【摘要】 經(jīng)皮冠狀動(dòng)脈介入治療(PCI)是冠狀動(dòng)脈粥樣硬化的常用治療手段。支架內(nèi)再狹窄(ISR)是植入支架后較為高發(fā)的并發(fā)癥。微RNA(microRNA,miRNA)可以作為再狹窄診斷和治療的生物標(biāo)志物和靶標(biāo),預(yù)防或減少再狹窄的發(fā)生。本文綜述了ISR的病理生理機(jī)制,介紹了幾種miRNA在ISR的功能和調(diào)節(jié)過(guò)程,闡釋了其在調(diào)控血管平滑肌細(xì)胞(VSMC)和內(nèi)皮細(xì)胞(EC)的表型、增殖和遷移中的作用。為針對(duì)miRNA的ISR的治療和預(yù)防策略提出臨床參考,從而指導(dǎo)治療方案。
【關(guān)鍵詞】 微RNA 支架內(nèi)再狹窄 內(nèi)皮細(xì)胞 血管平滑肌細(xì)胞 經(jīng)皮冠狀動(dòng)脈介入治療
The Role and Mechanisms of microRNA in In-stent Restenosis/LIU Xingjian, WANG Jinhang, ZHANG Bolun, LIU Rundong, WANG Chuan. //Medical Innovation of China, 2024, 21(27): -188
[Abstract] Percutaneous coronary intervention (PCI) is a common treatment for coronary atherosclerosis. In-stent restenosis (ISR) is a relatively frequent complication following stent implantation. MicroRNA (miRNA) can serve as biomarkers and targets for the diagnosis and treatment of restenosis, potentially preventing or reducing its occurrence. This article reviews the pathophysiological mechanisms of ISR, presents the functions and regulatory processes of several miRNA in ISR, and elucidates their roles in regulating the phenotypes, proliferation, and migration of vascular smooth muscle cells (VSMC) and endothelial cells (EC). This article offers clinical insights into miRNA targeted therapeutic and preventive strategies for ISR, thereby guiding treatment protocols.
[Key words] microRNA In-stent restenosis Endothelial cell Vascular smooth muscle cell Percutaneous coronary intervention
First-author's address: Capital Medical University Yanjing Medical College, Beijing 101300, China
doi:10.3969/j.issn.1674-4985.2024.27.042
①首都醫(yī)科大學(xué)燕京醫(yī)學(xué)院 北京 101300
②首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院 北京 100069
③中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院心內(nèi)科 北京 100730
通信作者:王川
心血管疾病(cardiovascular disease,CVD)每年導(dǎo)致全球約1 790萬(wàn)人死亡,占全球死亡總數(shù)的近三分之一[1-2]。其中冠狀動(dòng)脈粥樣硬化性心臟?。╟oronary atherosclerotic heart disease,CAD)最常見。因其高發(fā)病率及高死亡率成為公共衛(wèi)生的重大挑戰(zhàn)[3]。臨床上常用的CAD治療方法包括藥物治療、冠狀動(dòng)脈旁路移植術(shù)(coronary artery bypass grafting,CABG)和經(jīng)皮冠狀動(dòng)脈介入治療(percutaneous coronary intervention,PCI)[4]。PCI術(shù)因其創(chuàng)傷小、恢復(fù)快的優(yōu)點(diǎn),已成為治療CAD最常見的手段[3]。在行PCI術(shù)植入支架后,可能發(fā)生支架內(nèi)再狹窄(in-stent restenosis,ISR)。其根據(jù)研究方式和支架類型的不同發(fā)生率為5%~10%[5]。球囊擴(kuò)張和支架植入引起的局部血管損傷會(huì)破壞血管生理穩(wěn)態(tài),使ISR患者再次出現(xiàn)不穩(wěn)定型心絞痛和心肌梗死(myocardial infarction,MI)等臨床癥狀[6]。
非編碼RNA(noncoding RNA,ncRNA)在基因組中被轉(zhuǎn)錄,但不能被進(jìn)一步翻譯成蛋白質(zhì),在ISR的發(fā)展形成過(guò)程中具有重要意義[7]。ISR發(fā)生時(shí),微RNA(microRNA,miRNA)對(duì)血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMC)和內(nèi)皮細(xì)胞(endothelial cell,EC)的作用具有較高生物學(xué)意義[8]。如miR-22、miR-124和miR-34a等miRNA可以通過(guò)靶向特定信號(hào)分子和轉(zhuǎn)錄因子,抑制VSMC的過(guò)度增殖和遷移,從而減輕ISR的發(fā)展[7]。同時(shí),miRNA也可在EC中促進(jìn)支架再內(nèi)皮化,調(diào)控炎癥反應(yīng),維持血管內(nèi)環(huán)境的穩(wěn)定[8]。
目前,對(duì)于ISR的研究主要集中在解析病理生理機(jī)制和優(yōu)化預(yù)防治療策略兩方面[8]。海內(nèi)外學(xué)者研究表明ncRNA在基因表達(dá)調(diào)控中有關(guān)鍵作用,可作為治療和預(yù)防ISR的潛在靶點(diǎn)[9]。由于miRNA能夠被釋放到血液中[10],故可檢測(cè)血液循環(huán)中miRNA作為臨床診斷和預(yù)后的生物標(biāo)志物[8]。本文旨在綜述miRNA在ISR中的分子機(jī)制,探討其作為潛在的生物標(biāo)志物及治療靶點(diǎn)的可能性。
1 ISR的病理機(jī)制
ISR是PCI術(shù)后的主要并發(fā)癥之一,表現(xiàn)為已植入支架的血管再次狹窄超過(guò)50%。ISR的病理生理機(jī)制復(fù)雜,涉及多種細(xì)胞和分子機(jī)制,可分為早期、中期和晚期三個(gè)階段[8]。在早期階段,球囊擴(kuò)張和支架植入會(huì)直接對(duì)血管壁造成機(jī)械性損傷,導(dǎo)致EC的破壞,稱為內(nèi)皮剝脫。這種損傷觸發(fā)局部炎癥反應(yīng),激活血小板,釋放生長(zhǎng)因子和促炎細(xì)胞因子。這些生物活性分子的釋放為VSMC活化和增殖創(chuàng)造條件,是ISR發(fā)展的基礎(chǔ)[11]。VSMC的活化和增殖會(huì)引起血管內(nèi)膜增生(neointimal hyperplasia,NIH)。NIH是由血管內(nèi)皮損傷引發(fā)的增生過(guò)程,該過(guò)程可引發(fā)炎癥反應(yīng),使VSMC激活,試圖修復(fù)損傷,最終導(dǎo)致ISR。VSMC在ISR的中期和晚期階段均起主導(dǎo)作用。VSMC的表型轉(zhuǎn)換指其由分化、收縮、靜止?fàn)顟B(tài)轉(zhuǎn)變?yōu)榉置?、合成狀態(tài)的過(guò)程。該過(guò)程導(dǎo)致VSMC從血管中層遷移到新內(nèi)膜,并伴隨細(xì)胞增殖和遷移,細(xì)胞外基質(zhì)(extracellular matrix,ECM)蛋白的合成和沉積,最終可以導(dǎo)致血管逐漸狹窄。腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素-1β(IL-1β)等炎癥因子,單核細(xì)胞趨化蛋白-1(MCP-1)等趨化因子和血小板衍生生長(zhǎng)因子(platelet-derived growth factor,PDGF)等生長(zhǎng)因子在這一過(guò)程中起著關(guān)鍵作用[12-14]。這些因子不僅促進(jìn)VSMC的活化和表型轉(zhuǎn)換,還可以通過(guò)抑制如α-平滑肌肌動(dòng)蛋白(α-SMA)、平滑肌特異性SM22α啟動(dòng)子和平滑肌肌球蛋白重鏈(SM-myosin heavy chain,SMMHC)等平滑肌細(xì)胞特異性標(biāo)志物的表達(dá),促進(jìn)炎癥和ECM的合成,重啟細(xì)胞周期,加速細(xì)胞遷移[15]。
EC在損傷后也會(huì)導(dǎo)致ISR的發(fā)生。內(nèi)皮剝脫后,內(nèi)皮層的喪失使位于中層的靜息VSMC暴露于促炎細(xì)胞因子、生長(zhǎng)因子和趨化蛋白,這些因子刺激VSMC遷移和增殖。EC通過(guò)釋放一氧化氮(NO)直接抑制VSMC的表型轉(zhuǎn)換,通過(guò)激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)途徑,抑制RhoA活性,誘導(dǎo)細(xì)胞周期抑制蛋白p21Waf1/Cip1的水平上調(diào),從而阻斷細(xì)胞周期G1/S期的過(guò)渡。當(dāng)內(nèi)皮層受損時(shí),該過(guò)程被打斷,重啟VSMC表型的轉(zhuǎn)換[16]。這些過(guò)程共同促進(jìn)了ISR的發(fā)展,成為當(dāng)前治療策略的重點(diǎn)靶向?qū)ο蟆?/p>
2 miRNA的基本功能
主要的ncRNA類型包括miRNA、長(zhǎng)非編碼RNA(long non-coding RNA,lncRNA)和環(huán)狀RNA(circular RNA ,circRNA),它們通過(guò)不同的機(jī)制參與細(xì)胞的各種生物過(guò)程[17]。miRNA是長(zhǎng)度為18~22核苷酸的單鏈RNA分子,通過(guò)與靶mRNA的3'非翻譯區(qū)(3'-untranslated region,3'-UTR)結(jié)合,抑制其翻譯或促進(jìn)其降解,從而調(diào)節(jié)蛋白質(zhì)的合成[18]。miRNA通過(guò)與Argonaute(Argonaute,Ago)蛋白復(fù)合體形成的miRNA誘導(dǎo)的沉默復(fù)合體(miRNA-induced silencing complex,miRISC),進(jìn)而影響相關(guān)基因的翻譯,同時(shí)在細(xì)胞中發(fā)揮基因調(diào)控作用[19]。
多項(xiàng)研究已經(jīng)將miRNA作為對(duì)CVD具有高診斷和預(yù)后能力的強(qiáng)循環(huán)生物標(biāo)志物[10-13],如ISR,AF和感染性心肌炎[20-22]等。其中,miR-22、miR-34a和miR-126等miRNA在ISR中展示了較為重要的功能。在ISR進(jìn)程中,這些ncRNA通過(guò)調(diào)控VSMC和EC的表型轉(zhuǎn)換、增殖和遷移等關(guān)鍵過(guò)程,影響ISR的發(fā)生和進(jìn)展,從而減少ISR的發(fā)生率[23]。
3 miRNA在ISR中的作用
在ISR的病理生理中,大量miRNA通過(guò)誘導(dǎo)表觀遺傳修飾和調(diào)節(jié)mRNA表達(dá)水平,影響特定血管細(xì)胞功能和NIH的信號(hào)通路。VSMC特異性收縮標(biāo)志基因和對(duì)于細(xì)胞增殖、遷移和凋亡起重要作用的基因在啟動(dòng)子區(qū)域存在CAr G盒(CAr Gbox)[24],該片段是許多其他信號(hào)通路的匯合點(diǎn),受血清應(yīng)答因子(SRF)及其肌肉特異性共激活因子心肌素(Myocd)等關(guān)鍵轉(zhuǎn)錄因子控制[8]。Myocd與SRF結(jié)合形成SRF-Myocd三元復(fù)合體,該復(fù)合體結(jié)合到收縮特異性基因的啟動(dòng)子區(qū)域,促進(jìn)合成型、收縮型VSMC表型的轉(zhuǎn)錄和表達(dá)[25]。由于VSMC的可塑性,其表型在ISR過(guò)程中可以從收縮型轉(zhuǎn)變?yōu)楹铣尚?,這一變化依賴于額外的共抑制因子、共激活因子和環(huán)境因素之間的相互平衡。在該過(guò)程中,miRNA通過(guò)Krüppel樣因子4(Krüppel-like factor 4,KLF4)和組蛋白去乙?;?(histone deacetylase 2,HDAC2),調(diào)控VSMC表型轉(zhuǎn)換。KLF4阻止SRF與特異性基因啟動(dòng)子結(jié)合,推動(dòng)合成型VSMC表型,而HDAC2通過(guò)阻斷SRF訪問(wèn)CAr G位點(diǎn)來(lái)抑制轉(zhuǎn)錄。此外,PDGF也可破壞SRF-Myocd復(fù)合體,阻斷特異性基因表達(dá)。miRNA在EC的再內(nèi)皮化中也發(fā)揮作用,具有抑制ISR的潛力[26]。
3.1 miR-22在ISR中的應(yīng)用
miR-22是ISR治療中的一個(gè)重要的靶點(diǎn),是VSMC收縮表型的重要調(diào)節(jié)因子。其在ISR過(guò)程中受PDGF影響有所下調(diào),而在轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)的作用下通過(guò)p53依賴的方式再次上調(diào)。miR-22主要通過(guò)甲基CpG結(jié)合蛋白2(MECP2)、組蛋白去乙酰化酶4(HDAC4)和親嗜性病毒整合位點(diǎn)1(EVI1)等靶標(biāo)影響ISR期間成熟VSMC的表型轉(zhuǎn)換、增殖和遷移[27]。MECP2是一種強(qiáng)轉(zhuǎn)錄調(diào)節(jié)因子,可根據(jù)其結(jié)合分子的不同,起到抑制或激活作用,是miR-22最初能夠識(shí)別的靶標(biāo)之一[28]。miR-22過(guò)度表達(dá)導(dǎo)致MECP2下調(diào),因此阻止了基因啟動(dòng)子區(qū)域的H3K9三甲基化(H3K9me3),從而允許了收縮特異性基因的表達(dá)[28]。通過(guò)miR-22抑制HDAC4可以增加SRF-Myocd在CAr G位點(diǎn)的染色質(zhì)可及性,并通過(guò)p21和p27依賴的方式促進(jìn)G1/S期停滯[29]。EVI1通常結(jié)合SM22α、αSMA、SRF和Myocd的啟動(dòng)子區(qū)域,并通過(guò)H3K9me3富集抑制轉(zhuǎn)錄。miR-22的上調(diào)抑制了MECP2、EVI1和HDAC4表達(dá),防止了合成型VSMC的轉(zhuǎn)換。Yang等[27]的研究顯示局部異位的miR-22能夠使合成型VSMC恢復(fù)為收縮型,抑制NIH。綜上,miR-22通過(guò)調(diào)節(jié)MECP2、HDAC4和EVI1等靶標(biāo),影響VSMC的表型轉(zhuǎn)換、增殖和遷移,是治療ISR的重要靶點(diǎn)[30]。
3.2 miR-34a在ISR中的作用
在ISR的病理生理過(guò)程中,miR-34a表達(dá)下調(diào),并與Notch1的3'UTR相結(jié)合,促進(jìn)VSMC向收縮型的轉(zhuǎn)變[31]。與miR-22類似,PDGF下調(diào)miR-34a,且TGF-β上調(diào)miR-34a,在VSMC的增殖和遷移中起作用,并通過(guò)上調(diào)沉默信息調(diào)節(jié)因子1(SirT1)影響干細(xì)胞分化。實(shí)驗(yàn)表明,miR-34a降低了VSMC的增殖和遷移能力,但對(duì)凋亡無(wú)影響[32]。轉(zhuǎn)染了miR-34a的人主動(dòng)脈平滑肌細(xì)胞(human aortic smooth muscle cell,HASMC)也顯示了相同的結(jié)果[31]。Notch1主要在EC中表達(dá)[32],Li等[33]的研究表明Notch1也存在于血管損傷后的VSMC中,并可以通過(guò)激活CHF1/Hey2通路促進(jìn)NIH,增加生長(zhǎng)因子的敏感性,并通過(guò)Rho GTPase Rac1介導(dǎo)增殖。miR-34a的表達(dá)抑制Notch1信號(hào)傳導(dǎo),通過(guò)抑制VSMC的增殖和遷移阻止新內(nèi)膜形成,但不影響凋亡。此外,miR-34a的作用依賴于細(xì)胞環(huán)境,顯示其在EC中可以抑制SirT1以維持細(xì)胞衰老狀態(tài),阻止在動(dòng)脈粥樣硬化和高血壓等其他CVD中血管損傷后再內(nèi)皮化所需的增殖和遷移[34]。以上研究表明,miR-34a通過(guò)調(diào)控Notch1信號(hào)通路和影響Sirtuin-1的表達(dá),可有效抑制VSMC的增殖和遷移,阻止新內(nèi)膜的形成。
3.3 miR-126在ISR中的作用
EC可以對(duì)損傷后血管細(xì)胞穩(wěn)態(tài)進(jìn)行調(diào)控。其調(diào)控機(jī)制之一包括在凋亡和炎癥激活后釋放內(nèi)皮微粒(endothelial microparticle,EMP)。EMP是針對(duì)EC和VSMC的生物活性分子。其含有多種miRNA,miR-126的表達(dá)量最高,在EC修復(fù)、動(dòng)脈粥樣硬化和再內(nèi)皮化中發(fā)揮重要作用。在EC中,miR-126的攝取促進(jìn)了細(xì)胞的增殖和遷移,激活Ras/MAPK途徑,推動(dòng)細(xì)胞周期的進(jìn)展和增殖[35]。miR-126也通過(guò)CXCL12/CXCR4依賴方式抑制動(dòng)脈粥樣硬化斑塊的形成[36]。此外,miR-126對(duì)VSMC具有相反的效應(yīng),其攝取阻止了VSMC的增殖并通過(guò)抑制低密度脂蛋白受體相關(guān)蛋白6(low density lipoprotein receptor related protein 6,LRP6),抑制形成新內(nèi)膜,從而影響了β-catenin和p21的表達(dá)[37]。以上研究揭示了miR-126的雙重作用模式,既抑制VSMC的增殖和NIH,同時(shí)促進(jìn)再內(nèi)皮化預(yù)防支架內(nèi)血栓的形成。
4 總結(jié)與展望
本文綜述了miRNA在ISR的分子機(jī)制,闡釋了其在調(diào)控VSMC和EC的表型、增殖和遷移中的作用。miRNA一方面抑制VSMC的過(guò)度增殖和遷移,從而減輕NIH和血管狹窄;另一方面促進(jìn)EC的再內(nèi)皮化,幫助恢復(fù)血管的功能,增加結(jié)構(gòu)穩(wěn)定性。未來(lái)的研究可以更進(jìn)一步探索這些miRNA和其他ncRNA的功能及其在ISR中的作用機(jī)制,通過(guò)操控特定過(guò)程減少內(nèi)皮愈合功能障礙和支架血栓的形成,提高患者治療效果。
參考文獻(xiàn)
[1] TIMMIS A,VARDAS P,TOWNSEND N,et al.European society of cardiology: cardiovascular disease statistics 2021[J].Eur Heart J,2022,43(8):716-799.
[2]北京高血壓防治協(xié)會(huì),北京糖尿病防治協(xié)會(huì),北京慢性病防治與健康教育研究會(huì),等.基層心血管病綜合管理實(shí)踐指南2020[J/OL].中國(guó)醫(yī)學(xué)前沿雜志:電子版,2020,12(8):前插1,1-73,https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjQwNzA0EhF6Z3l4cXl6ejIwMjAwODAwMRoIbDQyM3BwaTc%3D.
[3] ENGELEN S E,ROBINSON A J B,ZURKE Y,et al.
Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed?[J].Nature Reviews Cardiology, 2022,19(8):522-542.
[4]王金航,劉潤(rùn)東,劉行健,等.冠狀動(dòng)脈粥樣斑塊幾何構(gòu)型對(duì)粥樣病變發(fā)展的影響[J].北京生物醫(yī)學(xué)工程,2023,42(4):390-397.
[5] ALRAIES M C,DARMOCH F,TUMMALA R,et al.Diagnosis and management challenges of in-stent restenosis in coronary arteries[J].World Journal of Cardiology,2017,9(8):640-651.
[6] SHLOFMITZ E,CASE B C,CHEN Y,et al.Waksman in-stent restenosis classification:a mechanism-based approach to the treatment of restenosis[J].Ardiovascular Revascularization Medicine,2021,33:62-67.
[7] LUO Y,HITZ B C,GABDANK I,et al.New developments on the encyclopedia of DNA elements(ENCODE)data portal[J].Nucleic Acids Research,2020,48(D1):D882-D889.
[8] EFOVI D,XIAO Q.Noncoding RNAs in vascular cell biology and restenosis[J].Biology,2023,12(1):24.
[9] VARELA N,LANAS F,SALAZAR L A,et al.The current state of micrornas as restenosis biomarkers[J].Front Genet,2019,10:1247.
[10] JI R,CHENG Y,YUE J,et al.MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J].Circulation Research,2007,100(11):1579-1588.
[11] BUCCHERI D,PIRAINO D,ANDOLINA G,et al.Understanding and managing in-stent restenosis:a review of clinical data,from pathogenesis to treatment[J/OL].J Thorac Dis,2016,8(10):E1150-E1162.https://pubmed.ncbi.nlm.nih.gov/27867580/.
[12] FAROOQ V,GOGAS B D,SERRUYS P W.Restenosis[J].Circulation:Cardiovascular Interventions,2011,4(2):195-205.
[13] MAKAREWICZ-WUJEC M,HENZEL J,K?PKA C,et al.
Usefulness of MCP-1 chemokine in the monitoring of patients with coronary artery disease subjected to intensive dietary intervention: a pilot study[J].Nutrients,2021,13(9):3047.
[14] SHI N,CHEN S Y.Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J].J Biomed Res,2014,28(1):40.
[15] CHAPPELL J,HARMAN J L,NARASIMHAN V M,et al.
Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models[J].Circulation Research,2016,119(12):1313-1323.
[16] ZUCKERBRAUN B S,STOYANOVSKY D A,SENGUPTA R,
et al.Nitric oxide-induced inhibition of smooth muscle cell proliferation involvesS-nitrosation and inactivation of RhoA[J].American Journal of Physiology-Cell Physiology,2007,292(2):C824-C831.
[17] ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genome[J].Nature,2012,489(7414):57-74.
[18] SAINI H K,GRIFFITHS-JONES S,ENRIGHT A J.Genomic analysis of human microRNA transcripts[J].Proceedings of the National Academy of Sciences-PNAS,2007,104(45):17719-17724.
[19] ROSA S D,CURCIO A,INDOLFI C.Emerging role of MicroRNAs in cardiovascular diseases[J].Circulation Journal,2014,78(3):567-575.
[20] HE M,GONG Y,SHI J,et al.Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis[J/OL].PLoS ONE,2014,9(11):e112043.https://pubmed.ncbi.nlm.nih.gov/25427155/.
[21] YANG B,LU Y,WANG Z.Control of cardiac excitability by microRNAs[J].Cardiovascular Research,2008,79(4):571-580.
[22] LUO P,HE T,JIANG R,et al.MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes[J].Mol Med Rep,2015,12(1):1163-1168.
[23] MAGUIRE E M,XIAO Q.Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia[J].The FEBS Journal,2020,287(24):5260-5283.
[24] MIANO J M.Myocardin in biology and disease[J].Journal of Biomedical Research,2015,29(1):3-19.
[25] WANG Z,QIN G,ZHAO T C.HDAC4:mechanism of regulation and biological functions[J].Epigenomics,2014,6(1):139-150.
[26] ZHENG B,HAN M,WEN J K.Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells[J].IUBMB Life,2010,62(2):132-139.
[27] YANG F,CHEN Q,HE S,et al.miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J].Circulation,2018,137(17):1824-1841.
[28] ZHAO H,WEN G,HUANG Y,et al.MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2[J].Arteriosclerosis, Thrombosis, and Vascular Biology,2015,35(4):918-929.
[29] FINDEISEN H M,GIZARD F,ZHAO Y,et al.Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2011,31(4):851-860.
[30] WANG J,QIAN H,CHEN S,et al.miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis[J].Bioactive Materials,2021,6(12):4686-4696.
[31] CHEN Q,YANG F,GUO M,et al.miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration[J].J Mol Cell Cardiol,2015,89(Pt A):75-86.
[32] YU X,ZHANG L,WEN G,et al.Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells[J].Cell Death and Differentiation,2015,22(7):1170-1180.
[33] LI Y,TAKESHITA K,LIU P,et al.Smooth muscle notch1 mediates neointimal formation after vascular injury[J].Circulation,2009,119(20):2686-2692.
[34] HUA C C,LIU X M,LIANG L R,et al.Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J].Front Cardiovasc Med,2021,8:784044.
[35] JANSEN F,YANG X,HOELSCHER M,et al.Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles[J].Circulation,2013,128(18):2026-2038.
[36] ZERNECKE A,BIDZHEKOV K,NOELS H,et al.Delivery of MicroRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J].Science Signaling,2009,2(100):ra81.
[37] TSAOUSI A,WILLIAMS H,LYON C A,et al.Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening[J].Circulation Research,2011,108(4):427-436.
(收稿日期:2024-07-23) (本文編輯:白雅茹)