamb; bacteria; dominant bacteria; mechanism

DOI:10.7506/rlyj1001-8123-20240603-134

中圖分類號(hào):TS251.5" " " " " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8123(2024)08-0063-09

引文格式:

孫歌, 武桐煊, 毛衍偉, 等. 細(xì)菌主導(dǎo)的紅肉腐敗機(jī)制研究進(jìn)展[J]. 肉類研究, 2024, 38(8): 63-71. DOI:10.7506/rlyj1001-8123-20240603-134." " http://www.rlyj.net.cn

SUN Ge, WU Tongxuan, MAO Yanwei, et al. Advances in understanding the mechanism of red meat spoilage caused by bacteria[J]. Meat Research, 2024, 38(8): 63-71. (in Chinese with English abstract) DOI:10.7506/rlyj1001-8123-20240603-134.

http://www.rlyj.net.cn

肉類在生產(chǎn)、運(yùn)輸、貯藏、分銷等任一階段處理不當(dāng)均易引起腐敗變質(zhì),食用腐敗肉類是人類感染食源性致病菌的重要途徑。我國每年因腐敗造成的肉類損失可達(dá)9萬 t,給肉類行業(yè)造成損失達(dá)數(shù)十億美元[1]。肉類腐敗是一個(gè)以微生物為主導(dǎo)的復(fù)雜過程。近年來,食品企業(yè)及相關(guān)研究領(lǐng)域已經(jīng)采取多種措施減少或滅活肉類產(chǎn)品中的微生物,如建立衛(wèi)生管理制度、添加防腐劑和采用減菌技術(shù)等,但由于微生物污染范圍廣且極易交叉污染,肉類腐敗始終不可避免[2]。在屠宰之前,健康活體動(dòng)物的肌肉組織通常被認(rèn)為是無菌的,雖然內(nèi)在細(xì)菌偶爾會(huì)以低水平存在于肌肉組織中,但這并非最常見的污染來源。外部污染是肉類和胴體微生物污染的最主要來源[3]。

肉類的初始微生物取決于屠宰時(shí)動(dòng)物的生理狀態(tài)及污染在屠宰和加工過程中的擴(kuò)散,而導(dǎo)致肉類腐敗的微生物群組成取決于貯藏條件和微生物間的競爭[4]。由于肉類腐敗的復(fù)雜性和影響肉類腐敗各種因素的相互關(guān)聯(lián)性,使得解決這一問題變得非常困難。了解細(xì)菌在肉中的腐敗機(jī)制將有助于制定以經(jīng)驗(yàn)和證據(jù)為基礎(chǔ)的緩解策略。目前已有大量研究探索屠宰加工過程中肉類細(xì)菌污染來源、細(xì)菌在肉中的生長條件及細(xì)菌生長競爭和生長活動(dòng)對肉類貨架期和品質(zhì)的影響,也有一些研究對細(xì)菌的腐敗機(jī)制進(jìn)行探究。但是在該研究領(lǐng)域還缺乏相關(guān)信息和研究成果的總結(jié)和歸納。紅肉在全球肉類總消費(fèi)量中占比較大,其中豬肉占比可達(dá)36%,牛肉和山羊/綿羊肉占比分別約為24%和5%[5]。本文以紅肉中消費(fèi)量最高的牛肉、豬肉和羊肉為代表,在已有文獻(xiàn)基礎(chǔ)上對肉類細(xì)菌污染來源和腐敗機(jī)制進(jìn)行綜述,為采取靶向措施延長肉類貨架期、控制肉類腐敗提供理論支持。

1 紅肉中腐敗微生物的污染來源和干預(yù)措施

在屠宰和加工環(huán)節(jié),由于胴體會(huì)接觸到毛發(fā)、獸皮、糞便和加工環(huán)境(傳送帶、生產(chǎn)工具、機(jī)器設(shè)備、水、操作人員和其他接觸材料)等,所以肉類會(huì)不可避免地受到微生物污染。在實(shí)際生產(chǎn)過程中,胴體間有限的距離和空間還會(huì)造成微生物在胴體間的轉(zhuǎn)移。肉牛屠宰過程中,胴體上的菌落總數(shù)甚至可達(dá)2.7~4.0(lg(CFU/cm2)),分割后生鮮肉的菌落總數(shù)也在4.5(lg(CFU/cm2))以上,而生豬屠宰線上菌落總數(shù)普遍為3.0~5.3(lg(CFU/cm2)),分割肉的菌落總數(shù)甚至超過4.0(lg(CFU/cm2)),綿羊胴體表面的菌落總數(shù)則通常為3.1~4.0(lg(CFU/cm2))[6-8]。

屠宰過程中活體動(dòng)物的皮毛和糞便、泥土及運(yùn)輸、待宰等過程中可轉(zhuǎn)移到皮毛上的污染物是胴體主要的微生物污染源[3]。動(dòng)物皮毛上通常具有較高的微生物數(shù)量和多樣性。在肉牛屠宰前,Kang等[9]從皮毛上檢出梭菌、擬桿菌、假單胞菌、乳酸菌等對肉腐敗有促進(jìn)作用的微生物。van Ba等[10]在牛皮毛上發(fā)現(xiàn)葡萄球菌、芽孢桿菌、埃希氏桿菌。Mohamed等[11]從綿羊皮毛上分離出微球菌、腸球菌、假單胞菌。Sui Lichang等[12]還從生豬皮毛上檢測到嗜冷桿菌、氣球菌、梭菌、乳桿菌等。不同或相同動(dòng)物皮毛上的微生物種類差異與農(nóng)場環(huán)境、動(dòng)物飼養(yǎng)方式、屠宰場環(huán)境及季節(jié)差異密切相關(guān)。動(dòng)物皮毛上的微生物主要通過剝皮環(huán)節(jié)轉(zhuǎn)移到胴體表面,Tergney等[13]研究表明,剝皮操作可以使肉牛胴體上的糞便污染率達(dá)到30%~60%。肉羊與肉牛屠宰工序相似,經(jīng)剝皮處理后,胴體表面的菌落總數(shù)可達(dá)6.95(lg(CFU/100 cm2)),大腸桿菌數(shù)量可達(dá)2.78(lg(CFU/100 cm2))[14]。Hauge等[14]研究發(fā)現(xiàn),在屠宰前對綿羊進(jìn)行剪毛處理可以顯著降低胴體的細(xì)菌負(fù)荷。與肉牛和肉羊屠宰流程不同,國內(nèi)的許多生豬屠宰企業(yè)不進(jìn)行剝皮處理,而采用燙毛和燎毛處理,也可顯著降低生豬皮毛上的微生物數(shù)量和多樣性[15]。但在后續(xù)的拋光環(huán)節(jié)中,從燎毛工序中存活下來的細(xì)菌可能會(huì)擴(kuò)散到胴體上,同時(shí)拋光設(shè)備上附著的微生物也會(huì)轉(zhuǎn)移到胴體上[16]。Wheatley等[17]研究發(fā)現(xiàn),拋光后豬胴體表面的菌落總數(shù)和腸桿菌數(shù)量均有所增加。

在分割環(huán)節(jié)中,一些研究從刀具、案板、傳送帶和工人佩戴的手套等物體上均檢出較高的菌落總數(shù),且其菌相與生鮮肉初始微生物組成具有較高的相似度,這表明分割過程中大多數(shù)細(xì)菌通過先污染操作環(huán)境再以此為載體接觸胴體表面進(jìn)行傳播[16,18]。Wang Hui等[19]指出,假單胞菌是牛肉分割間傳送帶上的優(yōu)勢微生物群落,其會(huì)對冰鮮肉尤其是有氧條件下貯藏產(chǎn)品的貨架期產(chǎn)生極大影響。Lavilla Lerma等[20]還從羊肉分割間環(huán)境中分離出抗生素耐藥性最強(qiáng)的嗜溫假單胞菌。還有學(xué)者在豬肉分割特定生產(chǎn)線上發(fā)現(xiàn)一些豐度較高的乳酸菌、假單胞菌、不動(dòng)桿菌[21]。微生物污染還可以通過錯(cuò)誤的著裝、不良的生產(chǎn)規(guī)范和衛(wèi)生規(guī)范、不清潔的設(shè)備和工作區(qū)域引入[22]。

為減少胴體表面的微生物量,國內(nèi)一些屠宰企業(yè)在胴體冷卻前普遍采用清水沖洗,或采用高壓、熱水和蒸汽[6]等物理干預(yù)措施。Han Jina等[23]詳細(xì)報(bào)道了這些物理技術(shù)的減菌效果,物理干預(yù)措施局限性非常顯著,例如,清水或高壓清水沖洗可將微生物污染擴(kuò)散到胴體相鄰部位,還會(huì)促進(jìn)空氣和水中微生物的再污染[23];熱水和蒸汽處理需要精準(zhǔn)把控處理時(shí)間,防止對胴體質(zhì)量產(chǎn)生不利影響[24]。為此,研究人員開發(fā)了應(yīng)用于胴體表面的化學(xué)干預(yù)措施。例如,在有機(jī)酸噴淋中,乳酸噴淋對胴體表面細(xì)菌數(shù)量的降低效果最好,其次是醋酸和檸檬酸[25]。Han Jina等[26]研究證明,宰后45 min、9 h和23 h反復(fù)噴灑3%乳酸可以將胴體的菌落總數(shù)降至2(lg(CFU/cm2))。在冷卻過程中反復(fù)噴灑300 mg/L過氧乙酸不僅能顯著降低牛胴體表面的菌落總數(shù)和大腸菌群數(shù),還能改變細(xì)菌群落組成。上述幾種物理和化學(xué)減菌技術(shù)均可以減少胴體表面的微生物污染,但僅靠任何單一技術(shù)來控制或消除腐敗微生物的效果有限,可有效利用干預(yù)措施之間的協(xié)同作用[23],在屠宰、分割的各個(gè)環(huán)節(jié)針對性地采取2 種或多種減菌措施能更好地降低胴體的初始微生物污染水平,更有效控制生鮮肉類的腐敗。

2 紅肉中常見優(yōu)勢腐敗菌

雖然細(xì)菌可以通過多種途徑污染胴體,但并不是所有細(xì)菌都會(huì)引發(fā)肉類腐敗,環(huán)境適應(yīng)能力強(qiáng)的細(xì)菌在肉類中能夠占據(jù)生長優(yōu)勢,成為優(yōu)勢菌并主導(dǎo)腐敗進(jìn)程。腐敗微生物的存活和生長受到肉類包裝方式的極大影響。例如,有氧貯藏會(huì)促進(jìn)假單胞菌生長,從而加速肉類腐敗進(jìn)程,而真空包裝和氣調(diào)包裝可以促進(jìn)兼性厭氧細(xì)菌(乳酸菌、熱殺索絲菌等)占主導(dǎo)地位[4]。表1總結(jié)了牛肉、豬肉和羊肉在不同包裝方式下冷藏期間的優(yōu)勢腐敗菌。即使在低溫下貯藏,托盤包裝的腐敗肉中也經(jīng)常分離出假單胞菌。研究發(fā)現(xiàn),莓實(shí)假單胞菌是腐敗肉中最普遍的細(xì)菌種類,其次是隆德假單胞菌和熒光假單胞菌[27-28]。

除假單胞菌外,托盤包裝紅肉的優(yōu)勢菌中還包括一些常見的革蘭氏陰性桿菌,包括不動(dòng)桿菌和氣單胞菌。Zhou Cong等[29]還從托盤包裝豬肉中發(fā)現(xiàn)了庫特氏菌。在Mansur等[30]的研究中,黃桿菌在托盤包裝牛肉貯藏結(jié)束時(shí)占主導(dǎo)地位。在真空包裝紅肉中,與腐敗相關(guān)的主要菌群為革蘭氏陽性菌,包括乳酸菌和熱殺索絲菌。但Russo等[31]研究發(fā)現(xiàn),在厭氧條件下熱殺索絲菌競爭不過冷藏肉中的乳酸菌。真空包裝牛肉中乳酸菌主要以乳桿菌、明串珠菌、肉食桿菌為代表,而真空包裝豬肉和羊肉中的乳酸菌均以乳桿菌、肉食桿菌、乳球菌為主。乳桿菌已被證明與肉類酸化、異味和黏液產(chǎn)生的腐敗現(xiàn)象有關(guān)[32]。明串珠菌與肉類黃油氣味與黏液形成、肉色變綠現(xiàn)象相關(guān)[33]。除此之外,在3 種紅肉的真空包裝和牛肉、羊肉的托盤包裝中還發(fā)現(xiàn)了肉食桿菌,但有學(xué)者認(rèn)為它們對肉類腐敗感官品質(zhì)的影響可以忽略不計(jì)[34]。由表1可知,在氣調(diào)包裝肉類冷藏期間,假單胞菌仍然是主要細(xì)菌,但包裝中高濃度CO2(40%)對假單胞菌有顯著抑制作用[35]。Pellissery等[32]稱20%~60% CO2還能有效抑制不動(dòng)桿菌生長。在≥50% O2氣調(diào)包裝條件下,牛肉、豬肉、羊肉中腐敗微生物以假單胞菌、熱殺索絲菌、乳酸菌為主。乳酸菌在牛肉中主要為明串珠菌、乳桿菌、肉食桿菌,在豬肉中為乳球菌、乳桿菌、明串珠菌,在羊肉中則以乳球菌為代表。氣調(diào)包裝中還值得關(guān)注的一類微生物是具有兼性厭氧性的腸桿菌,即使包裝中高濃度CO2可以抑制其生長,但在貯藏結(jié)束時(shí),腸桿菌仍然是微生物群落的重要組成部分[36]。例如,在≤30% O2氣調(diào)包裝紅肉上發(fā)現(xiàn)的沙雷氏菌、哈夫尼菌就是2 種常見的腸桿菌,可以代謝肉中的氨基酸,產(chǎn)生胺、氨、甲基硫化物和硫醇,引起肉類產(chǎn)生異味和顏色變化[32]。有研究在60% O2+22%~25% CO2包裝豬肉中還發(fā)現(xiàn)了特殊腐敗微生物發(fā)光桿菌[37]。Li Ning等[38]研究發(fā)現(xiàn),發(fā)光桿菌在托盤包裝豬肉中也可占據(jù)主導(dǎo)地位。Yang Xiaoyin等[39]對0.4% CO+30% CO2+69.6% N2包裝牛排冷藏過程中微生物群落演替進(jìn)行研究發(fā)現(xiàn),在CO和高濃度CO2環(huán)境中,假單胞菌和環(huán)絲菌的生長被完全抑制,乳球菌成為貯藏結(jié)束時(shí)的主要細(xì)菌。通過對牛肉、豬肉、羊肉在不同包裝條件下的優(yōu)勢腐敗菌分析發(fā)現(xiàn),3 種紅肉在相同包裝條件下的優(yōu)勢菌雖有一定差異,但是大致相同,有氧包裝條件下多以假單胞菌占優(yōu)勢,無氧包裝下均以乳酸菌占優(yōu)勢;同時(shí)發(fā)現(xiàn),不同研究中同種肉在相同包裝條件下的優(yōu)勢菌也存在一定差異,這可能與肉的生產(chǎn)操作和生產(chǎn)環(huán)境差異導(dǎo)致的肉初始菌相差異有關(guān),也可能與包裝材料、包裝條件(如真空度)、貯藏條件(如溫度)等有關(guān)[3,40]。

3 紅肉中微生物的腐敗作用機(jī)制

肉類腐敗通常與細(xì)菌的代謝活動(dòng)和酶活性有關(guān),細(xì)菌可以利用底物通過丙酮酸代謝生成與腐敗相關(guān)的化合物,這些化合物往往會(huì)導(dǎo)致肉類產(chǎn)生不正?;螂y聞的氣味。同時(shí)細(xì)菌在信號(hào)分子的刺激和相關(guān)基因的調(diào)控下向胞外分泌酶,一方面造成細(xì)胞外物質(zhì)積累,另一方面參與蛋白降解、脂肪分解等,進(jìn)而影響肉的結(jié)構(gòu)和品質(zhì)。因此,一些學(xué)者從細(xì)菌代謝、信號(hào)分子產(chǎn)生、細(xì)菌胞外酶分泌(脂肪酶、蛋白酶等)和蛋白降解幾個(gè)方面對肉類腐敗的內(nèi)在機(jī)制進(jìn)行分析[69-74]。圖1從細(xì)菌代謝、胞外酶分泌和蛋白降解3 個(gè)方面對紅肉中微生物的腐敗作用機(jī)制進(jìn)行總結(jié)。

3.1 細(xì)菌代謝在紅肉腐敗中的作用

細(xì)菌代謝活動(dòng)影響腐敗類型、速率,而代謝途徑豐富程度決定食品腐敗狀態(tài)[75]。在鮮肉中,細(xì)菌群落主要通過磷酸戊糖途徑獲取能量,丙酮酸代謝是第二大碳水化合物代謝途徑,排名第三的是糖酵解途徑,糖酵解相關(guān)基因在整個(gè)肉類貯藏期間均呈現(xiàn)高表達(dá)[76]。肉中的葡萄糖是多數(shù)微生物參與代謝活動(dòng)首先利用的物質(zhì),有氧包裝條件下的優(yōu)勢腐敗菌假單胞菌可以充分利用肉中的碳源和能源,優(yōu)先分解葡萄糖尤其是D-葡萄糖[4],但也有例外,如莓實(shí)假單胞菌NMC25,其在肉中主要以氨基酸和短肽作為碳源和氮源[77]。Kolbeck等[78]推測無氧條件下的假單胞菌可能通過Entner-Doudoroff途徑進(jìn)行葡萄糖代謝,通過形成乙醇進(jìn)行煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)回收,從而實(shí)現(xiàn)長期存活。研究[79-80]表明,真空包裝和CO氣調(diào)包裝中的優(yōu)勢菌——乳酸菌主要通過碳水化合物代謝途徑維持生長活動(dòng),碳水化合物吸收和代謝對乳酸菌生長和將肉中的糖轉(zhuǎn)化為乳酸極為重要。乳酸菌偏好利用葡萄糖,同時(shí)也能代謝常見的己糖、戊糖和核糖[81]。Bell[82]研究發(fā)現(xiàn),葡萄糖初始濃度較高的肉出現(xiàn)腐敗現(xiàn)象(黏液、異味)比葡萄糖濃度較低的肉需要更大的細(xì)菌數(shù)量。肉中葡萄糖濃度的限制促使細(xì)菌代謝由糖分解向氨基酸降解轉(zhuǎn)換。Rood等[83]報(bào)道,添加0.5%~10%葡萄糖可以延長真空包裝冷藏羊肉的貨架期。隨著貯藏時(shí)間延長,肉中葡萄糖水平不斷下降,在缺乏糖的情況下,丙酮酸的葡萄糖異生較為活躍。Zareian等[84]研究表明,丙酮酸代謝活動(dòng)由丙酮酸甲酸裂合酶、丙酮酸脫氫酶、乳酸脫氫酶、乙酸激酶參與,與腐敗相關(guān)化合物2,3-丁二醇、乙偶姻、乙酸等的生成密切相關(guān)。一旦肉中葡萄糖耗盡,細(xì)菌會(huì)繼續(xù)代謝次級產(chǎn)物,如游離氨基酸和乳酸[85]。

碳水化合物被消耗殆盡后,肉中參與氨基酸代謝的途徑豐度顯著增加[62]。例如,有氧條件下莓實(shí)假單胞菌和熱殺索絲菌的協(xié)同作用由組氨酸和核苷酸代謝途徑支持,可促進(jìn)冷藏豬肉發(fā)生腐敗[86]。含硫氨基酸的分解導(dǎo)致硫化氫、二甲基硫化物和二甲基二硫化物等惡臭味含硫揮發(fā)性化合物形成,釋放難聞氣味[87]。

3.2 細(xì)菌分泌信號(hào)分子在紅肉腐敗中的作用

細(xì)菌分泌的信號(hào)分子中,AHLs可通過刺激細(xì)菌的群體感應(yīng)(quorum sensing,QS)系統(tǒng)調(diào)控蛋白酶和脂肪酶相關(guān)基因表達(dá)。AHLs由luxI蛋白負(fù)責(zé)產(chǎn)生,當(dāng)AHLs濃度達(dá)到一定閾值時(shí),受體luxR與內(nèi)源性AHLs及相鄰細(xì)胞產(chǎn)生的外源性AHLs相結(jié)合,形成受體-AHL復(fù)合物,觸發(fā)細(xì)菌特定基因flgA、aprX、lipA的表達(dá),發(fā)揮調(diào)節(jié)胞外蛋白酶和脂肪酶分泌、生物膜形成等生理功能,從而促進(jìn)肉貯藏期間蛋白、脂肪、糖的分解,導(dǎo)致總揮發(fā)性鹽基氮含量增加,提高細(xì)菌腐敗活性[71,88]。與肉類腐敗密切相關(guān)的熒光假單胞菌主要采用luxI/R型QS系統(tǒng),AHL依賴性QS由luxI同源物合成,并通過luxR型轉(zhuǎn)錄調(diào)控因子檢測。信號(hào)通過細(xì)胞膜自由擴(kuò)散,當(dāng)細(xì)胞密度較高時(shí),luxR結(jié)合其同源自誘導(dǎo)劑,luxR自誘導(dǎo)劑復(fù)合物結(jié)合目標(biāo)基因啟動(dòng)子并激活生物膜形成、運(yùn)動(dòng)和酶的產(chǎn)生等途徑,導(dǎo)致肉類腐敗[89]。莓實(shí)假單胞菌經(jīng)常被報(bào)道為腐敗肉中的優(yōu)勢菌,但Ferrocino等[90]研究發(fā)現(xiàn),從新鮮和腐敗肉中分離的72 株莓實(shí)假單胞菌均不能產(chǎn)生AHLs,由此猜測莓實(shí)假單胞菌缺少與AHLs合成相關(guān)的基因,Quintieri等[89]驗(yàn)證了這一假設(shè)。常見的腐敗菌哈夫尼菌和沙雷氏菌均具有較強(qiáng)的AHLs生成能力,AHLs介導(dǎo)的QS系統(tǒng)在細(xì)菌在不同表面的運(yùn)動(dòng)和生物膜形成中起關(guān)鍵作用[71,91]。抑制細(xì)菌的QS系統(tǒng)已經(jīng)成為一種新型防腐策略。目前,已有多種天然和合成化合物被證實(shí)具有群體感應(yīng)抑制劑(quorum sensing inhibitory,QSI)活性[92]。Zhang Ying等[93]研究表明,乙醛能夠與熒光假單胞菌中EcbI和PcoI蛋白相互作用,降低特殊AHLs(N-辛?;?L-高絲氨酸內(nèi)酯)濃度,從而抑制假單胞菌生物膜形成、降低細(xì)胞外酶活性。Gopu等[94]證明孜然、茴香和胡椒可以抑制腌制牛肉中AHLs產(chǎn)生,從而降低微生物負(fù)荷并延遲腐敗。酚類化合物可能通過與AHLs信號(hào)分子競爭性結(jié)合QS受體,抑制QS系統(tǒng)[95]。例如,姜黃素可以抑制銅綠假單胞菌、大腸桿菌、沙雷氏菌的幾種表型;白藜蘆醇能夠抑制細(xì)菌生物膜形成;沒食子酸能夠引起細(xì)菌細(xì)胞膜破裂和孔隙形成等不可逆變化;辣椒素具有抑制微生物生長能力[95-98]。

3.3 胞外酶分泌及肌肉蛋白降解在紅肉腐敗中的作用

肉類富含蛋白質(zhì),這對維持肌肉骨架至關(guān)重要。腐敗微生物通過分泌胞外蛋白酶,水解肌肉中的蛋白質(zhì)(如肌原纖維蛋白、膠原蛋白等),產(chǎn)生微生物生長所必需的氨基酸,從而誘導(dǎo)和加速肉類腐敗[72]。目前已經(jīng)鑒定和表征了多種細(xì)菌胞外蛋白酶,包括金屬蛋白酶、絲氨酸蛋白酶和膠原蛋白酶。例如,Wang Guangyu等[88]發(fā)現(xiàn),金屬蛋白酶AprA是莓實(shí)假單胞菌產(chǎn)生的唯一胞外蛋白酶,在8 ℃下可以降解肉肌原纖維蛋白。Jia Shiliang等[99]研究證明,嗜冷假單胞菌和腐敗希瓦氏菌分泌的絲氨酸蛋白酶是肉類腐敗過程中參與蛋白質(zhì)降解的主要蛋白酶。有報(bào)道稱在4~15 ℃下蜂房哈夫尼菌中編碼絲氨酸蛋白酶的serp基因具有高表達(dá)[100]。假單胞菌、沙雷氏菌和氣單胞菌的一些菌株還表現(xiàn)出強(qiáng)膠原蛋白酶活性,可促進(jìn)帶皮肉類產(chǎn)品腐敗[101]。根據(jù)肽鏈中蛋白酶活性位點(diǎn)的位置,細(xì)菌分泌的蛋白酶可初步分為內(nèi)肽酶和外肽酶[72]。M4家族金屬肽酶大多數(shù)為內(nèi)肽酶,當(dāng)其與蛋白質(zhì)相結(jié)合時(shí),酶上的金屬離子可能通過增強(qiáng)水分子的親核性實(shí)現(xiàn)肽鍵攻擊,促進(jìn)蛋白質(zhì)降解[72-73]。氨肽酶是一種催化肽和蛋白質(zhì)N端氨基酸殘基水解的外肽酶[102]。Tan Chunming等[103]已經(jīng)證明腐敗菌可以通過分泌氨肽酶破壞蛋白質(zhì)結(jié)構(gòu),促進(jìn)貯藏后期肌肉結(jié)構(gòu)分解和蛋白質(zhì)降解。肉貯藏期間的優(yōu)勢腐敗菌普遍具有較高的蛋白水解潛力,Scatamburlo等[104]研究發(fā)現(xiàn),假單胞菌在7、25、35 ℃下均表現(xiàn)出蛋白水解活性,Alves等[105]觀察到一些假單胞菌還可以產(chǎn)生冷活性蛋白酶和脂肪酶,即使在冷藏條件下酶仍具有高活性和較高表達(dá)量。假單胞菌具有較強(qiáng)的肌原纖維蛋白和肌基質(zhì)蛋白降解能力,易導(dǎo)致肉類外表面形成黏液和肉質(zhì)軟化[106]。腐敗菌分泌的脂肪酶可以將肉中的脂肪和脂質(zhì)分解成分子質(zhì)量更小的成分,如脂肪酸和甘油,產(chǎn)生酸敗和難聞的味道[107]。酶源性的脂肪分解產(chǎn)生的游離脂肪酸還是揮發(fā)性物質(zhì)的主要前體。Ercolini等[108]研究發(fā)現(xiàn),莓實(shí)假單胞菌分泌的一些脂肪酶可以更特異性地水解肉類脂肪,且大多在4 ℃有脂解作用,一小部分在20 ℃活性更強(qiáng)。從肉和肉制品中分離出的芽孢桿菌、熱殺索絲菌和沙雷氏菌均可以分泌脂肪酶,加速肉類腐敗[109-111]。

4 結(jié) 語

細(xì)菌主導(dǎo)的紅肉腐敗非常復(fù)雜,不僅受到多種外界因素的影響,還受到內(nèi)在多個(gè)生化系統(tǒng)的調(diào)控。目前,肉類的保鮮多涉及溫度、包裝方面,通過調(diào)節(jié)貯藏環(huán)境條件抑制微生物的生長繁殖。未來,通過影響細(xì)菌腐敗機(jī)制來抑制腐敗現(xiàn)象的產(chǎn)生可能成為新的研究熱點(diǎn)。因此,為控制肉類腐敗、延長貨架期,必須全面深入了解細(xì)菌的腐敗機(jī)制。雖然本文已經(jīng)揭示了細(xì)菌引起的肉類腐敗的基本原理,但不同肉類腐敗過程中優(yōu)勢菌作用機(jī)制的差異還所知甚少。肉類腐敗過程中各種主要細(xì)菌作用機(jī)制之間的特定相互作用(如促進(jìn)、抑制和干預(yù))還有待進(jìn)一步研究,各種代謝產(chǎn)物對菌群的反饋效應(yīng)還有待進(jìn)一步探索。

參考文獻(xiàn):

[1] HU G W, MU X Z, XU M, et al. Potentials of GHG emission reductions from cold chain systems: case studies of China and the United States[J]. Journal of Cleaner Production, 2019, 239: 118053. DOI:10.1016/j.jclepro.2019.118053.

[2] KAUR M, WILLIAMS M, BISSETT A, et al. Effect of abattoir, livestock species and storage temperature on bacterial community dynamics and sensory properties of vacuum packaged red meat[J]. Food Microbiology, 2021, 94: 103648. DOI:10.1016/j.fm.2020.103648.

[3] MORSHDY A E M, MEHREZ S M, THARWAT A E, et al. A review on the microbial surface contaminants of the animal carcasses[J]. Journal of Advanced Veterinary Research, 2023, 13(6): 1248-1251.

[4] DOULGERAKI A I, ERCOLINI D, VILLANI F, et al. Spoilage microbiota associated to the storage of raw meat in different conditions[J]. International Journal of Food Microbiology, 2012, 157(2): 130-141. DOI:10.1016/j.ijfoodmicro.2012.05.020.

[5] United States Department of Agriculture (USDA). Livestock and poultry: world markets and trade[EB/OL]. (2023-10-12) [2024-06-03]. https://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade.

[6] 韓吉娜, 張佳, 羅欣, 等. 肉牛屠宰過程中的減菌技術(shù)研究進(jìn)展[J]. 食品科學(xué), 2019, 40(15): 330-337. DOI:10.7506/spkx1002-6630-20180625-465.

[7] 田盼. 冷鮮牛肉生產(chǎn)過程的HACCP體系建立與減菌措施[D]. 石河子: 石河子大學(xué), 2015. DOI:10.7666/d.D717838.

[8] MARTíNEZ B, CELDA M F, MILLáN M E, et al. Assessment of the microbiological conditions of red-meat carcasses from bacterial counts recovered by sampling via excision or swabbing with cotton wool[J]. International Journal of Food Science amp; Technology, 2009, 44(4): 770-776. DOI:10.1111/j.1365-2621.2008.01895.x.

[9] KANG S S, RAVENSDALE J, COOREY R, et al. A comparison of 16S rRNA profiles through slaughter in Australian export beef abattoirs[J]. Frontiers in Microbiology, 2019, 10: 2747. DOI:10.3389/fmicb.2019.02747.

[10] VAN BA H, SEO H W, PIL-NAM S, et al. The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses[J]. Meat Science, 2018, 137: 16-23. DOI:10.1016/j.meatsci.2017.11.006.

[11] MOHAMED H A, VAN KLINK E G, ELHASSAN S M. Damage caused by spoilage bacteria to the structure of cattle hides and sheep skins[J]. International Journal of Animal Health and Livestock Production Research, 2016, 2(1): 39-56.

[12] SUI L C, YI Z K, XIAO X N, et al. Investigation of microbial communities across swine slaughter stages and disinfection efficacy assessment in a pig slaughterhouse[J]. LWT-Food Science and Technology, 2023, 187: 115334. DOI:10.1016/j.lwt.2023.115334.

[13] TERGNEY A, BOLTON D. Validation studies on an online monitoring system for reducing faecal and microbial contamination on beef carcasses[J]. Food Control, 2006, 17(5): 378-382. DOI:10.1016/j.foodcont.2005.01.004.

[14] HAUGE S J, NAFSTAD O, SKJERVE E, et al. Effects of shearing and fleece cleanliness on microbiological contamination of lamb carcasses[J]. International Journal of Food Microbiology, 2011, 150(2/3): 178-183. DOI:10.1016/j.ijfoodmicro.2011.07.038.

[15] ZDOLEC N, KOTSIRI A, HOUF K, et al. Systematic review and meta-analysis of the efficacy of interventions applied during primary processing to reduce microbial contamination on pig carcasses[J]. Foods, 2022, 11(14): 2110. DOI:10.1111/dme.13509.

[16] ZWIRZITZ B, WETZELS S U, DIXON E D, et al. The sources and transmission routes of microbial populations throughout a meat processing facility[J]. npj Biofilms Microbomes, 2020, 6(1): 12. DOI:10.1038/s41522-020-0136-z.

[17] WHEATLEY P, GIOTIS E S, MCKEVITT A I. Effects of slaughtering operations on carcass contamination in an Irish pork production plant[J]. Irish Veterinary Journal, 2014, 67(1): 1. DOI:10.1186/2046-0481-67-1.

[18] LABAN S, MASHALY M, ALY A, et al. Evaluation of different hygienic practices applied in slaughterhouses and its effect on beef quality[J]. Advances in Animal and Veterinary Sciences, 2021, 9(3): 429-437.

[19] WANG H, HE A N, YANG X Q. Dynamics of microflora on conveyor belts in a beef fabrication facility during sanitation[J]. Food Control, 2018, 85: 42-47. DOI:10.1016/j.foodcont.2017.09.017.

[20] LAVILLA LERMA L, BENOMAR N, CASADO MUNOZ M D C,

et al. Antibiotic multiresistance analysis of mesophilic and psychrotrophic Pseudomonas spp. isolated from goat and lamb slaughterhouse surfaces throughout the meat production process[J]. Applied and Environmental Microbiology, 2014, 80(21): 6792-6806. DOI:10.1128/AEM.01998-14.

[21] SHEDLEUR-BOURGUIGNON F, DUCHEMIN T, THéRIAULT W P, et al. Distinct microbiotas are associated with different production lines in the cutting room of a swine slaughterhouse[J]. Microorganisms, 2023, 11(1): 133. DOI:10.3390/microorganisms11010133.

[22] NYCHAS G J E, SKANDAMIS P N, TASSOU C C, et al. Meat spoilage during distribution[J]. Meat Science, 2008, 78(1/2): 77-89. DOI:10.1016/j.meatsci.2007.06.020.

[23] HAN J N, DONG P C, HOLMAN B W, et al. Processing interventions for enhanced microbiological safety of beef carcasses and beef products: a review[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(8): 2105-2129. DOI:10.1080/10408398.2022.2121258.

[24] CASTILLO A, HARDIN M D, ACUFF G R, et al. Reduction of microbial contaminants on carcasses[M]//JUNEJA V K, SOFOS J N. Control of foodborne microorganisms. Boca Raton: CRC Press, 2001: 351-381. DOI:10.1201/b16945-13.

[25] DAN S D, MIHAIU M, REGET O, et al. Pathogens contamination level reduction on beef using organic acids decontamination methods[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine CLUJ-NAPOCA. Veterinary Medicine, 2017, 74(2): 52. DOI:10.15835/buasvmcn-vm:0052.

[26] HAN J N, LUO X, ZHANG Y M, et al. Effects of spraying lactic acid and peroxyacetic acid on the bacterial decontamination and bacterial composition of beef carcasses[J]. Meat Science, 2020, 164: 108104. DOI:10.1016/j.meatsci.2020.108104.

[27] STANBOROUGH T, FEGAN N, POWELL S M, et al. Genomic and metabolic characterization of spoilage-associated Pseudomonas species[J]. International Journal of Food Microbiology, 2018, 268: 61-72. DOI:10.1016/j.ijfoodmicro.2018.01.005.

[28] WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, et al. The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1622-1635. DOI:10.1111/1541-4337.12483.

[29] ZHOU C, WANG J J, LI R, et al. High-throughput sequencing analysis of the bacterial community for assessing the differences in extraction methods of bacteria separation from chilled pork[J]. LWT-Food Science and Technology, 2020, 134: 110213. DOI:10.1016/j.lwt.2020.110213.

[30] MANSUR A R, SONG E J, CHO Y S, et al. Comparative evaluation of spoilage-related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging[J]. Food Microbiology, 2019, 77: 166-172. DOI:10.1016/j.fm.2018.09.006.

[31] RUSSO F, ERCOLINI D, MAURIELLO G, et al. Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups[J]. Food Microbiology, 2006, 23(8): 797-802. DOI:10.1016/j.fm.2006.02.004.

[32] PELLISSERY A J, VINAYAMOHAN P G, AMALARADJOU M A R, et al.

Spoilage bacteria and meat quality[M]//BISWAS A K, MANDAL P K.

Meat quality analysis. Amsterdam: Academic Press, 2020: 307-334. DOI:10.1016/B978-0-12-819233-7.00017-3.

[33] JOHANSSON P, J??SKEL?INEN E, NIEMINEN T, et al. Microbiomes in the context of refrigerated raw meat spoilage[J]. Meat and Muscle Biology, 2020, 4(2): 10369. DOI:10.22175/mmb.10369.

[34] XU M M, KAUR M, PILLIDGE C J, et al. Effect of protective cultures on spoilage bacteria and the quality of vacuum-packaged lamb meat[J]. Food Bioscience, 2022, 50: 102148. DOI:10.1016/j.fbio.2022.102148.

[35] YANG J, YANG X Y, LIANG R R, et al. The response of bacterial communities to carbon dioxide in high-oxygen modified atmosphere packaged beef steaks during chilled storage[J]. Food Research International, 2022, 151: 110872. DOI:10.1016/j.foodres.2021.110872.

[36] DJORDJEVIC J, BOSKOVIC M, DOKMANOVIC M, et al. Vacuum and modified atmosphere packaging effect on Enterobacteriaceae behaviour in minced meat[J]. Journal of Food Processing and Preservation, 2017, 41(2): e12837. DOI:10.1111/jfpp.12837.

[37] NIEMINEN T T, DALGAARD P, BJ?RKROTH J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork[J]. International Journal of Food Microbiology, 2016, 218: 86-95. DOI:10.1016/j.ijfoodmicro.2015.11.003.

[38] LI N, ZHANG Y X, WU Q P, et al. High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage[J]. Food Microbiology, 2019, 83: 86-94. DOI:10.1016/j.fm.2019.04.013.

[39] YANG X Y, LUO X, ZHANG Y M, et al. Effects of microbiota dynamics on the color stability of chilled beef steaks stored in high oxygen and carbon monoxide packaging[J]. Food Research International, 2020, 134: 109215. DOI:10.1016/j.foodres.2020.109215.

[40] ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, et al. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 311-331. DOI:10.1111/1541-4337.12526.

[41] ERCOLINI D, FERROCINO I, NASI A, et al. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions[J]. Applied and Environmental Microbiology, 2011, 77(20): 7372-7381. DOI:10.1128/AEM.05521-11.

[42] 牟廣磊. 不同包裝方式對冷卻牛肉品質(zhì)及微生物影響的研究[D].

泰安: 山東農(nóng)業(yè)大學(xué), 2015. DOI:10.7666/d.D01212179.

[43] 岑璐伽, 唐善虎, 郝小倩, 等. 冷卻牦牛肉貯藏過程中優(yōu)勢菌的PCR-變性梯度凝膠電泳分析[J]. 肉類研究, 2012, 25(1): 36-40. DOI:10.3969/j.issn.1001-8123.2012.01.010.

[44] CHEN X, ZHANG Y M, YANG X Y, et al. Shelf-life and microbial community dynamics of super-chilled beef imported from Australia to China[J]. Food Research International, 2019, 120: 784-792. DOI:10.1016/j.foodres.2018.11.039.

[45] ROVIRA P, BRUGNINI G, RODRIGUEZ J, et al. Microbiological changes during long-storage of beef meat under different temperature and vacuum-packaging conditions[J]. Foods, 2023, 12(4): 694. DOI:10.3390/foods12040694.

[46] YANG J, WEI W, HOLMAN B W, et al. Effects of low-energy electron beam irradiation on the shelf-life and quality of vacuum-packaged beef steaks during chilled storage[J]. Meat Science, 2022, 193: 108932. DOI:10.1016/j.meatsci.2022.108932.

[47] CHEN X, ZHU L X, LIANG R R, et al. Shelf-life and bacterial community dynamics of vacuum packaged beef during long-term super-chilled storage sourced from two Chinese abattoirs[J]. Food Research International, 2020, 130: 108937. DOI:10.1016/j.foodres.2019.108937.

[48] REID R, FANNING S, WHYTE P, et al. Comparison of hot versus cold boning of beef carcasses on bacterial growth and the risk of blown pack spoilage[J]. Meat Science, 2017, 125: 46-52. DOI:10.1016/j.meatsci.2016.11.012.

[49] ERCOLINI D, RUSSO F, TORRIERI E, et al. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions[J]. Applied and Environmental Microbiology, 2006, 72(7): 4663-4671. DOI:10.1128/AEM.00468-06.

[50] J??SKEL?INEN E, HULTMAN J, PARSHINTSEV J, et al. Development of spoilage bacterial community and volatile compounds in chilled beef under vacuum or high oxygen atmospheres[J]. International Journal of Food Microbiology, 2016, 223: 25-32. DOI:10.1016/j.ijfoodmicro.2016.01.022.

[51] 楊鴻博, 楊嘯吟, 張一敏, 等. 包裝方式對牛排貯藏期間微生物數(shù)量和演替的影響[J]. 食品科學(xué), 2021, 42(13): 166-173. DOI:10.7506/spkx1002-6630-20200519-217.

[52] S?DE E, PENTTINEN K, BJ?RKROTH J, et al. Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef[J]. Food Microbiology, 2017, 62: 147-152. DOI:10.1016/j.fm.2016.10.004.

[53] SEQUINO G, COBO-DIAZ J F, VALENTINO V, et al. Microbiome mapping in beef processing reveals safety-relevant variations in microbial diversity and genomic features[J]. Food Research International, 2024, 186: 114318. DOI:10.1016/j.foodres.2024.114318.

[54] WANG X H, DENG Y H, SUN J S, et al. Unraveling characterizations of bacterial community and spoilage profiles shift in chilled pork during refrigerated storage[J]. Food Science and Technology, 2021, 42: e80321. DOI:10.1590/FST.80321.

[55] JIANG Y, GAO F, XU X L, et al. Changes in the composition of the bacterial flora on tray-packaged pork during chilled storage analyzed by PCR-DGGE and real-time PCR[J]. Journal of Food Science, 2011, 76(1): M27-M33. DOI:10.1111/j.1750-3841.2010.01879.x.

[56] ZHAO F, ZHOU G H, YE K P, et al. Microbial changes in vacuum-packed chilled pork during storage[J]. Meat Science, 2015, 100: 145-149. DOI:10.1016/j.meatsci.2014.10.004.

[57] JIANG Y, GAO F, XU X L, et al. Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR-DGGE[J]. Meat Science, 2010, 86(4): 889-895. DOI:10.1016/j.meatsci.2010.05.021.

[58] 王真真. 不同包裝冷卻豬肉的腐敗特性研究[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2012. DOI:10.7666/d.y2157052.

[59] 江蕓. 托盤和真空包裝冷卻豬肉冷藏過程中菌相變化規(guī)律研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2010. DOI:10.7666/d.Y1986600.

[60] BASSEY A P, CHEN Y F, ZHU Z S, et al. Assessment of quality characteristics and bacterial community of modified atmosphere packaged chilled pork loins using 16S rRNA amplicon sequencing analysis[J]. Food Research International, 2021, 145: 110412. DOI:10.1016/j.foodres.2021.110412.

[61] WANG T J, GUO H Y, ZHANG H, et al. Dynamics of bacterial communities of lamb meat packaged in air and vacuum pouch during chilled storage[J]. Food Science of Animal Resources, 2019, 39(2): 209-221. DOI:10.5851/kosfa.2019.e16.

[62] LIANG C, ZHANG D Q, ZHENG X C, et al. Effects of different storage temperatures on the physicochemical properties and bacterial community structure of fresh lamb meat[J]. Food Science of Animal Resources, 2021, 41(3): 509-526. DOI:10.5851/kosfa.2021.e15.

[63] WEN X Y, LIANG C, ZHANG D Q, et al. Effects of hot or cold boning on the freshness and bacterial community changes of lamb cuts during chilled storage[J]. LWT-Food Science and Technology, 2022, 170: 114063. DOI:10.1016/j.lwt.2022.114063.

[64] WEN X Y, ZHANG D Q, LI X, et al. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging[J]. Food Microbiology, 2022, 104: 103996. DOI:10.1016/j.fm.2022.103996.

[65] WANG T J, ZHAO L, SUN Y N, et al. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing[J]. Meat Science, 2016, 121: 253-260. DOI:10.1016/j.meatsci.2016.06.021.

[66] KAUR M, SHANG H S, TAMPLIN M, et al. Culture-dependent and culture-independent assessment of spoilage community growth on VP lamb meat from packaging to past end of shelf-life[J]. Food Microbiology, 2017, 68: 71-80. DOI:10.1016/j.fm.2017.06.015.

[67] CARRIZOSA E, BENITO M J, RUIZ-MOYANO S, et al. Bacterial communities of fresh goat meat packaged in modified atmosphere[J]. Food Microbiology, 2017, 65: 57-63. DOI:10.1016/j.fm.2017.01.023.

[68] RUBIO B, VIEIRA C, MARTíNEZ B. Effect of post mortem temperatures and modified atmospheres packaging on shelf life of suckling lamb meat[J]. LWT-Food Science and Technology, 2016, 69: 563-569. DOI:10.1016/j.lwt.2016.02.008.

[69] SHAO L T, CHEN S S, WANG H D, et al. Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage[J]. Trends in Food Science amp; Technology, 2021, 118: 822-832. DOI:10.1016/j.tifs.2021.11.007.

[70] BRUHN J B, CHRISTENSEN A B, FLODGAARD L R, et al. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat[J]. Applied and Environmental Microbiology, 2004, 70(7): 4293-4302. DOI:10.1128/AEM.70.7.4293-4302.2004.

[71] MACHADO I, SILVA L R, GIAOURIS E D, et al. Quorum sensing in food spoilage and natural-based strategies for its inhibition[J]. Food Research International, 2020, 127: 108754. DOI:10.1016/j.foodres.2019.108754.

[72] SHAO L T, DONG Y, CHEN S S, et al. Revealing extracellular protein profile and excavating spoilage-related proteases of Aeromonas salmonicida based on multi-omics investigation[J]. International Journal of Biological Macromolecules, 2024, 265: 130916. DOI:10.1016/j.ijbiomac.2024.130916.

[73] ADEKOYA O A, SYLTE I. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential[J]. Chemical Biology amp; Drug Design, 2009, 73(1): 7-16. DOI:10.1111/j.1747-0285.2008.00757.x.

[74] DAI J Y, FANG L M, WU Y, et al. Effects of exogenous AHLs on the spoilage characteristics of Pseudomonas koreensis PS1[J]. Journal of Food Science, 2022, 87(2): 819-832. DOI:10.1111/1750-3841.16038.

[75] DAVE D, GHALY A E. Meat spoilage mechanisms and preservation techniques: a critical review[J]. American Journal of Agricultural and Biological Sciences, 2011, 6(4): 486-510. DOI:10.3844/ajabssp.2011.486.510.

[76] HULTMAN J, JOHANSSON P, BJ?RKROTH J. Longitudinal metatranscriptomic analysis of a meat spoilage microbiome detects abundant continued fermentation and environmental stress responses during shelf life and beyond[J]. Applied and Environmental Microbiology, 2020, 86(24): e01575-20. DOI:10.1128/AEM.01575-20.

[77] WANG G Y, MA F, CHEN X J, et al. Transcriptome analysis of the global response of Pseudomonas fragi NMC25 to modified atmosphere packaging stress[J]. Frontiers in Microbiology, 2018, 9: 1277. DOI:10.3389/fmicb.2018.01277.

[78] KOLBECK S, ABELE M, HILGARTH M, et al. Comparative proteomics reveals the anaerobic lifestyle of meat-spoiling Pseudomonas species[J]. Frontiers in Microbiology, 2021, 12: 664061. DOI:10.3389/fmicb.2021.664061.

[79] PENNACCHIA C, ERCOLINI D, VILLANI F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack[J]. Food Microbiology, 2011, 28(1): 84-93. DOI:10.1016/j.fm.2010.08.010.

[80] YANG X Y, ZHU L X, ZHANG Y M, et al. Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres[J]. Meat Science, 2018, 141: 94-102. DOI:10.1016/j.meatsci.2018.03.010.

[81] 焦晶凱. 乳酸菌代謝研究進(jìn)展[J]. 乳業(yè)科學(xué)與技術(shù), 2020, 43(2): 49-55. DOI:10.15922/j.cnki.jdst.2020.02.009.

[82] BELL R G. Meat packaging: protection, preservation and presentation[M]//HUI Y H, NIP W K, ROGERS R W, et al. Meat science and applications. Boca Raton: CRC Press, 2001: 479-506. DOI:10.1201/9780203908082.ch19.

[83] ROOD L, BOWMAN J P, ROSS T, et al. The effects of glucose on microbial spoilage of vacuum-packed lamb[J]. Meat Science, 2022, 188: 108781. DOI:10.1016/j.meatsci.2022.108781.

[84] ZAREIAN M, BOHNER N, LOOS H M, et al. Evaluation of volatile organic compound release in modified atmosphere-packaged minced raw pork in relation to shelf-life[J]. Food Packaging Shelf Life, 2018, 18: 51-61. DOI:10.1016/j.fpsl.2018.08.001.

[85] AJAYKUMAR V J, MANDAL P K. Modern concept and detection of spoilage in meat and meat products[M]//BISWAS A K, MANDAL P K.

Meat quality analysis. Amsterdam: Academic Press, 2020: 335-349. DOI:10.1016/B978-0-12-819233-7.00018-5.

[86] ZHOU Z L, REN F Q, HUANG Q L, et al. Characterization and interactions of spoilage of Pseudomonas fragi C6 and Brochothrix thermosphacta S5 in chilled pork based on LC-MS/MS and screening of potential spoilage biomarkers[J]. Food Chemistry, 2024, 444: 138562. DOI:10.1016/j.foodchem.2024.138562.

[87] BEKHIT A A, HOLMAN B, GITERU S G, et al. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review[J]. Trends in Food Science amp; Technology, 2021, 109: 280-302. DOI:10.1016/j.tifs.2021.01.006.

[88] WANG G Y, LI Q, TANG W Q, et al. AprD is important for extracellular proteolytic activity, physicochemical properties and spoilage potential in meat-borne Pseudomonas fragi[J]. Food Control, 2021, 124: 107868. DOI:10.1016/j.foodcont.2021.107868.

[89] QUINTIERI L, CAPUTO L, BRASCA M, et al. Recent advances in the mechanisms and regulation of QS in dairy spoilage by Pseudomonas spp.[J]. Foods, 2021, 10(12): 3088. DOI:10.3390/foods10123088.

[90] FERROCINO I, ERCOLINI D, VILLANI F, et al. Pseudomonas fragi strains isolated from meat do not produce N-acyl homoserine lactones as signal molecules[J]. Journal of Food Protection, 2009, 72(12): 2597-2601. DOI:10.4315/0362-028x-72.12.2597.

[91] ZHU Y L, HOU H M, ZHANG G L, et al. AHLs regulate biofilm formation and swimming motility of Hafnia alvei H4[J]. Frontiers in Microbiology, 2019, 10: 1330. DOI:10.3389/fmicb.2019.01330.

[92] CHEN X H, YU F H, LI Y Q, et al. The inhibitory activity of p-coumaric acid on quorum sensing and itsenhancement effect on meat preservation[J]. CyTA-Journal of Food, 2020, 18(1): 61-67. DOI:10.1080/19476337.2019.1701558.

[93] ZHANG Y, YU H, XIE Y F, et al. Inhibitory effects of hexanal on acylated homoserine lactones (AHLs) production to disrupt biofilm formation and enzymes activity in Erwinia carotovora and Pseudomonas fluorescens[J]. Journal of Food Science and Technology, 2023, 60(1): 372-381. DOI:10.1007/s13197-022-05624-9.

[94] GOPU V, SHETTY P H. Regulation of acylated homoserine lactones (AHLs) in beef by spice marination[J]. Journal of food science and technology, 2016, 53: 2686-2694. DOI:10.1007/s13197-016-2240-x.

[95] SANTOS C, LIMA E, FRANCO BDGDM P U. Exploring phenolic compounds as quorum sensing inhibitors in foodborne bacteria[J]. Frontiers in Microbiology, 2021, 12: 735931. DOI:10.3389/fmicb.2021.735931.

[96] DING T, LI T T, WANG Z, et al. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis[J]. Scientific Reports, 2017, 7(1): 8612. DOI:10.1038/s41598-017-08986-9.

[97] DUARTE A, ALVES A C, FERREIRA S, et al. Resveratrol inclusion complexes: antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri[J]. Food Research International, 2015, 77: 244-250. DOI:10.1016/j.foodres.2015.05.047.

[98] SORRENTINO E, SUCCI M, TIPALDI L, et al. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles[J]. International Journal of Food Microbiology, 2018, 266: 183-189. DOI:10.1016/j.ijfoodmicro.2017.11.026.

[99] JIA S L, JIA Z F, AN J, et al. Insights into the fish protein degradation induced by the fish-borne spoiler Pseudomonas psychrophila and Shewanella putrefaciens: from whole genome sequencing to quality changes[J]. International Journal of Food Microbiology, 2024, 416: 110675. DOI:10.1016/j.ijfoodmicro.2024.110675.

[100] ZHU Y L, SANG X, LI X, et al. Effect of quorum sensing and quorum sensing inhibitors on the expression of serine protease gene in Hafnia alvei H4[J]. Applied Microbiology and Biotechnology, 2020, 104: 7457-7465. DOI:10.1007/s00253-020-10730-9.

[101] WANG H D, SHAO L T, ZHANG J H, et al. Insight into the spoilage heterogeneity of meat-borne bacteria isolates with high-producing collagenase[J]. Food Science and Human Wellness, 2024, 13(3): 1402-1409. DOI:10.26599/FSHW.2022.9250118.

[102] NANDAN A, NAMPOOTHIRI K M. Molecular advances in microbial aminopeptidases[J]. Bioresource Technology, 2017, 245: 1757-1765. DOI:10.1016/j.biortech.2017.05.103.

[103] TAN C M, HU J R, GAO B Y, et al. Effects of the interaction between Aeromonas sobria and Macrococcus caseolyticus on protein degradation of refrigerated sturgeon fillets: novel perspective on fish spoilage[J]. LWT-Food Science and Technology, 2023, 183: 114908. DOI:10.1016/j.lwt.2023.114908.

[104] SCATAMBURLO T M, YAMAZI A K, CAVICCHIOLI V Q, et al.

Spoilage potential of Pseudomonas species isolated from goat milk[J]. Journal of Dairy Science, 2015, 98(2): 759-764. DOI:10.3168/jds.2014-8747.

[105] ALVES M P, SALGADO R L, ELLER M R, et al. Temperature modulates the production and activity of a metalloprotease from Pseudomonas fluorescens 07A in milk[J]. Journal of Dairy Science, 2018, 101(2): 992-999. DOI:10.3168/jds.2017-13238.

[106] KATIYO W, DE KOCK H L, COOREY R, et al. Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage[J]. LWT-Food Science and Technology, 2020, 128: 109468. DOI:10.1016/j.lwt.2020.109468.

[107] ABRIL A G, CALO-MATA P, VILLA T G, et al. Comprehensive shotgun proteomic characterization and virulence factors of seafood spoilage bacteria[J]. Food Chemistry, 2024, 448: 139045. DOI:10.1016/j.foodchem.2024.139045.

[108] ERCOLINI D, CASABURI A, NASI A, et al. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers[J]. International Journal of Food Microbiology, 2010, 142(1/2): 120-131. DOI:10.1016/j.ijfoodmicro.2010.06.012.

[109] ?ZDEMIR F, ARSLAN S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef[J]. Journal of Food Science, 2019, 84(3): 548-556. DOI:10.1111/1750-3841.14445.

[110] NOWAK A, PIOTROWSKA M. Biochemical activities of Brochothrix thermosphacta[J]. Meat Science, 2012, 90(2): 410-413. DOI:10.1016/j.meatsci.2011.08.008.

[111] FOUGY L, COEURET G, CHAMPOMIER-VERGèS M C, et al. Draft genome sequence of Serratia proteamaculans MFPA44A14-05, a model organism for the study of meat and seafood spoilage[J]. Microbiology Resource Announcements, 2017, 5(23): e00491-17. DOI:10.1128/genomeA.00491-17.

猜你喜歡
羊肉牛肉豬肉
“扒羊肉”
豬肉將降到白菜價(jià)
酸湯牛肉里的愛
趣味(語文)(2021年11期)2021-03-09 03:11:30
近期豬肉價(jià)格上漲動(dòng)力減弱
尋味牛肉
海峽姐妹(2020年4期)2020-05-30 13:00:12
豬肉價(jià)格要回歸正常了?
開春食羊肉,滋補(bǔ)健體
美食(2019年2期)2019-09-10 07:22:44
牛肉怎么做,好吃又嫩?
海峽姐妹(2019年4期)2019-06-18 10:39:14
冬補(bǔ)一寶 羊肉
海峽姐妹(2019年1期)2019-03-23 02:43:00
豬肉卷
云安县| 凉城县| 枞阳县| 博白县| 东阿县| 栖霞市| 秦安县| 涡阳县| 保靖县| 陇西县| 天津市| 杨浦区| 招远市| 儋州市| 西宁市| 兴隆县| 邢台市| 北川| 正安县| 文山县| 蕲春县| 延寿县| 唐山市| 从化市| 靖江市| 甘南县| 临猗县| 内江市| 长治县| 邵东县| 宜川县| 松原市| 淮阳县| 古蔺县| 宜宾市| 晋宁县| 育儿| 彩票| 边坝县| 绥阳县| 淅川县|