劉海濤 朱宇航
摘 要: 在有干擾的條件下,為從具有正弦波特征的采樣數(shù)據(jù)求取一次諧波系數(shù),設(shè)計了濾波程序。通過對干擾誤差對諧波系數(shù)影響機理的分析,得到了一個特殊的由三角函數(shù)值構(gòu)成的二階矩陣,矩陣的特征值和特征向量決定了計算效率,兩個干擾對應(yīng)兩個子矩陣,其和矩陣與子矩陣的特征值及特征向量構(gòu)成了有趣的關(guān)系。一類特殊的,當(dāng)自變量分別為α和β,構(gòu)成2個矩陣,其和矩陣的特征向量與這2個矩陣的特征向量呈現(xiàn)出簡單的函數(shù)關(guān)系。為動平衡機干擾信號的消除提供了數(shù)學(xué)基礎(chǔ)。
關(guān)鍵詞: 矩陣和特征值 特征向量 濾波 諧波系數(shù)
中圖分類號: TP18文獻(xiàn)標(biāo)識碼: A文章編號: 1679-3567(2024)04-0082-04
Relationship Between Matrix 2 and Its Sum Matrix Eigenvectors in a Special Type of Matrix
LIU Haitao1 ZHU Yuhang2
1.Weihai Guangtai Airport Equipment Co., Ltd., Weihai, Shandong Province, 264200 China; 2.CAM Ve‐hicle Testing Engineering Research Institute of China, Beijing, 102100 China
Abstract: In the presence of interference, we designed a filtering program to obtain the first harmonic coefficient from sampled data with sine wave characteristics. By analyzing the impact mechanism of interference errors on harmonic coefficients, a special second-order matrix composed of trigonometric function values was obtained. The eigenvalues and eigenvectors of the matrix determine computational efficiency. Two interferences correspond to two sub matrices, and the eigenvalues and eigenvectors of its sum matrix and sub matrices form interesting relationship In a special type of matrix, when independent variables are α and β respectively, two matrices are formed, the eigenvectors of its sum matrix show simple functional relationship with the eigenvectors of the two matrices, which provides a mathematical basis for eliminating the interference signals of dynamic balancing machines.
Key Words: Matrix and Eigenvalues; Eigenvector; Filtering; Harmonic coefficient
動平衡機傳感器的輸出是正弦函數(shù)的采樣值,只有一次諧波,若發(fā)生干擾,將導(dǎo)致諧波系數(shù)產(chǎn)生偏差,而動平衡機最終輸出的動不平衡量,是完全依賴諧波系數(shù)計算得出的[1],一些針對正弦波的低通濾波方法[2-3]包括巴特沃斯濾波器[4-5]僅使數(shù)據(jù)平滑,并不能在數(shù)學(xué)上保證數(shù)據(jù)的準(zhǔn)確。由于動平衡機旋轉(zhuǎn)一周得到的大量采樣數(shù)據(jù)只計算出一次諧波系數(shù)這兩個數(shù)值,數(shù)據(jù)冗余量大且干擾均為脈沖類的窄干擾,針對此特點,筆者設(shè)計了可保證精度的濾波方法。做迭代運算,先求出在干擾條件下的諧波系數(shù),用此具有誤差的諧波系數(shù)生成正弦波,覆蓋掉干擾區(qū)間的采樣數(shù)據(jù),得到下一個級次的諧波系數(shù),直至兩次相鄰迭代的諧波系數(shù)足夠接近為止。此方法理論上可達(dá)到任意精度。迭代運算主要是矩陣計算,與計算矩陣特征值和特征向量的乘冪法[6]相似,較好地解決了脈沖干擾問題。本文分析了雙脈沖迭代矩陣的特征值和特征向量,為濾波軟件的設(shè)計提供了數(shù)學(xué)基礎(chǔ)。
其和矩陣特征向量自變量為構(gòu)成和矩陣的2個矩陣特征向量對應(yīng)三角函數(shù)自變量的算數(shù)平均值,這是一個有趣的結(jié)果。
筆者曾用本文方法對動平衡機傳感器進(jìn)行信號分析,根據(jù)傅里葉級數(shù)的特點,提出了一種基于矩陣迭代計算的濾波方法,通過對迭代過程矩陣特征值和特征向量的分析,為迭代算法和加速算法的設(shè)計提供了數(shù)學(xué)基礎(chǔ)。實驗表明:濾波后得到的諧波系數(shù)確實具有數(shù)學(xué)精度,加速算法的設(shè)計使得迭代的收斂速度滿足了現(xiàn)場的要求。本文方法為正弦波類信號的濾波提供了一種選擇。
參考文獻(xiàn)
[1]朱宇航,史云鵬.動平衡的力學(xué)分析及算法[J].建筑工程技術(shù)與設(shè)計,2020(19):359-361.
[2]侯鵬飛,楊躍文,徐海東.一種單相系統(tǒng)參考電流檢測改進(jìn)算法[J].電工技術(shù),2022(5):44-47,53.
[3]宋瀟.一種變積分時間諧波檢測算法[J].現(xiàn)代電子技術(shù),2022,45(23):144-148.
[4]楊輝.巴特沃斯低通濾波器的設(shè)計與仿真分析[J].電子產(chǎn)品世界,2022,29(12):79-81.
[5]黃波.巴特沃斯數(shù)字濾波器的設(shè)計與仿真實現(xiàn)[J].河南科技,2021,40(36):10-12.
[6]曹志浩,張玉德,李瑞遐編.矩陣計算和方程求根[M].北京:高等教育出版社,1979:123.
[7]何旭初,蘇煜城,包雪松.計算數(shù)學(xué)簡明教程[M].北京:高等教育出版社,1980:229.